Library iris.proofmode.class_instances_frame

From iris.bi Require Import telescopes.
From iris.proofmode Require Import classes classes_make.
From iris.prelude Require Import options.
Import bi.

This file defines the instances that make up the framing machinery.

Section class_instances_frame.
Context {PROP : bi}.
Implicit Types P Q R : PROP.

When framing R against itself, we leave True if possible (via frame_here_absorbing or frame_affinely_here_absorbing) since it is a weaker goal. Otherwise we leave emp via frame_here. Only if all those options fail, we start decomposing R, via instances like frame_exist. To ensure that, all other instances must have cost > 1.
Global Instance frame_here_absorbing p R :
  QuickAbsorbing R Frame p R R True | 0.
Proof.
  rewrite /QuickAbsorbing /Frame. intros.
  by rewrite intuitionistically_if_elim sep_elim_l.
Qed.
Global Instance frame_here p R : Frame p R R emp | 1.
Proof. intros. by rewrite /Frame intuitionistically_if_elim sep_elim_l. Qed.
Global Instance frame_affinely_here_absorbing p R :
  QuickAbsorbing R Frame p (<affine> R) R True | 0.
Proof.
  rewrite /QuickAbsorbing /Frame. intros.
  rewrite intuitionistically_if_elim affinely_elim. apply sep_elim_l, _.
Qed.
Global Instance frame_affinely_here p R : Frame p (<affine> R) R emp | 1.
Proof.
  intros. rewrite /Frame intuitionistically_if_elim affinely_elim.
  apply sep_elim_l, _.
Qed.

Global Instance frame_here_pure_persistent a φ Q :
  FromPure a Q φ Frame true φ Q emp | 2.
Proof.
  rewrite /FromPure /Frame /= ⇒ <-. rewrite right_id.
  by rewrite -affinely_affinely_if intuitionistically_affinely.
Qed.
Global Instance frame_here_pure a φ Q :
  FromPure a Q φ
  TCOr (TCEq a false) (BiAffine PROP)
  Frame false φ Q emp | 2. Proof.
  rewrite /FromPure /Frame ⇒ <- [->|?] /=.
  - by rewrite right_id.
  - by rewrite right_id -affinely_affinely_if affine_affinely.
Qed.

Global Instance frame_embed `{!BiEmbed PROP PROP'} p P Q (Q' : PROP') R :
  Frame p R P Q MakeEmbed Q Q'
  Frame p R P Q' | 2. Proof.
  rewrite /Frame /MakeEmbed ⇒ <- <-.
  rewrite embed_sep embed_intuitionistically_if_2 ⇒ //.
Qed.
Global Instance frame_pure_embed `{!BiEmbed PROP PROP'} p P Q (Q' : PROP') φ :
  Frame p φ P Q MakeEmbed Q Q'
  Frame p φ P Q' | 2. Proof. rewrite /Frame /MakeEmbed -embed_pure. apply (frame_embed p P Q). Qed.

Global Instance frame_sep_persistent_l progress R P1 P2 Q1 Q2 Q' :
  Frame true R P1 Q1
  MaybeFrame true R P2 Q2 progress
  MakeSep Q1 Q2 Q'
  Frame true R (P1 P2) Q' | 9.
Proof.
  rewrite /Frame /MaybeFrame' /MakeSep /= ⇒ <- [<-] <-.
  rewrite {1}(intuitionistically_sep_dup R).
  by rewrite !assoc -(assoc _ _ _ Q1) -(comm _ Q1) assoc -(comm _ Q1).
Qed.
Global Instance frame_sep_l R P1 P2 Q Q' :
  Frame false R P1 Q MakeSep Q P2 Q' Frame false R (P1 P2) Q' | 9.
Proof. rewrite /Frame /MakeSep ⇒ <- <-. by rewrite assoc. Qed.
Global Instance frame_sep_r p R P1 P2 Q Q' :
  Frame p R P2 Q MakeSep P1 Q Q' Frame p R (P1 P2) Q' | 10.
Proof.
  rewrite /Frame /MakeSep ⇒ <- <-. by rewrite assoc -(comm _ P1) assoc.
Qed.

