Library iris.bi.derived_laws
From iris.algebra Require Import monoid.
From iris.bi Require Export extensions.
From iris.prelude Require Import options.
Set Default Proof Using "Type*".
From iris.bi Require Export extensions.
From iris.prelude Require Import options.
Set Default Proof Using "Type*".
Naming schema for lemmas about modalities:
M1_into_M2: M1 P ⊢ M2 P
M1_M2_elim: M1 (M2 P) ⊣⊢ M1 P
M1_elim_M2: M1 (M2 P) ⊣⊢ M2 P
M1_M2: M1 (M2 P) ⊣⊢ M2 (M1 P)
Module bi.
Import interface.bi.
Section derived.
Context {PROP : bi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.
Implicit Types Ps : list PROP.
Implicit Types A : Type.
Local Hint Extern 100 (NonExpansive _) ⇒ solve_proper : core.
Notation "P ⊢ Q" := (P ⊢@{PROP} Q).
Notation "P ⊣⊢ Q" := (P ⊣⊢@{PROP} Q).
Global Instance entails_anti_sym : AntiSymm (⊣⊢) (@bi_entails PROP).
Proof. intros P Q ??. by apply equiv_entails. Qed.
Lemma equiv_entails_1_1 P Q : (P ⊣⊢ Q) → (P ⊢ Q).
Proof. apply equiv_entails. Qed.
Lemma equiv_entails_1_2 P Q : (P ⊣⊢ Q) → (Q ⊢ P).
Proof. apply equiv_entails. Qed.
Lemma equiv_entails_2 P Q : (P ⊢ Q) → (Q ⊢ P) → (P ⊣⊢ Q).
Proof. intros. by apply equiv_entails. Qed.
Global Instance entails_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> iff) ((⊢) : relation PROP).
Proof.
move ⇒ P1 P2 /equiv_entails [HP1 HP2] Q1 Q2 /equiv_entails [HQ1 HQ2]; split=>?.
- by trans P1; [|trans Q1].
- by trans P2; [|trans Q2].
Qed.
Lemma entails_equiv_l P Q R : (P ⊣⊢ Q) → (Q ⊢ R) → (P ⊢ R).
Proof. by intros →. Qed.
Lemma entails_equiv_r P Q R : (P ⊢ Q) → (Q ⊣⊢ R) → (P ⊢ R).
Proof. by intros ? <-. Qed.
Global Instance bi_emp_valid_proper : Proper ((⊣⊢) ==> iff) (@bi_emp_valid PROP).
Proof. solve_proper. Qed.
Global Instance bi_emp_valid_mono : Proper ((⊢) ==> impl) (@bi_emp_valid PROP).
Proof. solve_proper. Qed.
Global Instance bi_emp_valid_flip_mono :
Proper (flip (⊢) ==> flip impl) (@bi_emp_valid PROP).
Proof. solve_proper. Qed.
Global Instance pure_proper : Proper (iff ==> (⊣⊢)) (@bi_pure PROP) | 0.
Proof. intros φ1 φ2 Hφ. apply equiv_dist⇒ n. by apply pure_ne. Qed.
Global Instance and_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_and PROP) := ne_proper_2 _.
Global Instance or_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_or PROP) := ne_proper_2 _.
Global Instance impl_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_impl PROP) := ne_proper_2 _.
Global Instance sep_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_sep PROP) := ne_proper_2 _.
Global Instance wand_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_wand PROP) := ne_proper_2 _.
Global Instance forall_proper A :
Proper (pointwise_relation _ (⊣⊢) ==> (⊣⊢)) (@bi_forall PROP A).
Proof.
intros Φ1 Φ2 HΦ. apply equiv_dist⇒ n.
apply forall_ne⇒ x. apply equiv_dist, HΦ.
Qed.
Global Instance exist_proper A :
Proper (pointwise_relation _ (⊣⊢) ==> (⊣⊢)) (@bi_exist PROP A).
Proof.
intros Φ1 Φ2 HΦ. apply equiv_dist⇒ n.
apply exist_ne⇒ x. apply equiv_dist, HΦ.
Qed.
Global Instance persistently_proper :
Proper ((⊣⊢) ==> (⊣⊢)) (@bi_persistently PROP) := ne_proper _.
Lemma and_elim_l' P Q R : (P ⊢ R) → P ∧ Q ⊢ R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q ⊢ R) → P ∧ Q ⊢ R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P ⊢ Q) → P ⊢ Q ∨ R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P ⊢ R) → P ⊢ Q ∨ R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A → PROP) a : (P ⊢ Ψ a) → P ⊢ ∃ a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A → PROP) : (P ⊢ ∀ a, Ψ a) → ∀ a, P ⊢ Ψ a.
Proof. move⇒ HP a. by rewrite HP forall_elim. Qed.
Local Hint Resolve pure_intro forall_intro : core.
Local Hint Resolve or_elim or_intro_l' or_intro_r' : core.
Local Hint Resolve and_intro and_elim_l' and_elim_r' : core.
Lemma impl_intro_l P Q R : (Q ∧ P ⊢ R) → P ⊢ Q → R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim P Q R : (P ⊢ Q → R) → (P ⊢ Q) → P ⊢ R.
Proof. intros. rewrite -(impl_elim_l' P Q R); auto. Qed.
Lemma impl_elim_r' P Q R : (Q ⊢ P → R) → P ∧ Q ⊢ R.
Proof. intros; apply impl_elim with P; auto. Qed.
Lemma impl_elim_l P Q : (P → Q) ∧ P ⊢ Q.
Proof. by apply impl_elim_l'. Qed.
Lemma impl_elim_r P Q : P ∧ (P → Q) ⊢ Q.
Proof. by apply impl_elim_r'. Qed.
Lemma False_elim P : False ⊢ P.
Proof. by apply (pure_elim' False). Qed.
Lemma True_intro P : P ⊢ True.
Proof. by apply pure_intro. Qed.
Local Hint Immediate False_elim : core.
Lemma entails_eq_True P Q : (P ⊢ Q) ↔ ((P → Q)%I ≡ True%I).
Proof.
split⇒EQ.
- apply bi.equiv_entails; split; [by apply True_intro|].
apply impl_intro_r. rewrite and_elim_r //.
- trans (P ∧ True)%I.
+ apply and_intro; first done. by apply pure_intro.
+ rewrite -EQ impl_elim_r. done.
Qed.
Lemma entails_impl_True P Q : (P ⊢ Q) ↔ (True ⊢ (P → Q)).
Proof. rewrite entails_eq_True equiv_entails; naive_solver. Qed.
Lemma and_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∧ P' ⊢ Q ∧ Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P ⊢ Q) → P ∧ P' ⊢ Q ∧ P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P' ⊢ Q') → P ∧ P' ⊢ P ∧ Q'.
Proof. by apply and_mono. Qed.
Lemma or_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∨ P' ⊢ Q ∨ Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P ⊢ Q) → P ∨ P' ⊢ Q ∨ P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P' ⊢ Q') → P ∨ P' ⊢ P ∨ Q'.
Proof. by apply or_mono. Qed.
Lemma impl_mono P P' Q Q' : (Q ⊢ P) → (P' ⊢ Q') → (P → P') ⊢ Q → Q'.
Proof.
intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A → PROP) :
(∀ a, Φ a ⊢ Ψ a) → (∀ a, Φ a) ⊢ ∀ a, Ψ a.
Proof.
intros HP. apply forall_intro⇒ a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A → PROP) :
(∀ a, Φ a ⊢ Ψ a) → (∃ a, Φ a) ⊢ ∃ a, Ψ a.
Proof. intros HΦ. apply exist_elim⇒ a; rewrite (HΦ a); apply exist_intro. Qed.
Global Instance and_mono' : Proper ((⊢) ==> (⊢) ==> (⊢)) (@bi_and PROP).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
Proper (flip (⊢) ==> flip (⊢) ==> flip (⊢)) (@bi_and PROP).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper ((⊢) ==> (⊢) ==> (⊢)) (@bi_or PROP).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
Proper (flip (⊢) ==> flip (⊢) ==> flip (⊢)) (@bi_or PROP).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
Proper (flip (⊢) ==> (⊢) ==> (⊢)) (@bi_impl PROP).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
Global Instance impl_flip_mono' :
Proper ((⊢) ==> flip (⊢) ==> flip (⊢)) (@bi_impl PROP).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
Global Instance forall_mono' A :
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_forall PROP A).
Proof. intros P1 P2; apply forall_mono. Qed.
Global Instance forall_flip_mono' A :
Proper (pointwise_relation _ (flip (⊢)) ==> flip (⊢)) (@bi_forall PROP A).
Proof. intros P1 P2; apply forall_mono. Qed.
Global Instance exist_mono' A :
Proper (pointwise_relation _ ((⊢)) ==> (⊢)) (@bi_exist PROP A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
Proper (pointwise_relation _ (flip (⊢)) ==> flip (⊢)) (@bi_exist PROP A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance and_idem : IdemP (⊣⊢) (@bi_and PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance or_idem : IdemP (⊣⊢) (@bi_or PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance and_comm : Comm (⊣⊢) (@bi_and PROP).
Proof. intros P Q; apply (anti_symm (⊢)); auto. Qed.
