Library iris.proofmode.base

From Coq Require Export Ascii.
From stdpp Require Export strings.
From iris.prelude Require Export prelude.
From iris.prelude Require Import options.
From Ltac2 Require Ltac2.

Utility definitions used by the proofmode

N-ary tactics

Ltac1 does not provide primitives to manipulate lists (e.g., ident_list, simple_intropattern_list), needed for iIntros, iDestruct, etc. We can do that in Ltac2. For most proofmode tactics we only need to iterate over a list (either in forward or backward direction). The Ltac1 tactics ltac1_list_iter and ltac1_list_rev_iter allow us to do that while encapsulating the Ltac2 code. These tactics can be used as:
Ltac iTactic xs := ltac1_list_iter ltac:(fun x => /* stuff */) xs. Tactic Notation "iTactic" "(" ne_ident_list(xs) ")" := iTactic xs.
It is important to note that given one n-ary Tactic Notation we cannot call another n-ary Tactic Notation. For example, the following does NOT work:
Tactic Notation "iAnotherTactic" "(" ne_ident_list(xs) ")" := /* stuff */ iTactic (xs).
Because of this reason, as already shown above, we typically provide an Ltac called _iTactic (note the underscore to mark it is "private"), and define the Tactic Notation as a wrapper, allowing us to write:
Tactic Notation "iAnotherTactic" "(" ne_ident_list(xs) ")" := /* stuff */ iTactic xs.

Ltac2 of_ltac1_list l := Option.get (Ltac1.to_list l).

Ltac ltac1_list_iter tac l :=
  let go := ltac2:(tac l |- List.iter (ltac1:(tac x |- tac x) tac)
                                      (of_ltac1_list l)) in
  go tac l.

Ltac ltac1_list_rev_iter tac l :=
  let go := ltac2:(tac l |- List.iter (ltac1:(tac x |- tac x) tac)
                                      (List.rev (of_ltac1_list l))) in
  go tac l.

Since the Ltac1-Ltac2 API only supports unit-returning functions, there is no nice way to produce an empty list in ltac1. We therefore often define a special version _iTactic0 for the empty list. This version can be created using with_ltac1_nil:
Ltac iTactic0 := with_ltac1_nil ltac:(fun xs => iTactic xs)
Ltac with_ltac1_nil tac :=
  let go := ltac2:(tac |- ltac1:(tac l |- tac l) tac (Ltac1.of_list [])) in
  go tac.

Inductive direction := Left | Right.

Local Open Scope lazy_bool_scope.

Lemma lazy_andb_true (b1 b2 : bool) : b1 &&& b2 = true b1 = true b2 = true.
Proof. destruct b1, b2; intuition congruence. Qed.

Definition negb (b : bool) : bool := if b then false else true.
Lemma negb_true b : negb b = true b = false.
Proof. by destruct b. Qed.

Fixpoint Pos_succ (x : positive) : positive :=
  match x with
  | (p~1)%positive ⇒ ((Pos_succ p)~0)%positive
  | (p~0)%positive ⇒ (p~1)%positive
  | 1%positive ⇒ 2%positive

Definition beq (b1 b2 : bool) : bool :=
  match b1, b2 with
  | false, false | true, truetrue
  | _, _false

Definition ascii_beq (x y : ascii) : bool :=
  let 'Ascii x1 x2 x3 x4 x5 x6 x7 x8 := x in
  let 'Ascii y1 y2 y3 y4 y5 y6 y7 y8 := y in
  beq x1 y1 &&& beq x2 y2 &&& beq x3 y3 &&& beq x4 y4 &&&
    beq x5 y5 &&& beq x6 y6 &&& beq x7 y7 &&& beq x8 y8.

Fixpoint string_beq (s1 s2 : string) : bool :=
  match s1, s2 with
  | "", "" ⇒ true
  | String a1 s1, String a2 s2ascii_beq a1 a2 &&& string_beq s1 s2
  | _, _false

Lemma beq_true b1 b2 : beq b1 b2 = true b1 = b2.
Proof. destruct b1, b2; simpl; intuition congruence. Qed.

Lemma ascii_beq_true x y : ascii_beq x y = true x = y.
  destruct x, y; rewrite /= !lazy_andb_true !beq_true. intuition congruence.

Lemma string_beq_true s1 s2 : string_beq s1 s2 = true s1 = s2.
  revert s2. induction s1 as [|x s1 IH]=> -[|y s2] //=.
  rewrite lazy_andb_true ascii_beq_true IH. intuition congruence.

Lemma string_beq_reflect s1 s2 : reflect (s1 = s2) (string_beq s1 s2).
Proof. apply iff_reflect. by rewrite string_beq_true. Qed.

Module Export ident.
Inductive ident :=
  | IAnon : positive ident
  | INamed :> string ident.
End ident.

Global Instance maybe_IAnon : Maybe IAnon := λ i,
  match i with IAnon nSome n | _None end.
Global Instance maybe_INamed : Maybe INamed := λ i,
  match i with INamed sSome s | _None end.

Global Instance beq_eq_dec : EqDecision ident.
Proof. solve_decision. Defined.

Definition positive_beq := Eval compute in Pos.eqb.

Lemma positive_beq_true x y : positive_beq x y = true x = y.
Proof. apply Pos.eqb_eq. Qed.

Definition ident_beq (i1 i2 : ident) : bool :=
  match i1, i2 with
  | IAnon n1, IAnon n2positive_beq n1 n2
  | INamed s1, INamed s2string_beq s1 s2
  | _, _false

Lemma ident_beq_true i1 i2 : ident_beq i1 i2 = true i1 = i2.
  destruct i1, i2; rewrite /= ?string_beq_true ?positive_beq_true; naive_solver.

Lemma ident_beq_reflect i1 i2 : reflect (i1 = i2) (ident_beq i1 i2).
Proof. apply iff_reflect. by rewrite ident_beq_true. Qed.

Copies of some functions on list and option for better reduction control.
Fixpoint pm_app {A} (l1 l2 : list A) : list A :=
  match l1 with []l2 | x :: l1x :: pm_app l1 l2 end.

Definition pm_option_bind {A B} (f : A option B) (mx : option A) : option B :=
  match mx with Some xf x | NoneNone end.
Global Arguments pm_option_bind {_ _} _ !_ /.

Definition pm_from_option {A B} (f : A B) (y : B) (mx : option A) : B :=
  match mx with Noney | Some xf x end.
Global Arguments pm_from_option {_ _} _ _ !_ /.

Definition pm_option_fun {A B} (f : option (A B)) (x : A) : option B :=
  match f with NoneNone | Some fSome (f x) end.
Global Arguments pm_option_fun {_ _} !_ _ /.

Notation pm_default := (pm_from_option (λ x, x)).