Global Instance frame_big_sepL_cons {A} p (Φ : nat A PROP) R Q l x l' :
  IsCons l x l'
  Frame p R (Φ 0 x [∗ list] k y l', Φ (S k) y) Q
  Frame p R ([∗ list] k y l, Φ k y) Q | 2. Proof. rewrite /IsCons=>->. by rewrite /Frame big_sepL_cons. Qed.
Global Instance frame_big_sepL_app {A} p (Φ : nat A PROP) R Q l l1 l2 :
  IsApp l l1 l2
  Frame p R (([∗ list] k y l1, Φ k y)
           [∗ list] k y l2, Φ (length l1 + k) y) Q
  Frame p R ([∗ list] k y l, Φ k y) Q | 2. Proof. rewrite /IsApp=>->. by rewrite /Frame big_sepL_app. Qed.

Global Instance frame_big_sepL2_cons {A B} p (Φ : nat A B PROP)
    R Q l1 x1 l1' l2 x2 l2' :
  IsCons l1 x1 l1' IsCons l2 x2 l2'
  Frame p R (Φ 0 x1 x2 [∗ list] k y1;y2 l1';l2', Φ (S k) y1 y2) Q
  Frame p R ([∗ list] k y1;y2 l1;l2, Φ k y1 y2) Q. Proof. rewrite /IsCons=>-> →. by rewrite /Frame big_sepL2_cons. Qed.
Global Instance frame_big_sepL2_app {A B} p (Φ : nat A B PROP)
    R Q l1 l1' l1'' l2 l2' l2'' :
  IsApp l1 l1' l1'' IsApp l2 l2' l2''
  Frame p R (([∗ list] k y1;y2 l1';l2', Φ k y1 y2)
           [∗ list] k y1;y2 l1'';l2'', Φ (length l1' + k) y1 y2) Q
  Frame p R ([∗ list] k y1;y2 l1;l2, Φ k y1 y2) Q.
Proof. rewrite /IsApp /Frame=>-> → →. apply wand_elim_l', big_sepL2_app. Qed.

Global Instance frame_big_sepMS_disj_union `{Countable A} p (Φ : A PROP) R Q X1 X2 :
  Frame p R (([∗ mset] y X1, Φ y) [∗ mset] y X2, Φ y) Q
  Frame p R ([∗ mset] y X1 X2, Φ y) Q | 2.
Proof. by rewrite /Frame big_sepMS_disj_union. Qed.

The instances that allow framing under and need to be carefully constructed. Such instances should make progress on at least one, but possibly both sides of the connective---unlike , where we want to make progress on exactly one side.
Naive implementations of this idea can cause Coq to do multiple searches for Frame instances of the subterms. For terms with nested s or s, this can cause an exponential blowup in the time it takes for Coq to fail to construct a Frame instance. This happens especially when the resource we are framing in contains evars, since Coq's typeclass search does more backtracking in this case.
To combat this, the and instances use MaybeFrame classes--- a notation for MaybeFrame' guarded by a TCNoBackTrack. The MaybeFrame clauses for the subterms output a boolean progress indicator, on which some condition is posed. The TCNoBackTrack ensures that when this condition is not met, Coq will not backtrack on the MaybeFrame clauses to consider different progresses.
If below TCEq fails, the frame_and instance is immediately abandoned: the TCNoBackTracks above prevent Coq from considering other ways to construct MaybeFrame instances.
  TCEq (progress1 || progress2) true
  MakeAnd Q1 Q2 Q'
  Frame p R (P1 P2) Q' | 9.
Proof.
  rewrite /MaybeFrame' /Frame /MakeAnd ⇒ [[<-]] [<-] _ <-.
  apply and_intro; [rewrite and_elim_l|rewrite and_elim_r]; done.
Qed.

We could in principle write the instance frame_or_spatial by a bunch of instances (omitting the parameter p = false):
Frame R P1 Q1 → Frame R P2 Q2 → Frame R (P1 ∨ P2) (Q1 ∨ Q2) Frame R P1 True → Frame R (P1 ∨ P2) P2 Frame R P2 True → Frame R (P1 ∨ P2) P1
The problem here is that Coq will try to infer Frame R P1 ? and Frame R P2 ? multiple times, whereas the current solution makes sure that said inference appears at most once.
If Coq would memorize the results of type class resolution, the solution with multiple instances would be preferred (and more Prolog-like).
Framing a spatial resource R under is done only when:
  • R can be framed on both sides of the ; or
  • R completely solves one side of the , reducing it to True.
This instance does not framing spatial resources when they can be framed in exactly one side, since that can make your goal unprovable.
Below TCOr encodes the condition described above. If this condition cannot be satisfied, the frame_or_spatial instance is immediately abandoned: the TCNoBackTracks present in the MaybeFrame notation prevent Coq from considering other ways to construct MaybeFrame' instances.
  TCOr (TCEq (progress1 && progress2) true) (TCOr
    (TCAnd (TCEq progress1 true) (TCEq Q1 True%I))
    (TCAnd (TCEq progress2 true) (TCEq Q2 True%I)))
  MakeOr Q1 Q2 Q
  Frame false R (P1 P2) Q | 9.
Proof. rewrite /Frame /MakeOr ⇒ [[<-]] [<-] _ <-. by rewrite -sep_or_l. Qed.