Global Instance True_and : LeftId (⊣⊢) True%I (@bi_and PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance and_True : RightId (⊣⊢) True%I (@bi_and PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance False_and : LeftAbsorb (⊣⊢) False%I (@bi_and PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance and_False : RightAbsorb (⊣⊢) False%I (@bi_and PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance True_or : LeftAbsorb (⊣⊢) True%I (@bi_or PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance or_True : RightAbsorb (⊣⊢) True%I (@bi_or PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance False_or : LeftId (⊣⊢) False%I (@bi_or PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance or_False : RightId (⊣⊢) False%I (@bi_or PROP).
Proof. intros P; apply (anti_symm (⊢)); auto. Qed.
Global Instance and_assoc : Assoc (⊣⊢) (@bi_and PROP).
Proof. intros P Q R; apply (anti_symm (⊢)); auto. Qed.
Global Instance or_comm : Comm (⊣⊢) (@bi_or PROP).
Proof. intros P Q; apply (anti_symm (⊢)); auto. Qed.
Global Instance or_assoc : Assoc (⊣⊢) (@bi_or PROP).
Proof. intros P Q R; apply (anti_symm (⊢)); auto. Qed.
Global Instance True_impl : LeftId (⊣⊢) True%I (@bi_impl PROP).
Proof.
intros P; apply (anti_symm (⊢)).
- by rewrite -(left_id True%I (∧)%I (_ → _)%I) impl_elim_r.
- by apply impl_intro_l; rewrite left_id.
Qed.
Lemma impl_refl P Q : Q ⊢ P → P.
Proof. apply impl_intro_l, and_elim_l. Qed.
Lemma impl_trans P Q R : (P → Q) ∧ (Q → R) ⊢ (P → R).
Proof. apply impl_intro_l. by rewrite assoc !impl_elim_r. Qed.
Lemma False_impl P : (False → P) ⊣⊢ True.
Proof.
apply (anti_symm (⊢)); [by auto|].
apply impl_intro_l. rewrite left_absorb. auto.
Qed.
Lemma exist_impl_forall {A} P (Ψ : A → PROP) :
((∃ x : A, Ψ x) → P) ⊣⊢ ∀ x : A, Ψ x → P.
Proof.
apply equiv_entails; split.
- apply forall_intro⇒x. by rewrite -exist_intro.
- apply impl_intro_r, impl_elim_r', exist_elim⇒x.
apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.
Lemma forall_unit (Ψ : unit → PROP) :
(∀ x, Ψ x) ⊣⊢ Ψ ().
Proof.
apply (anti_symm (⊢)).
- rewrite (forall_elim ()) //.
- apply forall_intro=>[[]]. done.
Qed.
Lemma exist_unit (Ψ : unit → PROP) :
(∃ x, Ψ x) ⊣⊢ Ψ ().
Proof.
apply (anti_symm (⊢)).
- apply exist_elim=>[[]]. done.
- rewrite -(exist_intro ()). done.
Qed.
Lemma exist_exist {A B} (Ψ : A → B → PROP) :
(∃ x y, Ψ x y) ⊣⊢ (∃ y x, Ψ x y).
Proof.
apply (anti_symm (⊢));
do 2 (apply exist_elim=>?); rewrite -2!exist_intro; eauto.
Qed.
Lemma forall_forall {A B} (Ψ : A → B → PROP) :
(∀ x y, Ψ x y) ⊣⊢ (∀ y x, Ψ x y).
Proof.
apply (anti_symm (⊢));
do 2 (apply forall_intro=>?); rewrite 2!forall_elim; eauto.
Qed.
Lemma exist_forall {A B} (Ψ : A → B → PROP) :
(∃ x, ∀ y, Ψ x y) ⊢ (∀ y, ∃ x, Ψ x y).
Proof.
apply forall_intro=>?. apply exist_elim=>?.
rewrite -exist_intro forall_elim ; eauto.
Qed.
Lemma impl_curry P Q R : (P → Q → R) ⊣⊢ (P ∧ Q → R).
Proof.
apply (anti_symm _).
- apply impl_intro_l. by rewrite (comm _ P) -and_assoc !impl_elim_r.
- do 2 apply impl_intro_l. by rewrite assoc (comm _ Q) impl_elim_r.
Qed.
Lemma or_and_l P Q R : P ∨ Q ∧ R ⊣⊢ (P ∨ Q) ∧ (P ∨ R).
Proof.
apply (anti_symm (⊢)); first auto.
do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P ∧ Q ∨ R ⊣⊢ (P ∨ R) ∧ (Q ∨ R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P ∧ (Q ∨ R) ⊣⊢ P ∧ Q ∨ P ∧ R.
Proof.
apply (anti_symm (⊢)); last auto.
apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P ∨ Q) ∧ R ⊣⊢ P ∧ R ∨ Q ∧ R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A → PROP) : P ∧ (∃ a, Ψ a) ⊣⊢ ∃ a, P ∧ Ψ a.
Proof.
apply (anti_symm (⊢)).
- apply impl_elim_r'. apply exist_elim⇒a. apply impl_intro_l.
by rewrite -(exist_intro a).
- apply exist_elim⇒a. apply and_intro; first by rewrite and_elim_l.
by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A → PROP) : (∃ a, Φ a) ∧ P ⊣⊢ ∃ a, Φ a ∧ P.
Proof.
rewrite -(comm _ P) and_exist_l. apply exist_proper⇒a. by rewrite comm.
Qed.
Lemma or_exist {A} (Φ Ψ : A → PROP) :
(∃ a, Φ a ∨ Ψ a) ⊣⊢ (∃ a, Φ a) ∨ (∃ a, Ψ a).
Proof.
apply (anti_symm (⊢)).
- apply exist_elim⇒ a. by rewrite -!(exist_intro a).
- apply or_elim; apply exist_elim⇒ a; rewrite -(exist_intro a); auto.
Qed.
Lemma and_alt P Q : P ∧ Q ⊣⊢ ∀ b : bool, if b then P else Q.
Proof.
apply (anti_symm _); first apply forall_intro⇒ -[]; auto.
by apply and_intro; [rewrite (forall_elim true)|rewrite (forall_elim false)].
Qed.
Lemma or_alt P Q : P ∨ Q ⊣⊢ ∃ b : bool, if b then P else Q.
Proof.
apply (anti_symm _); last apply exist_elim⇒ -[]; auto.
by apply or_elim; [rewrite -(exist_intro true)|rewrite -(exist_intro false)].
Qed.
Lemma entails_equiv_and P Q : (P ⊣⊢ Q ∧ P) ↔ (P ⊢ Q).
Proof.
split.
- intros ->; auto.
- intros; apply (anti_symm _); auto.
Qed.
Global Instance iff_ne : NonExpansive2 (@bi_iff PROP).
Proof. unfold bi_iff; solve_proper. Qed.
Global Instance iff_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_iff PROP) := ne_proper_2 _.
Lemma iff_refl Q P : Q ⊢ P ↔ P.
Proof. rewrite /bi_iff. apply and_intro; apply impl_refl. Qed.
Lemma iff_sym P Q : (P ↔ Q) ⊣⊢ (Q ↔ P).
Proof.
apply equiv_entails. split; apply and_intro;
try apply and_elim_r; apply and_elim_l.
Qed.
Lemma iff_trans P Q R : (P ↔ Q) ∧ (Q ↔ R) ⊢ (P ↔ R).
Proof.
apply and_intro.
- rewrite /bi_iff (and_elim_l _ (_ → _)) (and_elim_l _ (_ → _)).
apply impl_trans.
- rewrite /bi_iff (and_elim_r _ (_ → _)) (and_elim_r _ (_ → _)) comm.
apply impl_trans.
Qed.
Local Hint Resolve sep_mono : core.
Lemma sep_mono_l P P' Q : (P ⊢ Q) → P ∗ P' ⊢ Q ∗ P'.
Proof. by intros; apply sep_mono. Qed.
Lemma sep_mono_r P P' Q' : (P' ⊢ Q') → P ∗ P' ⊢ P ∗ Q'.
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper ((⊢) ==> (⊢) ==> (⊢)) (@bi_sep PROP).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
Proper (flip (⊢) ==> flip (⊢) ==> flip (⊢)) (@bi_sep PROP).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Lemma wand_mono P P' Q Q' : (Q ⊢ P) → (P' ⊢ Q') → (P -∗ P') ⊢ Q -∗ Q'.
Proof.
intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip (⊢) ==> (⊢) ==> (⊢)) (@bi_wand PROP).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
Global Instance wand_flip_mono' :
Proper ((⊢) ==> flip (⊢) ==> flip (⊢)) (@bi_wand PROP).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
Global Instance sep_comm : Comm (⊣⊢) (@bi_sep PROP).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc (⊣⊢) (@bi_sep PROP).
Proof.
intros P Q R; apply (anti_symm _); auto using sep_assoc'.
by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance emp_sep : LeftId (⊣⊢) emp%I (@bi_sep PROP).
Proof. intros P; apply (anti_symm _); auto using emp_sep_1, emp_sep_2. Qed.
Global Instance sep_emp : RightId (⊣⊢) emp%I (@bi_sep PROP).
Proof. by intros P; rewrite comm left_id. Qed.
