Library iris.proofmode.classes
From stdpp Require Import namespaces.
From iris.bi Require Export bi.
From iris.proofmode Require Import base.
From iris.proofmode Require Export ident_name modalities.
From iris.prelude Require Import options.
Import bi.
From iris.bi Require Export bi.
From iris.proofmode Require Import base.
From iris.proofmode Require Export ident_name modalities.
From iris.prelude Require Import options.
Import bi.
Use this as precondition on "failing" instances of typeclasses that have
pure preconditions (such as ElimModal), if you want a nice error to be shown
when this instances is picked as part of some proof mode tactic.
Inductive pm_error (s : string) := .
Class FromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
from_assumption : □?p P ⊢ Q.
Global Arguments FromAssumption {_} _ _%_I _%_I : simpl never.
Global Arguments from_assumption {_} _ _%_I _%_I {_}.
Global Hint Mode FromAssumption + + - - : typeclass_instances.
Class KnownLFromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
#[global] knownl_from_assumption :: FromAssumption p P Q.
Global Arguments KnownLFromAssumption {_} _ _%_I _%_I : simpl never.
Global Arguments knownl_from_assumption {_} _ _%_I _%_I {_}.
Global Hint Mode KnownLFromAssumption + + ! - : typeclass_instances.
Class KnownRFromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
#[global] knownr_from_assumption :: FromAssumption p P Q.
Global Arguments KnownRFromAssumption {_} _ _%_I _%_I : simpl never.
Global Arguments knownr_from_assumption {_} _ _%_I _%_I {_}.
Global Hint Mode KnownRFromAssumption + + - ! : typeclass_instances.
Class IntoPure {PROP : bi} (P : PROP) (φ : Prop) :=
into_pure : P ⊢ ⌜φ⌝.
Global Arguments IntoPure {_} _%_I _%_type_scope : simpl never.
Global Arguments into_pure {_} _%_I _%_type_scope {_}.
Global Hint Mode IntoPure + ! - : typeclass_instances.
Class IntoPureT {PROP : bi} (P : PROP) (φ : Type) :=
into_pureT : ∃ ψ : Prop, φ = ψ ∧ IntoPure P ψ.
Lemma into_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : IntoPure P φ → IntoPureT P φ.
Proof. by ∃ φ. Qed.
Global Hint Extern 0 (IntoPureT _ _) ⇒
notypeclasses refine (into_pureT_hint _ _ _) : typeclass_instances.
Class FromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
from_assumption : □?p P ⊢ Q.
Global Arguments FromAssumption {_} _ _%_I _%_I : simpl never.
Global Arguments from_assumption {_} _ _%_I _%_I {_}.
Global Hint Mode FromAssumption + + - - : typeclass_instances.
Class KnownLFromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
#[global] knownl_from_assumption :: FromAssumption p P Q.
Global Arguments KnownLFromAssumption {_} _ _%_I _%_I : simpl never.
Global Arguments knownl_from_assumption {_} _ _%_I _%_I {_}.
Global Hint Mode KnownLFromAssumption + + ! - : typeclass_instances.
Class KnownRFromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
#[global] knownr_from_assumption :: FromAssumption p P Q.
Global Arguments KnownRFromAssumption {_} _ _%_I _%_I : simpl never.
Global Arguments knownr_from_assumption {_} _ _%_I _%_I {_}.
Global Hint Mode KnownRFromAssumption + + - ! : typeclass_instances.
Class IntoPure {PROP : bi} (P : PROP) (φ : Prop) :=
into_pure : P ⊢ ⌜φ⌝.
Global Arguments IntoPure {_} _%_I _%_type_scope : simpl never.
Global Arguments into_pure {_} _%_I _%_type_scope {_}.
Global Hint Mode IntoPure + ! - : typeclass_instances.
Class IntoPureT {PROP : bi} (P : PROP) (φ : Type) :=
into_pureT : ∃ ψ : Prop, φ = ψ ∧ IntoPure P ψ.
Lemma into_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : IntoPure P φ → IntoPureT P φ.
Proof. by ∃ φ. Qed.
Global Hint Extern 0 (IntoPureT _ _) ⇒
notypeclasses refine (into_pureT_hint _ _ _) : typeclass_instances.
FromPure a P φ is used when introducing a pure assertion. It is used by
iPureIntro and the [%] specialization pattern.
The Boolean a specifies whether introduction of P needs emp in addition
to φ. Concretely, for the iPureIntro tactic, this means it specifies whether
the spatial context should be empty or not.
Note that the Boolean a is not needed for the (dual) IntoPure class, because
there we can just ask that P is Affine.
Class FromPure {PROP : bi} (a : bool) (P : PROP) (φ : Prop) :=
from_pure : <affine>?a ⌜φ⌝ ⊢ P.
Global Arguments FromPure {_} _ _%_I _%_type_scope : simpl never.
Global Arguments from_pure {_} _ _%_I _%_type_scope {_}.
Global Hint Mode FromPure + - ! - : typeclass_instances.
Class FromPureT {PROP : bi} (a : bool) (P : PROP) (φ : Type) :=
from_pureT : ∃ ψ : Prop, φ = ψ ∧ FromPure a P ψ.
Lemma from_pureT_hint {PROP : bi} (a : bool) (P : PROP) (φ : Prop) :
FromPure a P φ → FromPureT a P φ.
Proof. by ∃ φ. Qed.
Global Hint Extern 0 (FromPureT _ _ _) ⇒
notypeclasses refine (from_pureT_hint _ _ _ _) : typeclass_instances.
Class IntoInternalEq `{BiInternalEq PROP} {A : ofe} (P : PROP) (x y : A) :=
into_internal_eq : P ⊢ x ≡ y.
Global Arguments IntoInternalEq {_ _ _} _%_I _%_type_scope _%_type_scope : simpl never.
Global Arguments into_internal_eq {_ _ _} _%_I _%_type_scope _%_type_scope {_}.
Global Hint Mode IntoInternalEq + - - ! - - : typeclass_instances.
Class IntoPersistent {PROP : bi} (p : bool) (P Q : PROP) :=
into_persistent : <pers>?p P ⊢ <pers> Q.
Global Arguments IntoPersistent {_} _ _%_I _%_I : simpl never.
Global Arguments into_persistent {_} _ _%_I _%_I {_}.
Global Hint Mode IntoPersistent + + ! - : typeclass_instances.
from_pure : <affine>?a ⌜φ⌝ ⊢ P.