Framing a persistent resource R under is done when R can be framed on at least one side. This does not affect provability of your goal, since you can keep the resource after framing.
If below TCEq fails, the frame_or_persistent instance is immediately abandoned: the TCNoBackTracks present in the MaybeFrame notation prevent Coq from considering other ways to construct MaybeFrame' instances.
  TCEq (progress1 || progress2) true
  MakeOr Q1 Q2 Q Frame true R (P1 P2) Q | 9.
Proof. rewrite /Frame /MakeOr ⇒ [[<-]] [<-] _ <-. by rewrite -sep_or_l. Qed.

Global Instance frame_wand p R P1 P2 Q2 :
  Frame p R P2 Q2 Frame p R (P1 -∗ P2) (P1 -∗ Q2) | 2.
Proof.
  rewrite /Frame⇒ ?. apply wand_intro_l.
  by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.

Global Instance frame_affinely p R P Q Q' :
  TCOr (TCEq p true) (QuickAffine R)
  Frame p R P Q MakeAffinely Q Q'
  Frame p R (<affine> P) Q'. Proof.
  rewrite /QuickAffine /Frame /MakeAffinely⇒ -[->|?] <- <- /=;
    by rewrite -{1}(affine_affinely (_ R)) affinely_sep_2.
Qed.

Global Instance frame_intuitionistically R P Q Q' :
  Frame true R P Q MakeIntuitionistically Q Q'
  Frame true R ( P) Q' | 2. Proof.
  rewrite /Frame /MakeIntuitionistically⇒ <- <- /=.
  rewrite -intuitionistically_sep_2 intuitionistically_idemp //.
Qed.

Global Instance frame_absorbingly p R P Q Q' :
  Frame p R P Q MakeAbsorbingly Q Q'
  Frame p R (<absorb> P) Q' | 2. Proof.
  rewrite /Frame /MakeAbsorbingly⇒ <- <- /=. by rewrite absorbingly_sep_r.
Qed.

Global Instance frame_persistently R P Q Q' :
  Frame true R P Q MakePersistently Q Q'
  Frame true R (<pers> P) Q' | 2. Proof.
  rewrite /Frame /MakePersistently⇒ <- <- /=.
  rewrite -persistently_and_intuitionistically_sep_l.
  by rewrite -persistently_sep_2 -persistently_and_sep_l_1
    persistently_affinely_elim persistently_idemp.
Qed.