Global Instance sep_False : LeftAbsorb (⊣⊢) False%I (@bi_sep PROP).
Proof. intros P; apply (anti_symm _); auto using wand_elim_l'. Qed.
Global Instance False_sep : RightAbsorb (⊣⊢) False%I (@bi_sep PROP).
Proof. intros P. by rewrite comm left_absorb. Qed.
Lemma True_sep_2 P : P ⊢ True ∗ P.
Proof. rewrite -{1}[P](left_id emp%I bi_sep). auto using sep_mono. Qed.
Lemma sep_True_2 P : P ⊢ P ∗ True.
Proof. by rewrite comm -True_sep_2. Qed.
Lemma sep_intro_emp_valid_l P Q R : (⊢ P) → (R ⊢ Q) → R ⊢ P ∗ Q.
Proof. intros ? →. rewrite -{1}(left_id emp%I _ Q). by apply sep_mono. Qed.
Lemma sep_intro_emp_valid_r P Q R : (R ⊢ P) → (⊢ Q) → R ⊢ P ∗ Q.
Proof. intros → ?. rewrite comm. by apply sep_intro_emp_valid_l. Qed.
Lemma sep_elim_emp_valid_l P Q R : (⊢ P) → (P ∗ R ⊢ Q) → R ⊢ Q.
Proof. intros <- <-. by rewrite left_id. Qed.
Lemma sep_elim_emp_valid_r P Q R : (⊢P) → (R ∗ P ⊢ Q) → R ⊢ Q.
Proof. intros <- <-. by rewrite right_id. Qed.
Lemma wand_intro_l P Q R : (Q ∗ P ⊢ R) → P ⊢ Q -∗ R.
Proof. rewrite comm; apply wand_intro_r. Qed.
Lemma wand_elim_l P Q : (P -∗ Q) ∗ P ⊢ Q.
Proof. by apply wand_elim_l'. Qed.
Lemma wand_elim_r P Q : P ∗ (P -∗ Q) ⊢ Q.
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
Lemma wand_elim_r' P Q R : (Q ⊢ P -∗ R) → P ∗ Q ⊢ R.
Proof. intros ->; apply wand_elim_r. Qed.
Lemma wand_apply P Q R S : (P ⊢ Q -∗ R) → (S ⊢ P ∗ Q) → S ⊢ R.
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
Lemma wand_frame_l P Q R : (Q -∗ R) ⊢ P ∗ Q -∗ P ∗ R.
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
Lemma wand_frame_r P Q R : (Q -∗ R) ⊢ Q ∗ P -∗ R ∗ P.
Proof.
apply wand_intro_l. rewrite ![(_ ∗ P)%I]comm -assoc.
apply sep_mono_r, wand_elim_r.
Qed.
Global Instance emp_wand : LeftId (⊣⊢) emp%I (@bi_wand PROP).
Proof.
intros P. apply (anti_symm _).
- by rewrite -[(emp -∗ P)%I]left_id wand_elim_r.
- apply wand_intro_l. by rewrite left_id.
Qed.
Lemma False_wand P : (False -∗ P) ⊣⊢ True.
Proof.
apply (anti_symm (⊢)); [by auto|].
apply wand_intro_l. rewrite left_absorb. auto.
Qed.
Lemma wand_refl P : ⊢ P -∗ P.
Proof. apply wand_intro_l. by rewrite right_id. Qed.
Lemma wand_trans P Q R : (P -∗ Q) ∗ (Q -∗ R) ⊢ (P -∗ R).
Proof. apply wand_intro_l. by rewrite assoc !wand_elim_r. Qed.
Lemma wand_curry P Q R : (P -∗ Q -∗ R) ⊣⊢ (P ∗ Q -∗ R).
Proof.
apply (anti_symm _).
- apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
- do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.
Lemma sep_and_l P Q R : P ∗ (Q ∧ R) ⊢ (P ∗ Q) ∧ (P ∗ R).
Proof. auto. Qed.
Lemma sep_and_r P Q R : (P ∧ Q) ∗ R ⊢ (P ∗ R) ∧ (Q ∗ R).
Proof. auto. Qed.
Lemma sep_or_l P Q R : P ∗ (Q ∨ R) ⊣⊢ (P ∗ Q) ∨ (P ∗ R).
Proof.
apply (anti_symm (⊢)); last by eauto 8.
apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
Lemma sep_or_r P Q R : (P ∨ Q) ∗ R ⊣⊢ (P ∗ R) ∨ (Q ∗ R).
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
Lemma sep_exist_l {A} P (Ψ : A → PROP) : P ∗ (∃ a, Ψ a) ⊣⊢ ∃ a, P ∗ Ψ a.
Proof.
intros; apply (anti_symm (⊢)).
- apply wand_elim_r', exist_elim⇒a. apply wand_intro_l.
by rewrite -(exist_intro a).
- apply exist_elim⇒ a; apply sep_mono; auto using exist_intro.
Qed.
Lemma sep_exist_r {A} (Φ: A → PROP) Q: (∃ a, Φ a) ∗ Q ⊣⊢ ∃ a, Φ a ∗ Q.
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
Lemma sep_forall_l {A} P (Ψ : A → PROP) : P ∗ (∀ a, Ψ a) ⊢ ∀ a, P ∗ Ψ a.
Proof. by apply forall_intro⇒ a; rewrite forall_elim. Qed.
Lemma sep_forall_r {A} (Φ : A → PROP) Q : (∀ a, Φ a) ∗ Q ⊢ ∀ a, Φ a ∗ Q.
Proof. by apply forall_intro⇒ a; rewrite forall_elim. Qed.
Lemma exist_wand_forall {A} P (Ψ : A → PROP) :
((∃ x : A, Ψ x) -∗ P) ⊣⊢ ∀ x : A, Ψ x -∗ P.
Proof.
apply equiv_entails; split.
- apply forall_intro⇒x. by rewrite -exist_intro.
- apply wand_intro_r, wand_elim_r', exist_elim⇒x.
apply wand_intro_r. by rewrite (forall_elim x) wand_elim_r.
Qed.
Global Instance wand_iff_ne : NonExpansive2 (@bi_wand_iff PROP).
Proof. solve_proper. Qed.
Global Instance wand_iff_proper :
Proper ((⊣⊢) ==> (⊣⊢) ==> (⊣⊢)) (@bi_wand_iff PROP) := ne_proper_2 _.
Lemma wand_iff_refl P : ⊢ P ∗-∗ P.
Proof. apply and_intro; apply wand_intro_l; by rewrite right_id. Qed.
Lemma wand_iff_sym P Q : (P ∗-∗ Q) ⊣⊢ (Q ∗-∗ P).
Proof. apply equiv_entails; split; rewrite /bi_wand_iff; eauto. Qed.
Lemma wand_iff_trans P Q R : (P ∗-∗ Q) ∗ (Q ∗-∗ R) ⊢ (P ∗-∗ R).
Proof.
apply and_intro.
- rewrite /bi_wand_iff !and_elim_l. apply wand_trans.
- rewrite /bi_wand_iff !and_elim_r comm. apply wand_trans.
Qed.
Lemma wand_entails P Q : (⊢ P -∗ Q) → P ⊢ Q.
Proof. intros. rewrite -[P]emp_sep. by apply wand_elim_l'. Qed.
Lemma entails_wand P Q : (P ⊢ Q) → ⊢ P -∗ Q.
Proof. intros →. apply wand_intro_r. by rewrite left_id. Qed.
Lemma entails_wand' P Q : (P ⊢ Q) → emp ⊢ (P -∗ Q).
Proof. apply entails_wand. Qed.
Lemma wand_entails' P Q : (emp ⊢ (P -∗ Q)) → P ⊢ Q.
Proof. apply wand_entails. Qed.
Lemma equiv_wand_iff P Q : (P ⊣⊢ Q) → ⊢ P ∗-∗ Q.
Proof. intros ->; apply wand_iff_refl. Qed.
Lemma wand_iff_equiv P Q : (⊢ P ∗-∗ Q) → (P ⊣⊢ Q).
Proof.
intros HPQ; apply (anti_symm (⊢));
apply wand_entails; rewrite /bi_emp_valid HPQ /bi_wand_iff; auto.
Qed.
Lemma entails_impl P Q : (P ⊢ Q) → (⊢ P → Q).
Proof. intros →. apply impl_intro_l. auto. Qed.
Lemma impl_entails P Q `{!Affine P} : (⊢ P → Q) → P ⊢ Q.
Proof. intros HPQ. apply impl_elim with P=>//. by rewrite {1}(affine P). Qed.
Lemma equiv_iff P Q : (P ⊣⊢ Q) → (⊢ P ↔ Q).
Proof. intros ->; apply iff_refl. Qed.
Lemma iff_equiv P Q `{!Affine P, !Affine Q} : (⊢ P ↔ Q)%I → (P ⊣⊢ Q).
Proof.
intros HPQ; apply (anti_symm (⊢));
apply: impl_entails; rewrite /bi_emp_valid HPQ /bi_iff; auto.
Qed.
Lemma and_parallel P1 P2 Q1 Q2 :
(P1 ∧ P2) -∗ ((P1 -∗ Q1) ∧ (P2 -∗ Q2)) -∗ Q1 ∧ Q2.