Global Arguments FromPure {_} _ _%_I _%_type_scope : simpl never.
Global Arguments from_pure {_} _ _%_I _%_type_scope {_}.
Global Hint Mode FromPure + - ! - : typeclass_instances.
Class FromPureT {PROP : bi} (a : bool) (P : PROP) (φ : Type) :=
from_pureT : ∃ ψ : Prop, φ = ψ ∧ FromPure a P ψ.
Lemma from_pureT_hint {PROP : bi} (a : bool) (P : PROP) (φ : Prop) :
FromPure a P φ → FromPureT a P φ.
Proof. by ∃ φ. Qed.
Global Hint Extern 0 (FromPureT _ _ _) ⇒
notypeclasses refine (from_pureT_hint _ _ _ _) : typeclass_instances.
Class IntoInternalEq `{BiInternalEq PROP} {A : ofe} (P : PROP) (x y : A) :=
into_internal_eq : P ⊢ x ≡ y.
Global Arguments IntoInternalEq {_ _ _} _%_I _%_type_scope _%_type_scope : simpl never.
Global Arguments into_internal_eq {_ _ _} _%_I _%_type_scope _%_type_scope {_}.
Global Hint Mode IntoInternalEq + - - ! - - : typeclass_instances.
Class IntoPersistent {PROP : bi} (p : bool) (P Q : PROP) :=
into_persistent : <pers>?p P ⊢ <pers> Q.
Global Arguments IntoPersistent {_} _ _%_I _%_I : simpl never.
Global Arguments into_persistent {_} _ _%_I _%_I {_}.
Global Hint Mode IntoPersistent + + ! - : typeclass_instances.
The FromModal φ M sel P Q class is used by the iModIntro tactic to
transform a goal P into a modality M and proposition Q, under additional
pure assumptions φ.
The inputs are P and sel and the outputs are M and Q.
The input sel can be used to specify which modality to introduce in case there
are multiple choices to turn P into a modality. For example, given ⎡|==> R⎤,
sel can be either |==> ?e or ⎡ ?e ⎤, which turn it into an update modality
or embedding, respectively. In case there is no need to specify the modality to
introduce, sel should be an evar.
For modalities N that do not need to augment the proof mode environment, one
can define an instance FromModal True modality_id (N P) P. Defining such an
instance only imposes the proof obligation P ⊢ N P. Examples of such
modalities N are bupd, fupd, except_0, monPred_subjectively and
bi_absorbingly.
Class FromModal {PROP1 PROP2 : bi} {A}
(φ : Prop) (M : modality PROP1 PROP2) (sel : A) (P : PROP2) (Q : PROP1) :=
from_modal : φ → M Q ⊢ P.
Global Arguments FromModal {_ _ _} _ _ _%_I _%_I _%_I : simpl never.
Global Arguments from_modal {_ _ _} _ _ _ _%_I _%_I {_}.
Global Hint Mode FromModal - + - - - - ! - : typeclass_instances.
(φ : Prop) (M : modality PROP1 PROP2) (sel : A) (P : PROP2) (Q : PROP1) :=
from_modal : φ → M Q ⊢ P.
Global Arguments FromModal {_ _ _} _ _ _%_I _%_I _%_I : simpl never.
Global Arguments from_modal {_ _ _} _ _ _ _%_I _%_I {_}.
Global Hint Mode FromModal - + - - - - ! - : typeclass_instances.
The FromAffinely P Q class is used to add an <affine> modality to the
proposition Q.
The input is Q and the output is P.
Class FromAffinely {PROP : bi} (P Q : PROP) :=
from_affinely : <affine> Q ⊢ P.
Global Arguments FromAffinely {_} _%_I _%_I : simpl never.
Global Arguments from_affinely {_} _%_I _%_I {_}.
Global Hint Mode FromAffinely + - ! : typeclass_instances.
from_affinely : <affine> Q ⊢ P.
Global Arguments FromAffinely {_} _%_I _%_I : simpl never.
Global Arguments from_affinely {_} _%_I _%_I {_}.
Global Hint Mode FromAffinely + - ! : typeclass_instances.
The IntoAbsorbingly P Q class is used to add an <absorb> modality to
the proposition Q.
The input is Q and the output is P.
Class IntoAbsorbingly {PROP : bi} (P Q : PROP) :=
into_absorbingly : P ⊢ <absorb> Q.
Global Arguments IntoAbsorbingly {_} _%_I _%_I.
Global Arguments into_absorbingly {_} _%_I _%_I {_}.
Global Hint Mode IntoAbsorbingly + - ! : typeclass_instances.
into_absorbingly : P ⊢ <absorb> Q.
Global Arguments IntoAbsorbingly {_} _%_I _%_I.
Global Arguments into_absorbingly {_} _%_I _%_I {_}.
Global Hint Mode IntoAbsorbingly + - ! : typeclass_instances.
Converting an assumption R into a wand P -∗ Q is done in three stages:
- Strip modalities and universal quantifiers of R until an arrow or a wand has been obtained.
- Balance modalities in the arguments P and Q to match the goal (which used for iApply) or the premise (when used with iSpecialize and a specific hypothesis).
- Instantiate the premise of the wand or implication.
Class IntoWand {PROP : bi} (p q : bool) (R P Q : PROP) :=
into_wand : □?p R ⊢ □?q P -∗ Q.
Global Arguments IntoWand {_} _ _ _%_I _%_I _%_I : simpl never.
Global Arguments into_wand {_} _ _ _%_I _%_I _%_I {_}.
Global Hint Mode IntoWand + + + ! - - : typeclass_instances.
Class IntoWand' {PROP : bi} (p q : bool) (R P Q : PROP) :=
into_wand' : IntoWand p q R P Q.
Global Arguments IntoWand' {_} _ _ _%_I _%_I _%_I : simpl never.
Global Hint Mode IntoWand' + + + ! ! - : typeclass_instances.
Global Hint Mode IntoWand' + + + ! - ! : typeclass_instances.
Class FromWand {PROP : bi} (P Q1 Q2 : PROP) := from_wand : (Q1 -∗ Q2) ⊢ P.
Global Arguments FromWand {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_wand {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromWand + ! - - : typeclass_instances.
Class FromImpl {PROP : bi} (P Q1 Q2 : PROP) := from_impl : (Q1 → Q2) ⊢ P.
Global Arguments FromImpl {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_impl {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromImpl + ! - - : typeclass_instances.