We construct an instance for Frameing under existentials that can both instantiate the existential and leave it untouched:
  • If we have H : P a and goal b, P b Q b, framing H turns the goal into Q a, i.e., instantiates the existential.
  • If we have H : P and goal b, P Q b, framing H turns the goal into b, Q b, i.e., leaves the existential untouched.
Below we describe the instances. More information can be found in the paper https://doi.org/10.1145/3636501.3636950 The general lemma is:
Local Lemma frame_exist_helper {A} p R (Φ : A PROP)
    {C} (g : C A) (Ψ : C PROP) :
  ( c, Frame p R (Φ $ g c) (Ψ c))
  Frame p R ( a, Φ a) ( c, Ψ c).
Proof.
  rewrite /Frame. rewrite sep_exist_l.
  apply bi.exist_elimc. rewrite . apply exist_intro.
Qed.
frame_exist_helper captures the two common usecases:
  • To instantiate the existential with witness a, take C = unit and use g = λ _, a.
  • To keep the existential quantification untouched, take C = A and g = id
Note that having separate instances for these two cases is a bad idea: typeclass search for n existential quantifiers would have 2^n possibilities!
We cannot use frame_exist directly in type class search. One reason is that we do not want to present the user with a useless existential quantification on unit. This means we want to replace c, Φ c with the telescopic quantification ∃.. c, Φ c. Another reason is that frame_exist does not indicate how C and g should be inferred, so type class search would simply fail.
We want to infer these as follows. On a goal Frame p R (∃ a, Φ a) _:
  • We first run type class search on Frame p R (Φ ?a) _. If an instance is found, ?a is a term that might still contain evars. The idea is to turn these evars back into existential quantifiers, whenever that is possible.
  • To do so, choose C to be the telescope with types for each of the evars in ?a.
  • This means c : C is (morally) a tuple with an element for each of the evars in ?a---so we can unify all evars to be a projection of c.
  • After this unification, ?a is an explicit function of c, which means we have found g.
To perform above inference, we introduce a separate equality type class.
Inductive GatherEvarsEq {A} (x : A) : A Prop :=
  GatherEvarsEq_refl : GatherEvarsEq x x.
Existing Class GatherEvarsEq.
The goal GatherEvarsEq a (?g c) with a : A and g : ?C A is solved in the way described above. This is done by tactic solve_gather_evars_eq, given at the end of this section, with an accompanying Hint Extern.
We are now able to state a lemma for building Frame instances directly:
Lemma frame_exist_slow {A} p R (Φ : A PROP) (TT : tele) (g : TT A) (Ψ : TT PROP) : (∀ c, a' G, Frame p R (Φ a') G GatherEvarsEq a' (g c) TCEq G (Ψ c)) Frame p R (∃ a, Φ a) (∃.. c, Ψ c)%I.
Although this would function as intended, the two inner ex and conjs repeat terms in the implicit arguments; in particular, they repeat the quantified goal Φ a bunch of times. This means the term size can get quite big, and make type checking slower than need. We therefore make an effort to reduce term size and type-checking time by creating a tailored Class, which furthermore can be solved automatically by type class search.
#[projections(primitive)] Class FrameExistRequirements
    (p : bool) (R : PROP) {A} (Φ : A PROP) (a' : A) (G' : PROP) := {
  frame_exist_witness : A;
  frame_exist_resource : PROP;
  frame_exist_proof : Frame p R (Φ frame_exist_witness) frame_exist_resource;
  frame_exist_witness_eq : GatherEvarsEq frame_exist_witness a';
  frame_exist_resource_eq : TCEq frame_exist_resource G'
}.
Global Existing Instance Build_FrameExistRequirements.

Inductive TCCbnTele {A} (x : A) : A Prop :=
  TCCbnTele_refl : TCCbnTele x x.
Existing Class TCCbnTele.
Global Hint Mode TCCbnTele ! - - : typeclass_instances.

Global Instance frame_exist {A} p R (Φ : A PROP)
    (TT : tele) (g : TT A) (Ψ : TT PROP) Q :
  ( c, FrameExistRequirements p R Φ (g c) (Ψ c))
  TCCbnTele (.. c, Ψ c)%I Q
  Frame p R ( a, Φ a) Q.
Proof.
  moveH <-. rewrite /Frame bi_texist_exist.
  eapply frame_exist_helperc.
  by specialize (H c) as [a G HG → ->].
Qed.

Global Instance frame_texist {TT : tele} p R (Φ Ψ : TT PROP) :
  ( x, Frame p R (Φ x) (Ψ x)) Frame p R (.. x, Φ x) (.. x, Ψ x) | 2.
Proof. rewrite /Frame !bi_texist_exist. apply frame_exist_helper. Qed.
Global Instance frame_forall {A} p R (Φ Ψ : A PROP) :
  ( a, Frame p R (Φ a) (Ψ a)) Frame p R ( x, Φ x) ( x, Ψ x) | 2.
Proof. rewrite /Frame⇒ ?. by rewrite sep_forall_l; apply forall_mono. Qed.
Global Instance frame_tforall {TT : tele} p R (Φ Ψ : TT PROP) :
  ( x, Frame p R (Φ x) (Ψ x)) Frame p R (.. x, Φ x) (.. x, Ψ x) | 2.
Proof. rewrite /Frame !bi_tforall_forall. apply frame_forall. Qed.