Proof.
apply entails_wand, wand_intro_r, and_intro.
- rewrite !and_elim_l wand_elim_r. done.
- rewrite !and_elim_r wand_elim_r. done.
Qed.
Lemma wandM_sound (mP : option PROP) Q :
(mP -∗? Q) ⊣⊢ (default emp mP -∗ Q).
Proof. destruct mP; simpl; first done. rewrite emp_wand //. Qed.
Global Instance affinely_ne : NonExpansive (@bi_affinely PROP).
Proof. solve_proper. Qed.
Global Instance affinely_proper : Proper ((⊣⊢) ==> (⊣⊢)) (@bi_affinely PROP).
Proof. solve_proper. Qed.
Global Instance affinely_mono' : Proper ((⊢) ==> (⊢)) (@bi_affinely PROP).
Proof. solve_proper. Qed.
Global Instance affinely_flip_mono' :
Proper (flip (⊢) ==> flip (⊢)) (@bi_affinely PROP).
Proof. solve_proper. Qed.
Lemma affinely_elim_emp P : <affine> P ⊢ emp.
Proof. rewrite /bi_affinely; auto. Qed.
Global Instance affinely_affine P : Affine (<affine> P).
Proof. by rewrite /Affine affinely_elim_emp. Qed.
Lemma affinely_elim P : <affine> P ⊢ P.
Proof. rewrite /bi_affinely; auto. Qed.
Lemma affinely_mono P Q : (P ⊢ Q) → <affine> P ⊢ <affine> Q.
Proof. by intros →. Qed.
Lemma affinely_idemp P : <affine> <affine> P ⊣⊢ <affine> P.
Proof. by rewrite /bi_affinely assoc idemp. Qed.
Lemma affinely_intro' P Q : (<affine> P ⊢ Q) → <affine> P ⊢ <affine> Q.
Proof. intros <-. by rewrite affinely_idemp. Qed.
Lemma affinely_False : <affine> False ⊣⊢ False.
Proof. by rewrite /bi_affinely right_absorb. Qed.
Lemma affinely_emp : <affine> emp ⊣⊢ emp.
Proof. by rewrite /bi_affinely (idemp bi_and). Qed.
Lemma affinely_or P Q : <affine> (P ∨ Q) ⊣⊢ <affine> P ∨ <affine> Q.
Proof. by rewrite /bi_affinely and_or_l. Qed.
Lemma affinely_and P Q : <affine> (P ∧ Q) ⊣⊢ <affine> P ∧ <affine> Q.
Proof.
rewrite /bi_affinely -(comm _ P) (assoc _ (_ ∧ _)%I) -!(assoc _ P).
by rewrite idemp !assoc (comm _ P).
Qed.
Lemma affinely_sep_2 P Q : <affine> P ∗ <affine> Q ⊢ <affine> (P ∗ Q).
Proof.
rewrite /bi_affinely. apply and_intro.
- by rewrite !and_elim_l right_id.
- by rewrite !and_elim_r.
Qed.
Lemma affinely_sep `{!BiPositive PROP} P Q :
<affine> (P ∗ Q) ⊣⊢ <affine> P ∗ <affine> Q.
Proof.
apply (anti_symm _), affinely_sep_2.
by rewrite -{1}affinely_idemp bi_positive !(comm _ (<affine> P)%I) bi_positive.
Qed.
Lemma affinely_forall {A} (Φ : A → PROP) :
<affine> (∀ a, Φ a) ⊢ ∀ a, <affine> (Φ a).
Proof. apply forall_intro⇒ a. by rewrite (forall_elim a). Qed.
Lemma affinely_exist {A} (Φ : A → PROP) :
<affine> (∃ a, Φ a) ⊣⊢ ∃ a, <affine> (Φ a).
Proof. by rewrite /bi_affinely and_exist_l. Qed.
Lemma affinely_True_emp : <affine> True ⊣⊢ emp.
Proof. apply (anti_symm _); rewrite /bi_affinely; auto. Qed.
Lemma affinely_and_l P Q : <affine> P ∧ Q ⊣⊢ <affine> (P ∧ Q).
Proof. by rewrite /bi_affinely assoc. Qed.
Lemma affinely_and_r P Q : P ∧ <affine> Q ⊣⊢ <affine> (P ∧ Q).
Proof. by rewrite /bi_affinely !assoc (comm _ P). Qed.
Lemma affinely_and_lr P Q : <affine> P ∧ Q ⊣⊢ P ∧ <affine> Q.
Proof. by rewrite affinely_and_l affinely_and_r. Qed.
Global Instance emp_affine : Affine (PROP:=PROP) emp.
Proof. by rewrite /Affine. Qed.
Global Instance False_affine : Affine (PROP:=PROP) False.
Proof. by rewrite /Affine False_elim. Qed.
Global Instance and_affine_l P Q : Affine P → Affine (P ∧ Q).
Proof. rewrite /Affine⇒ ->; auto. Qed.
Global Instance and_affine_r P Q : Affine Q → Affine (P ∧ Q).
Proof. rewrite /Affine⇒ ->; auto. Qed.
Global Instance or_affine P Q : Affine P → Affine Q → Affine (P ∨ Q).
Proof. rewrite /Affine⇒ → ->; auto. Qed.
Global Instance forall_affine `{Inhabited A} (Φ : A → PROP) :
(∀ x, Affine (Φ x)) → Affine (∀ x, Φ x).
Proof. intros. rewrite /Affine (forall_elim inhabitant). apply: affine. Qed.
Global Instance exist_affine {A} (Φ : A → PROP) :
(∀ x, Affine (Φ x)) → Affine (∃ x, Φ x).
Proof. rewrite /Affine⇒ H. apply exist_elim⇒ a. by rewrite H. Qed.
Global Instance sep_affine P Q : Affine P → Affine Q → Affine (P ∗ Q).
Proof. rewrite /Affine=>-> →. by rewrite left_id. Qed.
Global Instance absorbingly_ne : NonExpansive (@bi_absorbingly PROP).
Proof. solve_proper. Qed.
Global Instance absorbingly_proper : Proper ((⊣⊢) ==> (⊣⊢)) (@bi_absorbingly PROP).
Proof. solve_proper. Qed.
Global Instance absorbingly_mono' : Proper ((⊢) ==> (⊢)) (@bi_absorbingly PROP).
Proof. solve_proper. Qed.
Global Instance absorbingly_flip_mono' :
Proper (flip (⊢) ==> flip (⊢)) (@bi_absorbingly PROP).
Proof. solve_proper. Qed.
Lemma absorbingly_intro P : P ⊢ <absorb> P.
Proof. by rewrite /bi_absorbingly -True_sep_2. Qed.
Lemma absorbingly_mono P Q : (P ⊢ Q) → <absorb> P ⊢ <absorb> Q.
Proof. by intros →. Qed.
Lemma absorbingly_idemp P : <absorb> <absorb> P ⊣⊢ <absorb> P.
Proof.
apply (anti_symm _), absorbingly_intro.
rewrite /bi_absorbingly assoc. apply sep_mono; auto.
Qed.
Global Instance absorbingly_absorbing P : Absorbing (<absorb> P).
Proof. by rewrite /Absorbing absorbingly_idemp. Qed.
Lemma absorbingly_pure φ : <absorb> ⌜ φ ⌝ ⊣⊢ ⌜ φ ⌝.
Proof.
apply (anti_symm _), absorbingly_intro.
apply wand_elim_r', pure_elim'⇒ ?. apply wand_intro_l; auto.
Qed.
Lemma absorbingly_True : <absorb> True ⊣⊢ True.
Proof. apply absorbingly_pure. Qed.
Lemma absorbingly_or P Q : <absorb> (P ∨ Q) ⊣⊢ <absorb> P ∨ <absorb> Q.
Proof. by rewrite /bi_absorbingly sep_or_l. Qed.
Lemma absorbingly_and_1 P Q : <absorb> (P ∧ Q) ⊢ <absorb> P ∧ <absorb> Q.
Proof. apply and_intro; apply absorbingly_mono; auto. Qed.
Lemma absorbingly_forall {A} (Φ : A → PROP) :
<absorb> (∀ a, Φ a) ⊢ ∀ a, <absorb> (Φ a).
Proof. apply forall_intro⇒ a. by rewrite (forall_elim a). Qed.
Lemma absorbingly_exist {A} (Φ : A → PROP) :
<absorb> (∃ a, Φ a) ⊣⊢ ∃ a, <absorb> (Φ a).
Proof. by rewrite /bi_absorbingly sep_exist_l. Qed.
Lemma absorbingly_sep P Q : <absorb> (P ∗ Q) ⊣⊢ <absorb> P ∗ <absorb> Q.
Proof.
by rewrite -{1}absorbingly_idemp /bi_absorbingly !assoc -!(comm _ P) !assoc.
Qed.
Lemma absorbingly_emp_True : <absorb> emp ⊣⊢ True.
Proof. rewrite /bi_absorbingly right_id //. Qed.
Lemma absorbingly_wand P Q : <absorb> (P -∗ Q) ⊢ <absorb> P -∗ <absorb> Q.
Proof. apply wand_intro_l. by rewrite -absorbingly_sep wand_elim_r. Qed.
Lemma absorbingly_sep_l P Q : <absorb> P ∗ Q ⊣⊢ <absorb> (P ∗ Q).