Class FromSep {PROP : bi} (P Q1 Q2 : PROP) := from_sep : Q1 ∗ Q2 ⊢ P.
Global Arguments FromSep {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_sep {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromSep + ! - - : typeclass_instances.
Class FromAnd {PROP : bi} (P Q1 Q2 : PROP) := from_and : Q1 ∧ Q2 ⊢ P.
Global Arguments FromAnd {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_and {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromAnd + ! - - : typeclass_instances.
into_wand : □?p R ⊢ □?q P -∗ Q.
Global Arguments IntoWand {_} _ _ _%_I _%_I _%_I : simpl never.
Global Arguments into_wand {_} _ _ _%_I _%_I _%_I {_}.
Global Hint Mode IntoWand + + + ! - - : typeclass_instances.
Class IntoWand' {PROP : bi} (p q : bool) (R P Q : PROP) :=
into_wand' : IntoWand p q R P Q.
Global Arguments IntoWand' {_} _ _ _%_I _%_I _%_I : simpl never.
Global Hint Mode IntoWand' + + + ! ! - : typeclass_instances.
Global Hint Mode IntoWand' + + + ! - ! : typeclass_instances.
Class FromWand {PROP : bi} (P Q1 Q2 : PROP) := from_wand : (Q1 -∗ Q2) ⊢ P.
Global Arguments FromWand {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_wand {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromWand + ! - - : typeclass_instances.
Class FromImpl {PROP : bi} (P Q1 Q2 : PROP) := from_impl : (Q1 → Q2) ⊢ P.
Global Arguments FromImpl {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_impl {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromImpl + ! - - : typeclass_instances.
Class FromSep {PROP : bi} (P Q1 Q2 : PROP) := from_sep : Q1 ∗ Q2 ⊢ P.
Global Arguments FromSep {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_sep {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromSep + ! - - : typeclass_instances.
Class FromAnd {PROP : bi} (P Q1 Q2 : PROP) := from_and : Q1 ∧ Q2 ⊢ P.
Global Arguments FromAnd {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_and {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromAnd + ! - - : typeclass_instances.
The IntoAnd p P Q1 Q2 class is used to handle some [H1 H2] intro
patterns:
The inputs are p P and the outputs are Q1 Q2.
- IntoAnd true is used for such patterns in the intuitionistic context
- IntoAnd false is used for such patterns where one of the two sides is discarded (e.g. [_ H]) or where the left-hand side is pure as in [% H] (via an IntoExist fallback).
Class IntoAnd {PROP : bi} (p : bool) (P Q1 Q2 : PROP) :=
into_and : □?p P ⊢ □?p (Q1 ∧ Q2).
Global Arguments IntoAnd {_} _ _%_I _%_I _%_I : simpl never.
Global Arguments into_and {_} _ _%_I _%_I _%_I {_}.
Global Hint Mode IntoAnd + + ! - - : typeclass_instances.
into_and : □?p P ⊢ □?p (Q1 ∧ Q2).
Global Arguments IntoAnd {_} _ _%_I _%_I _%_I : simpl never.
Global Arguments into_and {_} _ _%_I _%_I _%_I {_}.
Global Hint Mode IntoAnd + + ! - - : typeclass_instances.
The IntoSep P Q1 Q2 class is used to handle [H1 H2] intro patterns in
the spatial context, except:
The input is P and the outputs are Q1 Q2.
- when one side is _, then IntoAnd is tried first (but IntoSep is used as fallback)
- when the left-hand side is %, then IntoExist is used)
Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) :=
into_sep : P ⊢ Q1 ∗ Q2.
Global Arguments IntoSep {_} _%_I _%_I _%_I : simpl never.
Global Arguments into_sep {_} _%_I _%_I _%_I {_}.
Global Hint Mode IntoSep + ! - - : typeclass_instances.
Class FromOr {PROP : bi} (P Q1 Q2 : PROP) := from_or : Q1 ∨ Q2 ⊢ P.
Global Arguments FromOr {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_or {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromOr + ! - - : typeclass_instances.
Class IntoOr {PROP : bi} (P Q1 Q2 : PROP) := into_or : P ⊢ Q1 ∨ Q2.
Global Arguments IntoOr {_} _%_I _%_I _%_I : simpl never.
Global Arguments into_or {_} _%_I _%_I _%_I {_}.
Global Hint Mode IntoOr + ! - - : typeclass_instances.
Class FromExist {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
from_exist : (∃ x, Φ x) ⊢ P.
Global Arguments FromExist {_ _} _%_I _%_I : simpl never.
Global Arguments from_exist {_ _} _%_I _%_I {_}.
Global Hint Mode FromExist + - ! - : typeclass_instances.
Class IntoExist {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name: ident_name) :=
into_exist : P ⊢ ∃ x, Φ x.
Global Arguments IntoExist {_ _} _%_I _%_I _ : simpl never.
Global Arguments into_exist {_ _} _%_I _%_I _ {_}.
Global Hint Mode IntoExist + - ! - - : typeclass_instances.
Class IntoForall {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
into_forall : P ⊢ ∀ x, Φ x.
Global Arguments IntoForall {_ _} _%_I _%_I : simpl never.
Global Arguments into_forall {_ _} _%_I _%_I {_}.
Global Hint Mode IntoForall + - ! - : typeclass_instances.
Class FromForall {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name : ident_name) :=
from_forall : (∀ x, Φ x) ⊢ P.
Global Arguments FromForall {_ _} _%_I _%_I _ : simpl never.
Global Arguments from_forall {_ _} _%_I _%_I _ {_}.
Global Hint Mode FromForall + - ! - - : typeclass_instances.
Class IsExcept0 {PROP : bi} (Q : PROP) := is_except_0 : ◇ Q ⊢ Q.
Global Arguments IsExcept0 {_} _%_I : simpl never.
Global Arguments is_except_0 {_} _%_I {_}.
Global Hint Mode IsExcept0 + ! : typeclass_instances.
into_sep : P ⊢ Q1 ∗ Q2.
Global Arguments IntoSep {_} _%_I _%_I _%_I : simpl never.
Global Arguments into_sep {_} _%_I _%_I _%_I {_}.
Global Hint Mode IntoSep + ! - - : typeclass_instances.
Class FromOr {PROP : bi} (P Q1 Q2 : PROP) := from_or : Q1 ∨ Q2 ⊢ P.
Global Arguments FromOr {_} _%_I _%_I _%_I : simpl never.
