Library iris.bi.derived_connectives

From iris.algebra Require Import monoid.
From iris.bi Require Export interface.
From iris.prelude Require Import options.

Definition bi_iff {PROP : bi} (P Q : PROP) : PROP := (P Q) (Q P).
Global Arguments bi_iff {_} _%_I _%_I : simpl never.
Global Instance: Params (@bi_iff) 1 := {}.
Infix "↔" := bi_iff : bi_scope.

Definition bi_wand_iff {PROP : bi} (P Q : PROP) : PROP :=
  (P -∗ Q) (Q -∗ P).
Global Arguments bi_wand_iff {_} _%_I _%_I : simpl never.
Global Instance: Params (@bi_wand_iff) 1 := {}.
Infix "∗-∗" := bi_wand_iff : bi_scope.
Notation "P ∗-∗ Q" := ( P ∗-∗ Q) : stdpp_scope.

Class Persistent {PROP : bi} (P : PROP) := persistent : P <pers> P.
Global Arguments Persistent {_} _%_I : simpl never.
Global Arguments persistent {_} _%_I {_}.
Global Hint Mode Persistent + ! : typeclass_instances.
Global Instance: Params (@Persistent) 1 := {}.
Global Hint Extern 100 (Persistent (match ?x with __ end)) ⇒
  destruct x : typeclass_instances.

Definition bi_affinely {PROP : bi} (P : PROP) : PROP := emp P.
Global Arguments bi_affinely {_} _%_I : simpl never.
Global Instance: Params (@bi_affinely) 1 := {}.
Global Typeclasses Opaque bi_affinely.
Notation "'<affine>' P" := (bi_affinely P) : bi_scope.

Class Affine {PROP : bi} (Q : PROP) := affine : Q emp.
Global Arguments Affine {_} _%_I : simpl never.
Global Arguments affine {_} _%_I {_}.
Global Hint Mode Affine + ! : typeclass_instances.
Global Hint Extern 100 (Affine (match ?x with __ end)) ⇒
  destruct x : typeclass_instances.

Definition bi_absorbingly {PROP : bi} (P : PROP) : PROP := True P.
Global Arguments bi_absorbingly {_} _%_I : simpl never.
Global Instance: Params (@bi_absorbingly) 1 := {}.
Global Typeclasses Opaque bi_absorbingly.
Notation "'<absorb>' P" := (bi_absorbingly P) : bi_scope.

Class Absorbing {PROP : bi} (P : PROP) := absorbing : <absorb> P P.
Global Arguments Absorbing {_} _%_I : simpl never.
Global Arguments absorbing {_} _%_I.
Global Hint Mode Absorbing + ! : typeclass_instances.
Global Hint Extern 100 (Absorbing (match ?x with __ end)) ⇒
  destruct x : typeclass_instances.

Definition bi_persistently_if {PROP : bi} (p : bool) (P : PROP) : PROP :=
  (if p then <pers> P else P)%I.
Global Arguments bi_persistently_if {_} !_ _%_I /.
Global Instance: Params (@bi_persistently_if) 2 := {}.
Global Typeclasses Opaque bi_persistently_if.
Notation "'<pers>?' p P" := (bi_persistently_if p P) : bi_scope.

Definition bi_affinely_if {PROP : bi} (p : bool) (P : PROP) : PROP :=
  (if p then <affine> P else P)%I.
Global Arguments bi_affinely_if {_} !_ _%_I /.
Global Instance: Params (@bi_affinely_if) 2 := {}.
Global Typeclasses Opaque bi_affinely_if.
Notation "'<affine>?' p P" := (bi_affinely_if p P) : bi_scope.

Definition bi_absorbingly_if {PROP : bi} (p : bool) (P : PROP) : PROP :=
  (if p then <absorb> P else P)%I.
Global Arguments bi_absorbingly_if {_} !_ _%_I /.
Global Instance: Params (@bi_absorbingly_if) 2 := {}.
Global Typeclasses Opaque bi_absorbingly_if.
Notation "'<absorb>?' p P" := (bi_absorbingly_if p P) : bi_scope.

Definition bi_intuitionistically {PROP : bi} (P : PROP) : PROP :=
  (<affine> <pers> P)%I.
Global Arguments bi_intuitionistically {_} _%_I : simpl never.
Global Instance: Params (@bi_intuitionistically) 1 := {}.
Global Typeclasses Opaque bi_intuitionistically.
Notation "□ P" := (bi_intuitionistically P) : bi_scope.

Definition bi_intuitionistically_if {PROP : bi} (p : bool) (P : PROP) : PROP :=
  (if p then P else P)%I.
Global Arguments bi_intuitionistically_if {_} !_ _%_I /.
Global Instance: Params (@bi_intuitionistically_if) 2 := {}.
Global Typeclasses Opaque bi_intuitionistically_if.
Notation "'□?' p P" := (bi_intuitionistically_if p P) : bi_scope.

Fixpoint bi_laterN {PROP : bi} (n : nat) (P : PROP) : PROP :=
  match n with
  | OP
  | S n' ▷^n' P
  end
where "▷^ n P" := (bi_laterN n P) : bi_scope.
Global Arguments bi_laterN {_} !_%_nat_scope _%_I.
Global Instance: Params (@bi_laterN) 2 := {}.
Notation "▷? p P" := (bi_laterN (Nat.b2n p) P) : bi_scope.

Definition bi_except_0 {PROP : bi} (P : PROP) : PROP := False P.
Global Arguments bi_except_0 {_} _%_I : simpl never.
Notation "◇ P" := (bi_except_0 P) : bi_scope.
Global Instance: Params (@bi_except_0) 1 := {}.
Global Typeclasses Opaque bi_except_0.

Class Timeless {PROP : bi} (P : PROP) := timeless : P P.
Global Arguments Timeless {_} _%_I : simpl never.
Global Arguments timeless {_} _%_I {_}.
Global Hint Mode Timeless + ! : typeclass_instances.
Global Instance: Params (@Timeless) 1 := {}.
Global Hint Extern 100 (Timeless (match ?x with __ end)) ⇒
  destruct x : typeclass_instances.

An optional precondition mP to Q. TODO: We may actually consider generalizing this to a list of preconditions, and e.g. also using it for texan triples.
Definition bi_wandM {PROP : bi} (mP : option PROP) (Q : PROP) : PROP :=
  match mP with
  | NoneQ
  | Some PP -∗ Q
  end.
Global Arguments bi_wandM {_} !_%_I _%_I /.
Notation "mP -∗? Q" := (bi_wandM mP Q)
  (at level 99, Q at level 200, right associativity) : bi_scope.