Proof. by rewrite /bi_absorbingly assoc. Qed.
Lemma absorbingly_sep_r P Q : P ∗ <absorb> Q ⊣⊢ <absorb> (P ∗ Q).
Proof. by rewrite /bi_absorbingly !assoc (comm _ P). Qed.
Lemma absorbingly_sep_lr P Q : <absorb> P ∗ Q ⊣⊢ P ∗ <absorb> Q.
Proof. by rewrite absorbingly_sep_l absorbingly_sep_r. Qed.
Lemma affinely_absorbingly_elim `{!BiPositive PROP} P :
<affine> <absorb> P ⊣⊢ <affine> P.
Proof.
apply (anti_symm _), affinely_mono, absorbingly_intro.
by rewrite /bi_absorbingly affinely_sep affinely_True_emp left_id.
Qed.
Global Instance pure_absorbing φ : Absorbing (PROP:=PROP) ⌜φ⌝.
Proof. by rewrite /Absorbing absorbingly_pure. Qed.
Global Instance and_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∧ Q).
Proof. intros. by rewrite /Absorbing absorbingly_and_1 !absorbing. Qed.
Global Instance or_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∨ Q).
Proof. intros. by rewrite /Absorbing absorbingly_or !absorbing. Qed.
Global Instance forall_absorbing {A} (Φ : A → PROP) :
(∀ x, Absorbing (Φ x)) → Absorbing (∀ x, Φ x).
Proof.
rewrite /Absorbing⇒ ?. rewrite absorbingly_forall. auto using forall_mono.
Qed.
Global Instance exist_absorbing {A} (Φ : A → PROP) :
(∀ x, Absorbing (Φ x)) → Absorbing (∃ x, Φ x).
Proof.
rewrite /Absorbing⇒ ?. rewrite absorbingly_exist. auto using exist_mono.
Qed.
Global Instance sep_absorbing_l P Q : Absorbing P → Absorbing (P ∗ Q).
Proof. intros. by rewrite /Absorbing -absorbingly_sep_l absorbing. Qed.
Global Instance sep_absorbing_r P Q : Absorbing Q → Absorbing (P ∗ Q).
Proof. intros. by rewrite /Absorbing -absorbingly_sep_r absorbing. Qed.
Global Instance wand_absorbing_l P Q : Absorbing P → Absorbing (P -∗ Q).
Proof.
intros. rewrite /Absorbing. apply wand_intro_l.
by rewrite absorbingly_sep_r -absorbingly_sep_l absorbing wand_elim_r.
Qed.
Global Instance wand_absorbing_r P Q : Absorbing Q → Absorbing (P -∗ Q).
Proof.
intros. by rewrite /Absorbing absorbingly_wand !absorbing -absorbingly_intro.
Qed.
Global Instance Affine_proper : Proper ((⊣⊢) ==> iff) (@Affine PROP).
Proof. solve_proper. Qed.
Global Instance Absorbing_proper : Proper ((⊣⊢) ==> iff) (@Absorbing PROP).
Proof. solve_proper. Qed.
Lemma affine_affinely P `{!Affine P} : <affine> P ⊣⊢ P.
Proof. rewrite /bi_affinely. apply (anti_symm _); auto. Qed.
Lemma absorbing_absorbingly P `{!Absorbing P} : <absorb> P ⊣⊢ P.
Proof. by apply (anti_symm _), absorbingly_intro. Qed.
Lemma True_affine_all_affine P : Affine (PROP:=PROP) True → Affine P.
Proof. rewrite /Affine⇒ <-; auto. Qed.
Lemma emp_absorbing_all_absorbing P : Absorbing (PROP:=PROP) emp → Absorbing P.
Proof.
intros. rewrite /Absorbing -{2}(emp_sep P).
rewrite -(absorbing emp) absorbingly_sep_l left_id //.
Qed.
Lemma sep_elim_l P Q `{HQP : TCOr (Affine Q) (Absorbing P)} : P ∗ Q ⊢ P.
Proof.
destruct HQP.
- by rewrite (affine Q) right_id.
- by rewrite (True_intro Q) comm.
Qed.
Lemma sep_elim_r P Q `{TCOr (Affine P) (Absorbing Q)} : P ∗ Q ⊢ Q.
Proof. by rewrite comm sep_elim_l. Qed.
Lemma sep_and P Q :
TCOr (Affine P) (Absorbing Q) → TCOr (Affine Q) (Absorbing P) →
P ∗ Q ⊢ P ∧ Q.
Proof.
intros [?|?] [?|?];
apply and_intro; apply: sep_elim_l || apply: sep_elim_r.
Qed.
Lemma affinely_intro P Q `{!Affine P} : (P ⊢ Q) → P ⊢ <affine> Q.
Proof. intros <-. by rewrite affine_affinely. Qed.
Lemma emp_and P `{!Affine P} : emp ∧ P ⊣⊢ P.
Proof. apply (anti_symm _); auto. Qed.
Lemma and_emp P `{!Affine P} : P ∧ emp ⊣⊢ P.
Proof. apply (anti_symm _); auto. Qed.
Lemma emp_or P `{!Affine P} : emp ∨ P ⊣⊢ emp.
Proof. apply (anti_symm _); auto. Qed.
Lemma or_emp P `{!Affine P} : P ∨ emp ⊣⊢ emp.
Proof. apply (anti_symm _); auto. Qed.
Lemma True_sep P `{!Absorbing P} : True ∗ P ⊣⊢ P.
Proof. apply (anti_symm _); auto using True_sep_2. Qed.
Lemma sep_True P `{!Absorbing P} : P ∗ True ⊣⊢ P.
Proof. by rewrite comm True_sep. Qed.
Lemma True_emp_iff_BiAffine :
BiAffine PROP ↔ (True ⊢ emp).
Proof.
split.
- intros ?. exact: affine.
- rewrite /BiAffine /Affine⇒Hemp ?. rewrite -Hemp.
exact: True_intro.
Qed.
Section bi_affine.
Context `{!BiAffine PROP}.
Global Instance bi_affine_absorbing P : Absorbing P | 0.
Proof. by rewrite /Absorbing /bi_absorbingly (affine True) left_id. Qed.
Global Instance bi_affine_positive : BiPositive PROP.
Proof. intros P Q. by rewrite !affine_affinely. Qed.
Lemma True_emp : True ⊣⊢ emp.
Proof. apply (anti_symm _); auto using affine. Qed.
Global Instance emp_and' : LeftId (⊣⊢) emp%I (@bi_and PROP).
Proof. intros P. by rewrite -True_emp left_id. Qed.
Global Instance and_emp' : RightId (⊣⊢) emp%I (@bi_and PROP).
Proof. intros P. by rewrite -True_emp right_id. Qed.
Global Instance True_sep' : LeftId (⊣⊢) True%I (@bi_sep PROP).
Proof. intros P. by rewrite True_emp left_id. Qed.
Global Instance sep_True' : RightId (⊣⊢) True%I (@bi_sep PROP).
Proof. intros P. by rewrite True_emp right_id. Qed.
Lemma impl_wand_1 P Q : (P → Q) ⊢ P -∗ Q.
Proof. apply wand_intro_l. by rewrite sep_and impl_elim_r. Qed.
End bi_affine.
Lemma pure_elim φ Q R : (Q ⊢ ⌜φ⌝) → (φ → Q ⊢ R) → Q ⊢ R.
Proof.
intros HQ HQR. rewrite -(idemp (∧)%I Q) {1}HQ.
apply impl_elim_l', pure_elim'⇒ ?. apply impl_intro_l.
rewrite and_elim_l; auto.
Qed.
Lemma pure_mono φ1 φ2 : (φ1 → φ2) → ⌜φ1⌝ ⊢ ⌜φ2⌝.
Proof. auto using pure_elim', pure_intro. Qed.
Global Instance pure_mono' : Proper (impl ==> (⊢)) (@bi_pure PROP).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Global Instance pure_flip_mono : Proper (flip impl ==> flip (⊢)) (@bi_pure PROP).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Lemma pure_iff φ1 φ2 : (φ1 ↔ φ2) → ⌜φ1⌝ ⊣⊢ ⌜φ2⌝.
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Lemma pure_elim_l φ Q R : (φ → Q ⊢ R) → ⌜φ⌝ ∧ Q ⊢ R.
Proof. intros; apply pure_elim with φ; eauto. Qed.
Lemma pure_elim_r φ Q R : (φ → Q ⊢ R) → Q ∧ ⌜φ⌝ ⊢ R.
Proof. intros; apply pure_elim with φ; eauto. Qed.
Lemma pure_True (φ : Prop) : φ → ⌜φ⌝ ⊣⊢ True.
Proof. intros; apply (anti_symm _); auto. Qed.
Lemma pure_False (φ : Prop) : ¬φ → ⌜φ⌝ ⊣⊢ False.
Proof. intros; apply (anti_symm _); eauto using pure_mono. Qed.
Lemma pure_and φ1 φ2 : ⌜φ1 ∧ φ2⌝ ⊣⊢ ⌜φ1⌝ ∧ ⌜φ2⌝.
Proof.
apply (anti_symm _).
- apply and_intro; apply pure_mono; tauto.