Global Arguments from_or {_} _%_I _%_I _%_I {_}.
Global Hint Mode FromOr + ! - - : typeclass_instances.
Class IntoOr {PROP : bi} (P Q1 Q2 : PROP) := into_or : P ⊢ Q1 ∨ Q2.
Global Arguments IntoOr {_} _%_I _%_I _%_I : simpl never.
Global Arguments into_or {_} _%_I _%_I _%_I {_}.
Global Hint Mode IntoOr + ! - - : typeclass_instances.
Class FromExist {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
from_exist : (∃ x, Φ x) ⊢ P.
Global Arguments FromExist {_ _} _%_I _%_I : simpl never.
Global Arguments from_exist {_ _} _%_I _%_I {_}.
Global Hint Mode FromExist + - ! - : typeclass_instances.
Class IntoExist {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name: ident_name) :=
into_exist : P ⊢ ∃ x, Φ x.
Global Arguments IntoExist {_ _} _%_I _%_I _ : simpl never.
Global Arguments into_exist {_ _} _%_I _%_I _ {_}.
Global Hint Mode IntoExist + - ! - - : typeclass_instances.
Class IntoForall {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
into_forall : P ⊢ ∀ x, Φ x.
Global Arguments IntoForall {_ _} _%_I _%_I : simpl never.
Global Arguments into_forall {_ _} _%_I _%_I {_}.
Global Hint Mode IntoForall + - ! - : typeclass_instances.
Class FromForall {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name : ident_name) :=
from_forall : (∀ x, Φ x) ⊢ P.
Global Arguments FromForall {_ _} _%_I _%_I _ : simpl never.
Global Arguments from_forall {_ _} _%_I _%_I _ {_}.
Global Hint Mode FromForall + - ! - - : typeclass_instances.
Class IsExcept0 {PROP : bi} (Q : PROP) := is_except_0 : ◇ Q ⊢ Q.
Global Arguments IsExcept0 {_} _%_I : simpl never.
Global Arguments is_except_0 {_} _%_I {_}.
Global Hint Mode IsExcept0 + ! : typeclass_instances.
CombineSepAs, MaybeCombineSepAs and CombineSepGives are all used for
the iCombine tactic.
These three classes take two hypotheses P and Q as input, and return a
(possibly simplified) new hypothesis R. CombineSepAs P Q R means that R
may be obtained by deleting both P and Q, and that R is not a trivial
combination. MaybeCombineSepAs P Q R progress is like CombineSepAs, but
R can be the trivial combination P ∗ Q, and the progress parameter
indicates whether this trivial combination is used. CombineSepGives P Q R
means that □ R may be obtained 'for free' from P and Q. The result R of
CombineSepAs and MaybeCombineSepAs will not contain the observations
from CombineSepGives.
We deliberately use separate typeclasses CombineSepAs and CombineSepGives.
This allows one to (1) combine hypotheses and get additional persistent
information, (2) only combine the hypotheses, without the additional persistent
information, (3) only get the additional persistent information, while keeping
the original hypotheses. A possible alternative would have been something like
CombineSepAsGives P1 P2 P R := combine_as_gives : P1 ∗ P2 ⊢ P ∗ □ R,
but this was deemed to be harder to use. Specifically, this would force you to
always specify both P and R, even though one might only have a good
candidate for P, but not R, or the other way around.
Note that FromSep and CombineSepAs have nearly the same definition. However,
they have different Hint Modes and are used for different tactics. FromSep is
used to compute the two new goals obtained after applying iSplitL/iSplitR,
taking the current goal as input. CombineSepAs is used to combine two
hypotheses into one.
In terms of costs, note that the AsFractional instance for CombineSepAs
has cost 50. If that instance should take priority over yours, make sure to use
a higher cost.
Class CombineSepAs {PROP : bi} (P Q R : PROP) := combine_sep_as : P ∗ Q ⊢ R.
Global Arguments CombineSepAs {_} _%_I _%_I _%_I : simpl never.
Global Arguments combine_sep_as {_} _%_I _%_I _%_I {_}.
Global Hint Mode CombineSepAs + ! ! - : typeclass_instances.
Global Arguments CombineSepAs {_} _%_I _%_I _%_I : simpl never.
Global Arguments combine_sep_as {_} _%_I _%_I _%_I {_}.
Global Hint Mode CombineSepAs + ! ! - : typeclass_instances.
The progress parameter is of the following progress_indicator type:
This aims to make MaybeCombineSepAs instances easier to read than if we
had used Booleans. NoProgress indicates that the default instance
maybe_combine_sep_as_default below has been used, while MadeProgress
indicates that a CombineSepAs instance was used.
Class MaybeCombineSepAs {PROP : bi}
(P Q R : PROP) (progress : progress_indicator) :=
maybe_combine_sep_as : P ∗ Q ⊢ R.
Global Arguments MaybeCombineSepAs {_} _%_I _%_I _%_I _ : simpl never.
Global Arguments maybe_combine_sep_as {_} _%_I _%_I _%_I _ {_}.
Global Hint Mode MaybeCombineSepAs + ! ! - - : typeclass_instances.
Global Instance maybe_combine_sep_as_combine_sep_as {PROP : bi} (R P Q : PROP) :
CombineSepAs P Q R → MaybeCombineSepAs P Q R MadeProgress | 20.
Proof. done. Qed.
Global Instance maybe_combine_sep_as_default {PROP : bi} (P Q : PROP) :
MaybeCombineSepAs P Q (P ∗ Q) NoProgress | 100.
Proof. intros. by rewrite /MaybeCombineSepAs. Qed.
(P Q R : PROP) (progress : progress_indicator) :=
maybe_combine_sep_as : P ∗ Q ⊢ R.
Global Arguments MaybeCombineSepAs {_} _%_I _%_I _%_I _ : simpl never.
Global Arguments maybe_combine_sep_as {_} _%_I _%_I _%_I _ {_}.
Global Hint Mode MaybeCombineSepAs + ! ! - - : typeclass_instances.
Global Instance maybe_combine_sep_as_combine_sep_as {PROP : bi} (R P Q : PROP) :
CombineSepAs P Q R → MaybeCombineSepAs P Q R MadeProgress | 20.
Proof. done. Qed.
Global Instance maybe_combine_sep_as_default {PROP : bi} (P Q : PROP) :
MaybeCombineSepAs P Q (P ∗ Q) NoProgress | 100.