Global Instance frame_impl_persistent R P1 P2 Q2 :
  Frame true R P2 Q2 Frame true R (P1 P2) (P1 Q2) | 2.
Proof.
  rewrite /Frame /= ⇒ ?. apply impl_intro_l.
  by rewrite -persistently_and_intuitionistically_sep_l assoc (comm _ P1) -assoc impl_elim_r
             persistently_and_intuitionistically_sep_l.
Qed.
Global Instance frame_impl R P1 P2 Q2 :
  Persistent P1 QuickAbsorbing P1
  Frame false R P2 Q2 Frame false R (P1 P2) (P1 Q2). Proof.
  rewrite /Frame /QuickAbsorbing /==> ???. apply impl_intro_l.
  rewrite {1}(persistent P1) persistently_and_intuitionistically_sep_l assoc.
  rewrite (comm _ ( P1)%I) -assoc -persistently_and_intuitionistically_sep_l.
  rewrite persistently_elim impl_elim_r //.
Qed.

Global Instance frame_eq_embed `{!BiEmbed PROP PROP', !BiInternalEq PROP,
    !BiInternalEq PROP', !BiEmbedInternalEq PROP PROP'}
    p P Q (Q' : PROP') {A : ofe} (a b : A) :
  Frame p (a b) P Q MakeEmbed Q Q'
  Frame p (a b) P Q'. Proof. rewrite /Frame /MakeEmbed -embed_internal_eq. apply (frame_embed p P Q). Qed.

Global Instance frame_later p R R' P Q Q' :
  TCNoBackTrack (MaybeIntoLaterN true 1 R' R)
  Frame p R P Q MakeLaterN 1 Q Q'
  Frame p R' ( P) Q'. Proof.
  rewrite /Frame /MakeLaterN /MaybeIntoLaterN=>-[->] <- <-.
  by rewrite later_intuitionistically_if_2 later_sep.
Qed.
Global Instance frame_laterN p n R R' P Q Q' :
  TCNoBackTrack (MaybeIntoLaterN true n R' R)
  Frame p R P Q MakeLaterN n Q Q'
  Frame p R' (▷^n P) Q'. Proof.
  rewrite /Frame /MakeLaterN /MaybeIntoLaterN=>-[->] <- <-.
  by rewrite laterN_intuitionistically_if_2 laterN_sep.
Qed.

Global Instance frame_bupd `{!BiBUpd PROP} p R P Q :
  Frame p R P Q Frame p R (|==> P) (|==> Q) | 2.
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
Global Instance frame_fupd `{!BiFUpd PROP} p E1 E2 R P Q :
  Frame p R P Q Frame p R (|={E1,E2}=> P) (|={E1,E2}=> Q) | 2.
Proof. rewrite /Frame=><-. by rewrite fupd_frame_l. Qed.

Global Instance frame_except_0 p R P Q Q' :
  Frame p R P Q MakeExcept0 Q Q'
  Frame p R ( P) Q' | 2. Proof.
  rewrite /Frame /MakeExcept0=><- <-.
  by rewrite except_0_sep -(except_0_intro (□?p R)).
Qed.
End class_instances_frame.

We now write the tactic for constructing GatherEvarsEq instances. We want to prove goals of shape GatherEvarsEq a (?g c) with a : A, and g : ?C A. We need to infer both the function g and C : tele.
Ltac solve_gather_evars_eq :=
  lazymatch goal with
  | |- GatherEvarsEq ?a (?g ?c) ⇒
    let rec retcon_tele T arg :=
      
      match a with
      | context [?term] ⇒
        is_evar term;
        let X := type of term in
        lazymatch X with
        | telefail
        | _idtac
        end;
        let T' := open_constr:(_) in
        unify T (TeleS (λ _ : X, T'));
        
        unify term (tele_arg_head (λ _ : X, T') arg);
        
        retcon_tele T' (tele_arg_tail (λ _ : X, T') arg)
        
      | _
        
        unify T TeleO
      end
    in
    let T' := lazymatch (type of c) with tele_arg ?TT end in
    retcon_tele T' c;
    exact (GatherEvarsEq_refl _)
  end.

Global Hint Extern 0 (GatherEvarsEq _ _) ⇒
  solve_gather_evars_eq : typeclass_instances.

Global Hint Extern 0 (TCCbnTele _ _) ⇒
  cbn [bi_texist tele_fold tele_bind tele_arg_head tele_arg_tail];
  exact (TCCbnTele_refl _) : typeclass_instances.