- eapply (pure_elim φ1); [auto|]=> ?. rewrite and_elim_r. auto using pure_mono.
Qed.
Lemma pure_or φ1 φ2 : ⌜φ1 ∨ φ2⌝ ⊣⊢ ⌜φ1⌝ ∨ ⌜φ2⌝.
Proof.
apply (anti_symm _).
- eapply pure_elim⇒ // -[?|?]; auto using pure_mono.
- apply or_elim; eauto using pure_mono.
Qed.
Lemma pure_impl_1 φ1 φ2 : ⌜φ1 → φ2⌝ ⊢ (⌜φ1⌝ → ⌜φ2⌝).
Proof. apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver. Qed.
Lemma pure_impl_2 `{!BiPureForall PROP} φ1 φ2 : (⌜φ1⌝ → ⌜φ2⌝) ⊢ ⌜φ1 → φ2⌝.
Proof.
rewrite -pure_forall_2. apply forall_intro⇒ ?.
by rewrite -(left_id True bi_and (_→_))%I (pure_True φ1) // impl_elim_r.
Qed.
Lemma pure_impl `{!BiPureForall PROP} φ1 φ2 : ⌜φ1 → φ2⌝ ⊣⊢ (⌜φ1⌝ → ⌜φ2⌝).
Proof. apply (anti_symm _); auto using pure_impl_1, pure_impl_2. Qed.
Lemma pure_forall_1 {A} (φ : A → Prop) : ⌜∀ x, φ x⌝ ⊢ ∀ x, ⌜φ x⌝.
Proof. apply forall_intro⇒ x. eauto using pure_mono. Qed.
Lemma pure_forall `{!BiPureForall PROP} {A} (φ : A → Prop) :
⌜∀ x, φ x⌝ ⊣⊢ ∀ x, ⌜φ x⌝.
Proof. apply (anti_symm _); auto using pure_forall_1, pure_forall_2. Qed.
Lemma pure_exist {A} (φ : A → Prop) : ⌜∃ x, φ x⌝ ⊣⊢ ∃ x, ⌜φ x⌝.
Proof.
apply (anti_symm _).
- eapply pure_elim⇒ // -[x ?]. rewrite -(exist_intro x); auto using pure_mono.
- apply exist_elim⇒ x. eauto using pure_mono.
Qed.
Lemma bi_pure_forall_em : (∀ φ : Prop, φ ∨ ¬φ) → BiPureForall PROP.
Proof.
intros Hem A φ. destruct (Hem (∃ a, ¬φ a)) as [[a Hφ]|Hφ].
{ rewrite (forall_elim a). by apply pure_elim'. }
apply pure_intro⇒ a. destruct (Hem (φ a)); naive_solver.
Qed.
Lemma pure_impl_forall φ P : (⌜φ⌝ → P) ⊣⊢ (∀ _ : φ, P).
Proof.
apply (anti_symm _).
- apply forall_intro⇒ ?. by rewrite pure_True // left_id.
- apply impl_intro_l, pure_elim_l⇒ Hφ. by rewrite (forall_elim Hφ).
Qed.
Lemma pure_alt φ : ⌜φ⌝ ⊣⊢ ∃ _ : φ, True.
Proof.
apply (anti_symm _).
- eapply pure_elim; eauto⇒ H. rewrite -(exist_intro H); auto.
- by apply exist_elim, pure_intro.
Qed.
Lemma pure_wand_forall φ P `{!Absorbing P} : (⌜φ⌝ -∗ P) ⊣⊢ (∀ _ : φ, P).
Proof.
apply (anti_symm _).
- apply forall_intro⇒ Hφ.
rewrite -(pure_intro φ emp) // emp_wand //.
- apply wand_intro_l, wand_elim_l', pure_elim'⇒ Hφ.
apply wand_intro_l. rewrite (forall_elim Hφ) comm. by apply absorbing.
Qed.
Lemma decide_bi_True φ `{!Decision φ} (P : PROP) :
(if decide φ then P else True) ⊣⊢ (⌜φ⌝ → P).
Proof.
destruct (decide _).
- by rewrite pure_True // True_impl.
- by rewrite (pure_False φ) // False_impl.
Qed.
Lemma decide_emp `{!BiAffine PROP} φ `{!Decision φ} (P : PROP) :
(if decide φ then P else emp) ⊣⊢ (⌜φ⌝ → P).
Proof.
rewrite -decide_bi_True. destruct (decide _); [done|]. by rewrite True_emp.
Qed.
Local Hint Resolve persistently_mono : core.
Global Instance persistently_mono' : Proper ((⊢) ==> (⊢)) (@bi_persistently PROP).
Proof. intros P Q; apply persistently_mono. Qed.
Global Instance persistently_flip_mono' :
Proper (flip (⊢) ==> flip (⊢)) (@bi_persistently PROP).
Proof. intros P Q; apply persistently_mono. Qed.
Global Instance persistently_persistent P : Persistent (<pers> P).
Proof. by rewrite /Persistent -persistently_idemp_2. Qed.
Lemma absorbingly_elim_persistently P : <absorb> <pers> P ⊣⊢ <pers> P.
Proof.
apply (anti_symm _), absorbingly_intro.
by rewrite /bi_absorbingly comm persistently_absorbing.
Qed.
Global Instance persistently_absorbing P : Absorbing (<pers> P).
Proof. by rewrite /Absorbing absorbingly_elim_persistently. Qed.
Lemma persistently_forall_1 {A} (Ψ : A → PROP) :
<pers> (∀ a, Ψ a) ⊢ ∀ a, <pers> (Ψ a).
Proof. apply forall_intro⇒ x. by rewrite (forall_elim x). Qed.
Lemma persistently_forall `{!BiPersistentlyForall PROP} {A} (Ψ : A → PROP) :
<pers> (∀ a, Ψ a) ⊣⊢ ∀ a, <pers> (Ψ a).
Proof.
apply (anti_symm _); auto using persistently_forall_1, persistently_forall_2.
Qed.
Lemma persistently_exist {A} (Ψ : A → PROP) :
<pers> (∃ a, Ψ a) ⊣⊢ ∃ a, <pers> (Ψ a).
Proof.
apply (anti_symm _); first by auto using persistently_exist_1.
apply exist_elim⇒ x. by rewrite (exist_intro x).
Qed.
Lemma persistently_and P Q : <pers> (P ∧ Q) ⊣⊢ <pers> P ∧ <pers> Q.
Proof. apply (anti_symm _); by auto using persistently_and_2. Qed.
Lemma persistently_or P Q : <pers> (P ∨ Q) ⊣⊢ <pers> P ∨ <pers> Q.
Proof. rewrite !or_alt persistently_exist. by apply exist_proper⇒ -[]. Qed.
Lemma persistently_impl P Q : <pers> (P → Q) ⊢ <pers> P → <pers> Q.
Proof.
apply impl_intro_l; rewrite -persistently_and.
apply persistently_mono, impl_elim with P; auto.
Qed.
Lemma persistently_emp_intro P : P ⊢ <pers> emp.
Proof.
rewrite -(left_id emp%I bi_sep P).
by rewrite {1}persistently_emp_2 sep_elim_l.
Qed.
Lemma persistently_True_emp : <pers> True ⊣⊢ <pers> emp.
Proof. apply (anti_symm _); auto using persistently_emp_intro. Qed.
Lemma persistently_True : <pers> True ⊣⊢ True.
Proof.
apply (anti_symm _); auto.
rewrite persistently_True_emp. apply persistently_emp_intro.
Qed.
Lemma persistently_and_emp P : <pers> P ⊣⊢ <pers> (emp ∧ P).
Proof.
apply (anti_symm (⊢)); last by rewrite and_elim_r.
rewrite persistently_and. apply and_intro; last done.
apply persistently_emp_intro.
Qed.
Lemma persistently_and_sep_elim_emp P Q : <pers> P ∧ Q ⊢ (emp ∧ P) ∗ Q.
Proof.
rewrite persistently_and_emp.
apply persistently_and_sep_elim.
Qed.
Lemma persistently_and_sep_assoc P Q R : <pers> P ∧ (Q ∗ R) ⊣⊢ (<pers> P ∧ Q) ∗ R.
Proof.
apply (anti_symm (⊢)).
- rewrite {1}persistently_idemp_2 persistently_and_sep_elim_emp assoc.
apply sep_mono_l, and_intro.
+ by rewrite and_elim_r sep_elim_l.
+ by rewrite and_elim_l left_id.
- apply and_intro.
+ by rewrite and_elim_l sep_elim_l.
+ by rewrite and_elim_r.
Qed.
Lemma persistently_and_emp_elim P : emp ∧ <pers> P ⊢ P.
Proof. by rewrite comm persistently_and_sep_elim_emp right_id and_elim_r. Qed.
Lemma persistently_into_absorbingly P : <pers> P ⊢ <absorb> P.
Proof.
rewrite -(right_id True%I _ (<pers> _)%I) -{1}(emp_sep True%I).
rewrite persistently_and_sep_assoc.
rewrite (comm bi_and) persistently_and_emp_elim comm //.
Qed.
Lemma persistently_elim P `{!Absorbing P} : <pers> P ⊢ P.
Proof. by rewrite persistently_into_absorbingly absorbing_absorbingly. Qed.