Proof. intros. by rewrite /MaybeCombineSepAs. Qed.
We do not have this Maybe construction for CombineSepGives, nor do we
provide the trivial CombineSepGives P Q True. This is by design: when the user
writes down a 'gives' clause in the iCombine tactic, they intend to receive
non-trivial information. If such information cannot be found, we want to
produce an error, instead of the trivial hypothesis True.
Class CombineSepGives {PROP : bi} (P Q R : PROP) :=
combine_sep_gives : P ∗ Q ⊢ <pers> R.
Global Arguments CombineSepGives {_} _%_I _%_I _%_I : simpl never.
Global Arguments combine_sep_gives {_} _%_I _%_I _%_I {_}.
Global Hint Mode CombineSepGives + ! ! - : typeclass_instances.
combine_sep_gives : P ∗ Q ⊢ <pers> R.
Global Arguments CombineSepGives {_} _%_I _%_I _%_I : simpl never.
Global Arguments combine_sep_gives {_} _%_I _%_I _%_I {_}.
Global Hint Mode CombineSepGives + ! ! - : typeclass_instances.
The ElimModal φ p p' P P' Q Q' class is used by the iMod tactic.
The inputs are p, P and Q, and the outputs are φ, p', P' and Q'.
The class is used to transform a hypothesis P into a hypothesis P', given
a goal Q, which is simultaneously transformed into Q'. The Booleans p
and p' indicate whether the original, respectively, updated hypothesis reside
in the persistent context (iff true). The proposition φ can be used to
express a side-condition that iMod will generate (if not True).
An example instance is:
ElimModal True p false (|={E1,E2}=> P) P (|={E1,E3}=> Q) (|={E2,E3}=> Q).
This instance expresses that to eliminate |={E1,E2}=> P the goal is
transformed from |={E1,E3}=> Q into |={E2,E3}=> Q, and the resulting
hypothesis is moved into the spatial context (regardless of where it was
originally). A corresponding ElimModal instance for the Iris 1/2-style update
modality, would have a side-condition φ on the masks.
Class ElimModal {PROP : bi} (φ : Prop) (p p' : bool) (P P' : PROP) (Q Q' : PROP) :=
elim_modal : φ → □?p P ∗ (□?p' P' -∗ Q') ⊢ Q.
Global Arguments ElimModal {_} _ _ _ _%_I _%_I _%_I _%_I : simpl never.
Global Arguments elim_modal {_} _ _ _ _%_I _%_I _%_I _%_I {_}.
Global Hint Mode ElimModal + - ! - ! - ! - : typeclass_instances.
Class AddModal {PROP : bi} (P P' : PROP) (Q : PROP) :=
add_modal : P ∗ (P' -∗ Q) ⊢ Q.
Global Arguments AddModal {_} _%_I _%_I _%_I : simpl never.
Global Arguments add_modal {_} _%_I _%_I _%_I {_}.
Global Hint Mode AddModal + - ! ! : typeclass_instances.
Lemma add_modal_id {PROP : bi} (P Q : PROP) : AddModal P P Q.
Proof. by rewrite /AddModal wand_elim_r. Qed.
elim_modal : φ → □?p P ∗ (□?p' P' -∗ Q') ⊢ Q.
Global Arguments ElimModal {_} _ _ _ _%_I _%_I _%_I _%_I : simpl never.
Global Arguments elim_modal {_} _ _ _ _%_I _%_I _%_I _%_I {_}.
Global Hint Mode ElimModal + - ! - ! - ! - : typeclass_instances.
Class AddModal {PROP : bi} (P P' : PROP) (Q : PROP) :=
add_modal : P ∗ (P' -∗ Q) ⊢ Q.
Global Arguments AddModal {_} _%_I _%_I _%_I : simpl never.
Global Arguments add_modal {_} _%_I _%_I _%_I {_}.
Global Hint Mode AddModal + - ! ! : typeclass_instances.
Lemma add_modal_id {PROP : bi} (P Q : PROP) : AddModal P P Q.
Proof. by rewrite /AddModal wand_elim_r. Qed.
We use the classes IsCons and IsApp to make sure that instances such as
frame_big_sepL_cons and frame_big_sepL_app cannot be applied repeatedly
often when having [∗ list] k ↦ x ∈ ?e, Φ k x with ?e an evar.
Class IsCons {A} (l : list A) (x : A) (k : list A) := is_cons : l = x :: k.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.
Global Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Global Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.
Global Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Global Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
Class IsDisjUnion `{DisjUnion A} (X X1 X2 : A) := is_disj_union : X = X1 ⊎ X2.
Global Hint Mode IsDisjUnion + + ! - - : typeclass_instances.
Global Instance is_disj_union_disj_union `{DisjUnion A} (X1 X2 : A) :
IsDisjUnion (X1 ⊎ X2) X1 X2.
Proof. done. Qed.
Class Frame {PROP : bi} (p : bool) (R P Q : PROP) := frame : □?p R ∗ Q ⊢ P.
Global Arguments Frame {_} _ _%_I _%_I _%_I.
Global Arguments frame {_} _ _%_I _%_I _%_I {_}.
Global Hint Mode Frame + + ! ! - : typeclass_instances.
Class MaybeFrame' {PROP : bi} (p : bool) (R P Q : PROP) (progress : bool) :=
maybe_frame : □?p R ∗ Q ⊢ P.
Global Arguments MaybeFrame' {_} _ _%_I _%_I _%_I _.
Global Arguments maybe_frame {_} _ _%_I _%_I _%_I _ {_}.
Global Hint Mode MaybeFrame' + + ! - - - : typeclass_instances.
Global Instance maybe_frame_frame {PROP : bi} p (R P Q : PROP) :
Frame p R P Q → MaybeFrame' p R P Q true.
Proof. done. Qed.
Global Instance maybe_frame_default_persistent {PROP : bi} (R P : PROP) :
MaybeFrame' true R P P false | 100.
Proof. intros. rewrite /MaybeFrame' /=. by rewrite sep_elim_r. Qed.
Global Instance maybe_frame_default {PROP : bi} (R P : PROP) :
TCOr (Affine R) (Absorbing P) → MaybeFrame' false R P P false | 100.
Proof. intros. rewrite /MaybeFrame' /=. apply: sep_elim_r. Qed.
Notation MaybeFrame p R P Q progress := (TCNoBackTrack (MaybeFrame' p R P Q progress)).
