Library iris.base_logic.lib.fancy_updates_from_vs

From stdpp Require Export coPset.
From iris.proofmode Require Import proofmode.
From iris.base_logic Require Export base_logic.
From iris.prelude Require Import options.

Set Default Proof Using "Type*".

Section fupd.
Context {M} (vs : coPset coPset uPred M uPred M uPred M).

Notation "P ={ E1 , E2 }=> Q" := (vs E1 E2 P Q)
  (at level 99, E1,E2 at level 50, Q at level 200,
   format "P ={ E1 , E2 }=> Q") : bi_scope.

Context (vs_ne : E1 E2, NonExpansive2 (vs E1 E2)).
Context (vs_persistent : E1 E2 P Q, Persistent (P ={E1,E2}=> Q)).

Context (vs_impl : E P Q, (P Q) P ={E,E}=> Q).
Context (vs_transitive : E1 E2 E3 P Q R,
  (P ={E1,E2}=> Q) (Q ={E2,E3}=> R) P ={E1,E3}=> R).
Context (vs_mask_frame_r : E1 E2 Ef P Q,
  E1 ## Ef (P ={E1,E2}=> Q) P ={E1 Ef,E2 Ef}=> Q).
Context (vs_frame_r : E1 E2 P Q R, (P ={E1,E2}=> Q) P R ={E1,E2}=> Q R).
Context (vs_exists : {A} E1 E2 (Φ : A uPred M) Q,
  ( x, Φ x ={E1,E2}=> Q) ( x, Φ x) ={E1,E2}=> Q).
Context (vs_persistent_intro_r : E1 E2 P Q R,
  Persistent R
  (R -∗ (P ={E1,E2}=> Q)) P R ={E1,E2}=> Q).

Definition fupd (E1 E2 : coPset) (P : uPred M) : uPred M :=
   R, R vs E1 E2 R P.

Notation "|={ E1 , E2 }=> Q" := (fupd E1 E2 Q) : bi_scope.

Global Instance fupd_ne E1 E2 : NonExpansive (@fupd E1 E2).
Proof. solve_proper. Qed.

Lemma fupd_intro E P : P |={E,E}=> P.
Proof. iIntros "HP". iExists P. iFrame "HP". iApply vs_impl; auto. Qed.

Lemma fupd_mono E1 E2 P Q : (P Q) (|={E1,E2}=> P) |={E1,E2}=> Q.
Proof.
  iIntros (HPQ); iDestruct 1 as (R) "[HR Hvs]".
  iExists R; iFrame "HR". iApply (vs_transitive with "[$Hvs]").
  iApply vs_impl. iIntros "!> HP". by iApply HPQ.
Qed.

Lemma fupd_trans E1 E2 E3 P : (|={E1,E2}=> |={E2,E3}=> P) |={E1,E3}=> P.
Proof.
  iDestruct 1 as (R) "[HR Hvs]". iExists R. iFrame "HR".
  iApply (vs_transitive with "[$Hvs]"). clear R.
  iApply vs_exists; iIntros (R). iApply vs_persistent_intro_r; iIntros "Hvs".
  iApply (vs_transitive with "[$Hvs]"). iApply vs_impl; auto.
Qed.

Lemma fupd_mask_frame_r E1 E2 Ef P :
  E1 ## Ef (|={E1,E2}=> P) |={E1 Ef,E2 Ef}=> P.
Proof.
  iIntros (HE); iDestruct 1 as (R) "[HR Hvs]". iExists R; iFrame "HR".
  by iApply vs_mask_frame_r.
Qed.

Lemma fupd_frame_r E1 E2 P Q : (|={E1,E2}=> P) Q |={E1,E2}=> P Q.
Proof.
  iIntros "[Hvs HQ]". iDestruct "Hvs" as (R) "[HR Hvs]".
  iExists (R Q)%I. iFrame "HR HQ". by iApply vs_frame_r.
Qed.
End fupd.