Lemma persistently_idemp_1 P : <pers> <pers> P ⊢ <pers> P.
Proof.
by rewrite persistently_into_absorbingly absorbingly_elim_persistently.
Qed.
Lemma persistently_idemp P : <pers> <pers> P ⊣⊢ <pers> P.
Proof.
apply (anti_symm _); auto using persistently_idemp_1, persistently_idemp_2.
Qed.
Lemma persistently_intro' P Q : (<pers> P ⊢ Q) → <pers> P ⊢ <pers> Q.
Proof. intros <-. apply persistently_idemp_2. Qed.
Lemma persistently_pure φ : <pers> ⌜φ⌝ ⊣⊢ ⌜φ⌝.
Proof.
apply (anti_symm _).
{ by rewrite persistently_into_absorbingly absorbingly_pure. }
apply pure_elim'⇒ Hφ. rewrite -persistently_True.
auto using persistently_mono, pure_intro.
Qed.
Lemma persistently_sep_dup P : <pers> P ⊣⊢ <pers> P ∗ <pers> P.
Proof.
apply (anti_symm _).
- rewrite -{1}(idemp bi_and (<pers> _)%I).
by rewrite -{2}(emp_sep (<pers> _)%I)
persistently_and_sep_assoc and_elim_l.
- by rewrite sep_elim_l.
Qed.
Lemma persistently_and_sep_l_1 P Q : <pers> P ∧ Q ⊢ <pers> P ∗ Q.
Proof.
by rewrite -{1}(emp_sep Q) persistently_and_sep_assoc and_elim_l.
Qed.
Lemma persistently_and_sep_r_1 P Q : P ∧ <pers> Q ⊢ P ∗ <pers> Q.
Proof. by rewrite !(comm _ P) persistently_and_sep_l_1. Qed.
Lemma persistently_and_sep P Q : <pers> (P ∧ Q) ⊢ <pers> (P ∗ Q).
Proof.
rewrite persistently_and.
rewrite -{1}persistently_idemp -persistently_and -{1}(emp_sep Q).
by rewrite persistently_and_sep_assoc (comm bi_and) persistently_and_emp_elim.
Qed.
Lemma persistently_affinely_elim P : <pers> <affine> P ⊣⊢ <pers> P.
Proof.
by rewrite /bi_affinely persistently_and -persistently_True_emp
persistently_pure left_id.
Qed.
Lemma and_sep_persistently P Q : <pers> P ∧ <pers> Q ⊣⊢ <pers> P ∗ <pers> Q.
Proof.
apply (anti_symm _); auto using persistently_and_sep_l_1.
apply and_intro.
- by rewrite sep_elim_l.
- by rewrite sep_elim_r.
Qed.
Lemma persistently_sep_2 P Q : <pers> P ∗ <pers> Q ⊢ <pers> (P ∗ Q).
Proof.
by rewrite -persistently_and_sep persistently_and -and_sep_persistently.
Qed.
Lemma persistently_sep `{!BiPositive PROP} P Q :
<pers> (P ∗ Q) ⊣⊢ <pers> P ∗ <pers> Q.
Proof.
apply (anti_symm _); auto using persistently_sep_2.
rewrite -persistently_affinely_elim affinely_sep -and_sep_persistently.
apply and_intro.
- by rewrite (affinely_elim_emp Q) right_id affinely_elim.
- by rewrite (affinely_elim_emp P) left_id affinely_elim.
Qed.
Lemma persistently_alt_fixpoint P :
<pers> P ⊣⊢ P ∗ <pers> P.
Proof.
apply (anti_symm _).
- rewrite -persistently_and_sep_elim. apply and_intro; done.
- by rewrite sep_elim_r.
Qed.
Lemma persistently_alt_fixpoint' P :
<pers> P ⊣⊢ <affine> P ∗ <pers> P.
Proof.
rewrite -{1}persistently_affinely_elim {1}persistently_alt_fixpoint
persistently_affinely_elim //.
Qed.
Lemma persistently_wand P Q : <pers> (P -∗ Q) ⊢ <pers> P -∗ <pers> Q.
Proof. apply wand_intro_r. by rewrite persistently_sep_2 wand_elim_l. Qed.
Lemma persistently_entails_l P Q : (P ⊢ <pers> Q) → P ⊢ <pers> Q ∗ P.
Proof. intros; rewrite -persistently_and_sep_l_1; auto. Qed.
Lemma persistently_entails_r P Q : (P ⊢ <pers> Q) → P ⊢ P ∗ <pers> Q.
Proof. intros; rewrite -persistently_and_sep_r_1; auto. Qed.
Lemma persistently_impl_wand_2 P Q : <pers> (P -∗ Q) ⊢ <pers> (P → Q).
Proof.
apply persistently_intro', impl_intro_r.
rewrite -{2}(emp_sep P) persistently_and_sep_assoc.
by rewrite (comm bi_and) persistently_and_emp_elim wand_elim_l.
Qed.
Lemma impl_wand_persistently_2 P Q : (<pers> P -∗ Q) ⊢ (<pers> P → Q).
Proof. apply impl_intro_l. by rewrite persistently_and_sep_l_1 wand_elim_r. Qed.
Section persistently_affine_bi.
Context `{!BiAffine PROP}.
Lemma persistently_emp : <pers> emp ⊣⊢ emp.
Proof. by rewrite -!True_emp persistently_pure. Qed.
Lemma persistently_and_sep_l P Q : <pers> P ∧ Q ⊣⊢ <pers> P ∗ Q.
Proof.
apply (anti_symm (⊢));
eauto using persistently_and_sep_l_1, sep_and with typeclass_instances.
Qed.
Lemma persistently_and_sep_r P Q : P ∧ <pers> Q ⊣⊢ P ∗ <pers> Q.
Proof. by rewrite !(comm _ P) persistently_and_sep_l. Qed.
Lemma persistently_impl_wand P Q : <pers> (P → Q) ⊣⊢ <pers> (P -∗ Q).
Proof.
apply (anti_symm (⊢)); auto using persistently_impl_wand_2.
apply persistently_intro', wand_intro_l.
by rewrite -persistently_and_sep_r persistently_elim impl_elim_r.
Qed.
Lemma impl_wand_persistently P Q : (<pers> P → Q) ⊣⊢ (<pers> P -∗ Q).
Proof.
apply (anti_symm (⊢)).
- by rewrite -impl_wand_1.
- apply impl_wand_persistently_2.
Qed.
Lemma wand_alt P Q : (P -∗ Q) ⊣⊢ ∃ R, R ∗ <pers> (P ∗ R → Q).
Proof.
apply (anti_symm (⊢)).
- rewrite -(right_id True%I bi_sep (P -∗ Q)%I) -(exist_intro (P -∗ Q)%I).
apply sep_mono_r. rewrite -persistently_pure.
apply persistently_intro', impl_intro_l.
by rewrite wand_elim_r persistently_pure right_id.
- apply exist_elim⇒ R. apply wand_intro_l.
rewrite assoc -persistently_and_sep_r.
by rewrite persistently_elim impl_elim_r.
Qed.
End persistently_affine_bi.
Global Instance pure_persistent φ : Persistent (PROP:=PROP) ⌜φ⌝.
Proof. by rewrite /Persistent persistently_pure. Qed.
Global Instance emp_persistent : Persistent (PROP:=PROP) emp.
Proof. rewrite /Persistent. apply persistently_emp_intro. Qed.
Global Instance and_persistent P Q :
Persistent P → Persistent Q → Persistent (P ∧ Q).
Proof. intros. by rewrite /Persistent persistently_and -!persistent. Qed.
Global Instance or_persistent P Q :
Persistent P → Persistent Q → Persistent (P ∨ Q).
Proof. intros. by rewrite /Persistent persistently_or -!persistent. Qed.
Global Instance forall_persistent `{!BiPersistentlyForall PROP} {A} (Ψ : A → PROP) :
(∀ x, Persistent (Ψ x)) → Persistent (∀ x, Ψ x).
Proof.
intros. rewrite /Persistent persistently_forall.
apply forall_mono⇒ x. by rewrite -!persistent.
Qed.
Global Instance exist_persistent {A} (Ψ : A → PROP) :
(∀ x, Persistent (Ψ x)) → Persistent (∃ x, Ψ x).
Proof.
intros. rewrite /Persistent persistently_exist.
apply exist_mono⇒ x. by rewrite -!persistent.
Qed.
Global Instance sep_persistent P Q :
Persistent P → Persistent Q → Persistent (P ∗ Q).
Proof. intros. by rewrite /Persistent -persistently_sep_2 -!persistent. Qed.
Global Instance affinely_persistent P : Persistent P → Persistent (<affine> P).
Proof. rewrite /bi_affinely. apply _. Qed.
Global Instance absorbingly_persistent P : Persistent P → Persistent (<absorb> P).
Proof. rewrite /bi_absorbingly. apply _. Qed.
Global Instance from_option_persistent {A} P (Ψ : A → PROP) (mx : option A) :
(∀ x, Persistent (Ψ x)) → Persistent P → Persistent (from_option Ψ P mx).
Proof. destruct mx; apply _. Qed.
Global Instance intuitionistically_ne : NonExpansive (@bi_intuitionistically PROP).