Class FrameInstantiateExistDisabled : Prop := frame_instantiate_exist_disabled {}.
Notation FrameInstantiateExistEnabled := (TCUnless FrameInstantiateExistDisabled).
Class IntoExcept0 {PROP : bi} (P Q : PROP) := into_except_0 : P ⊢ ◇ Q.
Global Arguments IntoExcept0 {_} _%_I _%_I : simpl never.
Global Arguments into_except_0 {_} _%_I _%_I {_}.
Global Hint Mode IntoExcept0 + ! - : typeclass_instances.
Global Hint Mode IntoExcept0 + - ! : typeclass_instances.
Class MaybeIntoLaterN {PROP : bi} (only_head : bool) (n : nat) (P Q : PROP) :=
maybe_into_laterN : P ⊢ ▷^n Q.
Global Arguments MaybeIntoLaterN {_} _ _%_nat_scope _%_I _%_I.
Global Arguments maybe_into_laterN {_} _ _%_nat_scope _%_I _%_I {_}.
Global Hint Mode MaybeIntoLaterN + + + - - : typeclass_instances.
Class IntoLaterN {PROP : bi} (only_head : bool) (n : nat) (P Q : PROP) :=
#[global] into_laterN :: MaybeIntoLaterN only_head n P Q.
Global Arguments IntoLaterN {_} _ _%_nat_scope _%_I _%_I.
Global Hint Mode IntoLaterN + + + ! - : typeclass_instances.
Global Instance maybe_into_laterN_default {PROP : bi} only_head n (P : PROP) :
MaybeIntoLaterN only_head n P P | 1000.
Proof. apply laterN_intro. Qed.
Global Instance maybe_into_laterN_default_0 {PROP : bi} only_head (P : PROP) :
MaybeIntoLaterN only_head 0 P P | 0.
Proof. apply _. Qed.
Global Hint Mode IsDisjUnion + + ! - - : typeclass_instances.
Global Instance is_disj_union_disj_union `{DisjUnion A} (X1 X2 : A) :
IsDisjUnion (X1 ⊎ X2) X1 X2.
Proof. done. Qed.
Class Frame {PROP : bi} (p : bool) (R P Q : PROP) := frame : □?p R ∗ Q ⊢ P.
Global Arguments Frame {_} _ _%_I _%_I _%_I.
Global Arguments frame {_} _ _%_I _%_I _%_I {_}.
Global Hint Mode Frame + + ! ! - : typeclass_instances.
Class MaybeFrame' {PROP : bi} (p : bool) (R P Q : PROP) (progress : bool) :=
maybe_frame : □?p R ∗ Q ⊢ P.
Global Arguments MaybeFrame' {_} _ _%_I _%_I _%_I _.
Global Arguments maybe_frame {_} _ _%_I _%_I _%_I _ {_}.
Global Hint Mode MaybeFrame' + + ! - - - : typeclass_instances.
Global Instance maybe_frame_frame {PROP : bi} p (R P Q : PROP) :
Frame p R P Q → MaybeFrame' p R P Q true.
Proof. done. Qed.
Global Instance maybe_frame_default_persistent {PROP : bi} (R P : PROP) :
MaybeFrame' true R P P false | 100.
Proof. intros. rewrite /MaybeFrame' /=. by rewrite sep_elim_r. Qed.
Global Instance maybe_frame_default {PROP : bi} (R P : PROP) :
TCOr (Affine R) (Absorbing P) → MaybeFrame' false R P P false | 100.
Proof. intros. rewrite /MaybeFrame' /=. apply: sep_elim_r. Qed.
Notation MaybeFrame p R P Q progress := (TCNoBackTrack (MaybeFrame' p R P Q progress)).
Class FrameInstantiateExistDisabled : Prop := frame_instantiate_exist_disabled {}.
Notation FrameInstantiateExistEnabled := (TCUnless FrameInstantiateExistDisabled).
Class IntoExcept0 {PROP : bi} (P Q : PROP) := into_except_0 : P ⊢ ◇ Q.
Global Arguments IntoExcept0 {_} _%_I _%_I : simpl never.
Global Arguments into_except_0 {_} _%_I _%_I {_}.
Global Hint Mode IntoExcept0 + ! - : typeclass_instances.
Global Hint Mode IntoExcept0 + - ! : typeclass_instances.
Class MaybeIntoLaterN {PROP : bi} (only_head : bool) (n : nat) (P Q : PROP) :=
maybe_into_laterN : P ⊢ ▷^n Q.
Global Arguments MaybeIntoLaterN {_} _ _%_nat_scope _%_I _%_I.
Global Arguments maybe_into_laterN {_} _ _%_nat_scope _%_I _%_I {_}.
Global Hint Mode MaybeIntoLaterN + + + - - : typeclass_instances.
Class IntoLaterN {PROP : bi} (only_head : bool) (n : nat) (P Q : PROP) :=
#[global] into_laterN :: MaybeIntoLaterN only_head n P Q.
Global Arguments IntoLaterN {_} _ _%_nat_scope _%_I _%_I.
Global Hint Mode IntoLaterN + + + ! - : typeclass_instances.
Global Instance maybe_into_laterN_default {PROP : bi} only_head n (P : PROP) :
MaybeIntoLaterN only_head n P P | 1000.
Proof. apply laterN_intro. Qed.
Global Instance maybe_into_laterN_default_0 {PROP : bi} only_head (P : PROP) :
MaybeIntoLaterN only_head 0 P P | 0.
Proof. apply _. Qed.
The class IntoEmbed P Q is used to transform hypotheses while introducing
embeddings using iModIntro.
Input: the proposition P, output: the proposition Q so that P ⊢ ⎡Q⎤.
Class IntoEmbed {PROP PROP' : bi} `{BiEmbed PROP PROP'} (P : PROP') (Q : PROP) :=
into_embed : P ⊢ ⎡Q⎤.
Global Arguments IntoEmbed {_ _ _} _%_I _%_I.
Global Arguments into_embed {_ _ _} _%_I _%_I {_}.
Global Hint Mode IntoEmbed + + + ! - : typeclass_instances.
Class AsEmpValid {PROP : bi} (φ : Prop) (P : PROP) :=
as_emp_valid : φ ↔ ⊢ P.
Global Arguments AsEmpValid {_} _%_type _%_I.
Class AsEmpValid0 {PROP : bi} (φ : Prop) (P : PROP) :=
as_emp_valid_0 : AsEmpValid φ P.
Global Arguments AsEmpValid0 {_} _%_type _%_I.
Global Existing Instance as_emp_valid_0 | 0.
Lemma as_emp_valid_1 (φ : Prop) {PROP : bi} (P : PROP) `{!AsEmpValid φ P} :
φ → ⊢ P.
Proof. by apply as_emp_valid. Qed.
Lemma as_emp_valid_2 (φ : Prop) {PROP : bi} (P : PROP) `{!AsEmpValid φ P} :
(⊢ P) → φ.
Proof. by apply as_emp_valid. Qed.
Class IntoInv {PROP : bi} (P: PROP) (N: namespace).
Global Arguments IntoInv {_} _%_I _.
Global Hint Mode IntoInv + ! - : typeclass_instances.
into_embed : P ⊢ ⎡Q⎤.
Global Arguments IntoEmbed {_ _ _} _%_I _%_I.
Global Arguments into_embed {_ _ _} _%_I _%_I {_}.
Global Hint Mode IntoEmbed + + + ! - : typeclass_instances.
Class AsEmpValid {PROP : bi} (φ : Prop) (P : PROP) :=
as_emp_valid : φ ↔ ⊢ P.
Global Arguments AsEmpValid {_} _%_type _%_I.
Class AsEmpValid0 {PROP : bi} (φ : Prop) (P : PROP) :=
as_emp_valid_0 : AsEmpValid φ P.
Global Arguments AsEmpValid0 {_} _%_type _%_I.
Global Existing Instance as_emp_valid_0 | 0.
Lemma as_emp_valid_1 (φ : Prop) {PROP : bi} (P : PROP) `{!AsEmpValid φ P} :
φ → ⊢ P.
Proof. by apply as_emp_valid. Qed.
Lemma as_emp_valid_2 (φ : Prop) {PROP : bi} (P : PROP) `{!AsEmpValid φ P} :
(⊢ P) → φ.
Proof. by apply as_emp_valid. Qed.
Class IntoInv {PROP : bi} (P: PROP) (N: namespace).
Global Arguments IntoInv {_} _%_I _.
Global Hint Mode IntoInv + ! - : typeclass_instances.
Accessors.
This definition only exists for the purpose of the proof mode; a truly
usable and general form would use telescopes and also allow binders for the
closing view shift. γ is an option to make it easy for ElimAcc
instances to recognize the emp case and make it look nicer.
Definition accessor {PROP : bi} {X : Type} (M1 M2 : PROP → PROP)
(α β : X → PROP) (mγ : X → option PROP) : PROP :=
M1 (∃ x, α x ∗ (β x -∗ M2 (default emp (mγ x))))%I.
Class ElimAcc {PROP : bi} {X : Type} (φ : Prop) (M1 M2 : PROP → PROP)
(α β : X → PROP) (mγ : X → option PROP)
(Q : PROP) (Q' : X → PROP) :=
elim_acc : φ → ((∀ x, α x -∗ Q' x) -∗ accessor M1 M2 α β mγ -∗ Q).
Global Arguments ElimAcc {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I : simpl never.
Global Arguments elim_acc {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I {_}.
Global Hint Mode ElimAcc + ! - ! ! ! ! ! ! - : typeclass_instances.
Class IntoAcc {PROP : bi} {X : Type} (Pacc : PROP) (φ : Prop) (Pin : PROP)
(M1 M2 : PROP → PROP) (α β : X → PROP) (mγ : X → option PROP) :=
into_acc : φ → Pacc -∗ Pin -∗ accessor M1 M2 α β mγ.
Global Arguments IntoAcc {_} {_} _%_I _ _%_I _%_I _%_I _%_I _%_I _%_I : simpl never.
Global Arguments into_acc {_} {_} _%_I _ _%_I _%_I _%_I _%_I _%_I _%_I {_} : simpl never.
Global Hint Mode IntoAcc + - ! - - - - - - - : typeclass_instances.
Class ElimInv {PROP : bi} {X : Type} (φ : Prop)
(Pinv Pin : PROP) (Pout : X → PROP) (mPclose : option (X → PROP))
(Q : PROP) (Q' : X → PROP) :=
elim_inv : φ → Pinv ∗ Pin ∗ (∀ x, Pout x ∗ (default (λ _, emp) mPclose) x -∗ Q' x) ⊢ Q.
Global Arguments ElimInv {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I : simpl never.
Global Arguments elim_inv {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I {_}.
Global Hint Mode ElimInv + - - ! - - ! ! - : typeclass_instances.
(α β : X → PROP) (mγ : X → option PROP) : PROP :=
M1 (∃ x, α x ∗ (β x -∗ M2 (default emp (mγ x))))%I.
Class ElimAcc {PROP : bi} {X : Type} (φ : Prop) (M1 M2 : PROP → PROP)
(α β : X → PROP) (mγ : X → option PROP)
(Q : PROP) (Q' : X → PROP) :=
elim_acc : φ → ((∀ x, α x -∗ Q' x) -∗ accessor M1 M2 α β mγ -∗ Q).
Global Arguments ElimAcc {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I : simpl never.
Global Arguments elim_acc {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I {_}.
Global Hint Mode ElimAcc + ! - ! ! ! ! ! ! - : typeclass_instances.
Class IntoAcc {PROP : bi} {X : Type} (Pacc : PROP) (φ : Prop) (Pin : PROP)
(M1 M2 : PROP → PROP) (α β : X → PROP) (mγ : X → option PROP) :=
into_acc : φ → Pacc -∗ Pin -∗ accessor M1 M2 α β mγ.
Global Arguments IntoAcc {_} {_} _%_I _ _%_I _%_I _%_I _%_I _%_I _%_I : simpl never.
Global Arguments into_acc {_} {_} _%_I _ _%_I _%_I _%_I _%_I _%_I _%_I {_} : simpl never.
Global Hint Mode IntoAcc + - ! - - - - - - - : typeclass_instances.
Class ElimInv {PROP : bi} {X : Type} (φ : Prop)
(Pinv Pin : PROP) (Pout : X → PROP) (mPclose : option (X → PROP))
(Q : PROP) (Q' : X → PROP) :=
elim_inv : φ → Pinv ∗ Pin ∗ (∀ x, Pout x ∗ (default (λ _, emp) mPclose) x -∗ Q' x) ⊢ Q.
Global Arguments ElimInv {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I : simpl never.
Global Arguments elim_inv {_} {_} _ _%_I _%_I _%_I _%_I _%_I _%_I {_}.
Global Hint Mode ElimInv + - - ! - - ! ! - : typeclass_instances.
We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the tc_opaque connective, which is used to make
definitions opaque for type class search. For example, when using iDestruct,
an explicit hypothesis is affected, and as such, we should look through opaque
definitions. However, when using iFrame or iNext, arbitrary hypotheses or
parts of the goal are affected, and as such, type class opacity should be
respected.
This means that there are tc_opaque instances for all proofmode type classes
with the exception of:
- FromAssumption used by iAssumption
- Frame and MaybeFrame used by iFrame
- MaybeIntoLaterN and FromLaterN used by iNext
- IntoPersistent used by iIntuitionistic
Global Instance into_pure_tc_opaque {PROP : bi} (P : PROP) φ :
IntoPure P φ → IntoPure (tc_opaque P) φ := id.
Global Instance from_pure_tc_opaque {PROP : bi} (a : bool) (P : PROP) φ :
FromPure a P φ → FromPure a (tc_opaque P) φ := id.
Global Instance from_wand_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromWand P Q1 Q2 → FromWand (tc_opaque P) Q1 Q2 := id.
Global Instance into_wand_tc_opaque {PROP : bi} p q (R P Q : PROP) :
IntoWand p q R P Q → IntoWand p q (tc_opaque R) P Q := id.
Global Instance from_sep_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromSep P Q1 Q2 → FromSep (tc_opaque P) Q1 Q2 | 102 := id.
Global Instance from_and_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromAnd P Q1 Q2 → FromAnd (tc_opaque P) Q1 Q2 := id.
Global Instance into_and_tc_opaque {PROP : bi} p (P Q1 Q2 : PROP) :
IntoAnd p P Q1 Q2 → IntoAnd p (tc_opaque P) Q1 Q2 := id.
Global Instance into_sep_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
IntoSep P Q1 Q2 → IntoSep (tc_opaque P) Q1 Q2 := id.
Global Instance from_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromOr P Q1 Q2 → FromOr (tc_opaque P) Q1 Q2 := id.
Global Instance into_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
IntoOr P Q1 Q2 → IntoOr (tc_opaque P) Q1 Q2 := id.
Global Instance from_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
FromExist P Φ → FromExist (tc_opaque P) Φ := id.
Global Instance into_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name: ident_name) :
IntoExist P Φ name → IntoExist (tc_opaque P) Φ name := id.
Global Instance from_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name : ident_name) :
FromForall P Φ name → FromForall (tc_opaque P) Φ name := id.
Global Instance into_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
IntoForall P Φ → IntoForall (tc_opaque P) Φ := id.
Global Instance from_modal_tc_opaque {PROP1 PROP2 : bi} {A}
φ M (sel : A) (P : PROP2) (Q : PROP1) :
FromModal φ M sel P Q → FromModal φ M sel (tc_opaque P) Q := id.
Global Instance elim_modal_tc_opaque {PROP : bi} φ p p' (P P' Q Q' : PROP) :
ElimModal φ p p' P P' Q Q' → ElimModal φ p p' (tc_opaque P) P' Q Q' := id.
Global Instance into_inv_tc_opaque {PROP : bi} (P : PROP) N :
IntoInv P N → IntoInv (tc_opaque P) N := id.
Global Instance elim_inv_tc_opaque {PROP : bi} {X} φ Pinv Pin Pout Pclose Q Q' :
ElimInv (PROP:=PROP) (X:=X) φ Pinv Pin Pout Pclose Q Q' →
ElimInv φ (tc_opaque Pinv) Pin Pout Pclose Q Q' := id.
IntoPure P φ → IntoPure (tc_opaque P) φ := id.
Global Instance from_pure_tc_opaque {PROP : bi} (a : bool) (P : PROP) φ :
FromPure a P φ → FromPure a (tc_opaque P) φ := id.
Global Instance from_wand_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromWand P Q1 Q2 → FromWand (tc_opaque P) Q1 Q2 := id.
Global Instance into_wand_tc_opaque {PROP : bi} p q (R P Q : PROP) :
IntoWand p q R P Q → IntoWand p q (tc_opaque R) P Q := id.
Global Instance from_sep_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromSep P Q1 Q2 → FromSep (tc_opaque P) Q1 Q2 | 102 := id.
Global Instance from_and_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromAnd P Q1 Q2 → FromAnd (tc_opaque P) Q1 Q2 := id.
Global Instance into_and_tc_opaque {PROP : bi} p (P Q1 Q2 : PROP) :
IntoAnd p P Q1 Q2 → IntoAnd p (tc_opaque P) Q1 Q2 := id.
Global Instance into_sep_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
IntoSep P Q1 Q2 → IntoSep (tc_opaque P) Q1 Q2 := id.
Global Instance from_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromOr P Q1 Q2 → FromOr (tc_opaque P) Q1 Q2 := id.
Global Instance into_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
IntoOr P Q1 Q2 → IntoOr (tc_opaque P) Q1 Q2 := id.
Global Instance from_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
FromExist P Φ → FromExist (tc_opaque P) Φ := id.
Global Instance into_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name: ident_name) :
IntoExist P Φ name → IntoExist (tc_opaque P) Φ name := id.
Global Instance from_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) (name : ident_name) :
FromForall P Φ name → FromForall (tc_opaque P) Φ name := id.
Global Instance into_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
IntoForall P Φ → IntoForall (tc_opaque P) Φ := id.
Global Instance from_modal_tc_opaque {PROP1 PROP2 : bi} {A}
φ M (sel : A) (P : PROP2) (Q : PROP1) :
FromModal φ M sel P Q → FromModal φ M sel (tc_opaque P) Q := id.
Global Instance elim_modal_tc_opaque {PROP : bi} φ p p' (P P' Q Q' : PROP) :
ElimModal φ p p' P P' Q Q' → ElimModal φ p p' (tc_opaque P) P' Q Q' := id.
Global Instance into_inv_tc_opaque {PROP : bi} (P : PROP) N :
IntoInv P N → IntoInv (tc_opaque P) N := id.
Global Instance elim_inv_tc_opaque {PROP : bi} {X} φ Pinv Pin Pout Pclose Q Q' :
ElimInv (PROP:=PROP) (X:=X) φ Pinv Pin Pout Pclose Q Q' →
ElimInv φ (tc_opaque Pinv) Pin Pout Pclose Q Q' := id.