Proof. solve_proper. Qed.
Global Instance intuitionistically_proper :
Proper ((⊣⊢) ==> (⊣⊢)) (@bi_intuitionistically PROP).
Proof. solve_proper. Qed.
Global Instance intuitionistically_mono' :
Proper ((⊢) ==> (⊢)) (@bi_intuitionistically PROP).
Proof. solve_proper. Qed.
Global Instance intuitionistically_flip_mono' :
Proper (flip (⊢) ==> flip (⊢)) (@bi_intuitionistically PROP).
Proof. solve_proper. Qed.
Global Instance intuitionistically_affine P : Affine (□ P).
Proof. rewrite /bi_intuitionistically. apply _. Qed.
Global Instance intuitionistically_persistent P : Persistent (□ P).
Proof. rewrite /bi_intuitionistically. apply _. Qed.
Lemma intuitionistically_def P : (□ P)%I = (<affine> <pers> P)%I.
Proof. done. Qed.
Lemma intuitionistically_elim P : □ P ⊢ P.
Proof. apply persistently_and_emp_elim. Qed.
Lemma intuitionistically_elim_emp P : □ P ⊢ emp.
Proof. rewrite /bi_intuitionistically affinely_elim_emp //. Qed.
Lemma intuitionistically_intro' P Q : (□ P ⊢ Q) → □ P ⊢ □ Q.
Proof.
intros <-. rewrite /bi_intuitionistically.
by rewrite persistently_affinely_elim persistently_idemp.
Qed.
Lemma intuitionistically_emp : □ emp ⊣⊢ emp.
Proof.
by rewrite /bi_intuitionistically -persistently_True_emp persistently_pure
affinely_True_emp.
Qed.
Lemma intuitionistically_False : □ False ⊣⊢ False.
Proof. by rewrite /bi_intuitionistically persistently_pure affinely_False. Qed.
Lemma intuitionistically_True_emp : □ True ⊣⊢ emp.
Proof.
rewrite -intuitionistically_emp /bi_intuitionistically
persistently_True_emp //.
Qed.
Lemma intuitionistically_and P Q : □ (P ∧ Q) ⊣⊢ □ P ∧ □ Q.
Proof. by rewrite /bi_intuitionistically persistently_and affinely_and. Qed.
Lemma intuitionistically_forall {A} (Φ : A → PROP) : □ (∀ x, Φ x) ⊢ ∀ x, □ Φ x.
Proof.
by rewrite /bi_intuitionistically persistently_forall_1 affinely_forall.
Qed.
Lemma intuitionistically_or P Q : □ (P ∨ Q) ⊣⊢ □ P ∨ □ Q.
Proof. by rewrite /bi_intuitionistically persistently_or affinely_or. Qed.
Lemma intuitionistically_exist {A} (Φ : A → PROP) : □ (∃ x, Φ x) ⊣⊢ ∃ x, □ Φ x.
Proof. by rewrite /bi_intuitionistically persistently_exist affinely_exist. Qed.
Lemma intuitionistically_sep_2 P Q : □ P ∗ □ Q ⊢ □ (P ∗ Q).
Proof. by rewrite /bi_intuitionistically affinely_sep_2 persistently_sep_2. Qed.
Lemma intuitionistically_sep `{!BiPositive PROP} P Q : □ (P ∗ Q) ⊣⊢ □ P ∗ □ Q.
Proof. by rewrite /bi_intuitionistically -affinely_sep -persistently_sep. Qed.
Lemma intuitionistically_idemp P : □ □ P ⊣⊢ □ P.
Proof.
rewrite /bi_intuitionistically.
by rewrite persistently_affinely_elim persistently_idemp.
Qed.
Lemma intuitionistically_into_persistently_1 P : □ P ⊢ <pers> P.
Proof. rewrite /bi_intuitionistically affinely_elim //. Qed.
Lemma intuitionistically_persistently_elim P : □ <pers> P ⊣⊢ □ P.
Proof. rewrite /bi_intuitionistically persistently_idemp //. Qed.
Lemma intuitionistic_intuitionistically P :
Affine P → Persistent P → □ P ⊣⊢ P.
Proof.
intros. apply (anti_symm _); first exact: intuitionistically_elim.
rewrite -{1}(affine_affinely P) {1}(persistent P) //.
Qed.
Lemma intuitionistically_affinely P : □ P ⊢ <affine> P.
Proof.
rewrite /bi_intuitionistically /bi_affinely. apply and_intro.
- rewrite and_elim_l //.
- apply persistently_and_emp_elim.
Qed.
Lemma intuitionistically_affinely_elim P : □ <affine> P ⊣⊢ □ P.
Proof. rewrite /bi_intuitionistically persistently_affinely_elim //. Qed.
Lemma persistently_and_intuitionistically_sep_l P Q : <pers> P ∧ Q ⊣⊢ □ P ∗ Q.
Proof.
rewrite /bi_intuitionistically. apply (anti_symm _).
- by rewrite /bi_affinely -(comm bi_and (<pers> P)%I)
-persistently_and_sep_assoc left_id.
- apply and_intro.
+ by rewrite affinely_elim sep_elim_l.
+ by rewrite affinely_elim_emp left_id.
Qed.
Lemma persistently_and_intuitionistically_sep_r P Q : P ∧ <pers> Q ⊣⊢ P ∗ □ Q.
Proof. by rewrite !(comm _ P) persistently_and_intuitionistically_sep_l. Qed.
Lemma and_sep_intuitionistically P Q : □ P ∧ □ Q ⊣⊢ □ P ∗ □ Q.
Proof.
rewrite -persistently_and_intuitionistically_sep_l.
by rewrite -affinely_and affinely_and_r.
Qed.
Lemma intuitionistically_sep_dup P : □ P ⊣⊢ □ P ∗ □ P.
Proof.
by rewrite -persistently_and_intuitionistically_sep_l affinely_and_r idemp.
Qed.
Lemma impl_wand_intuitionistically P Q : (<pers> P → Q) ⊣⊢ (□ P -∗ Q).
Proof.
apply (anti_symm (⊢)).
- apply wand_intro_l.
by rewrite -persistently_and_intuitionistically_sep_l impl_elim_r.
- apply impl_intro_l.
by rewrite persistently_and_intuitionistically_sep_l wand_elim_r.
Qed.
Lemma intuitionistically_alt_fixpoint P :
□ P ⊣⊢ emp ∧ (P ∗ □ P).
Proof.
apply (anti_symm (⊢)).
- apply and_intro; first exact: affinely_elim_emp.
rewrite {1}intuitionistically_sep_dup. apply sep_mono; last done.
apply intuitionistically_elim.
- apply and_mono; first done.
rewrite /bi_intuitionistically {2}persistently_alt_fixpoint.
apply sep_mono; first done. apply and_elim_r.
Qed.
Lemma intuitionistically_impl_wand_2 P Q : □ (P -∗ Q) ⊢ □ (P → Q).
Proof. by rewrite /bi_intuitionistically persistently_impl_wand_2. Qed.
Lemma impl_alt P Q : (P → Q) ⊣⊢ ∃ R, R ∧ <pers> (P ∧ R -∗ Q).
Proof.
apply (anti_symm (⊢)).
- rewrite -(right_id True%I bi_and (P → Q)%I) -(exist_intro (P → Q)%I).
apply and_mono_r. rewrite impl_elim_r -entails_wand //.
apply persistently_emp_intro.
- apply exist_elim⇒ R. apply impl_intro_l.
rewrite assoc persistently_and_intuitionistically_sep_r.
by rewrite intuitionistically_elim wand_elim_r.
Qed.
Section bi_affine_intuitionistically.
Context `{!BiAffine PROP}.
Lemma intuitionistically_into_persistently P : □ P ⊣⊢ <pers> P.
Proof. rewrite /bi_intuitionistically affine_affinely //. Qed.
End bi_affine_intuitionistically.
Global Instance affinely_if_ne p : NonExpansive (@bi_affinely_if PROP p).
Proof. solve_proper. Qed.
Global Instance affinely_if_proper p :
Proper ((⊣⊢) ==> (⊣⊢)) (@bi_affinely_if PROP p).
Proof. solve_proper. Qed.
Global Instance affinely_if_mono' p :
Proper ((⊢) ==> (⊢)) (@bi_affinely_if PROP p).
Proof. solve_proper. Qed.
Global Instance affinely_if_flip_mono' p :
Proper (flip (⊢) ==> flip (⊢)) (@bi_affinely_if PROP p).
Proof. solve_proper. Qed.
Global Instance affinely_if_affine p P : Affine P → Affine (<affine>?p P).
Proof. destruct p; simpl; apply _. Qed.
Global Instance affinely_if_persistent p P :
Persistent P → Persistent (<affine>?p P).
Proof. destruct p; simpl; apply _. Qed.
Lemma affinely_if_mono p P Q : (P ⊢ Q) → <affine>?p P ⊢ <affine>?p Q.
Proof. by intros →. Qed.
Lemma affinely_if_flag_mono (p q : bool) P :
(q → p) → <affine>?p P ⊢ <affine>?q P.
Proof. destruct p, q; naive_solver auto using affinely_elim. Qed.
Lemma affinely_if_elim p P : <affine>?p P ⊢ P.
Proof. destruct p; simpl; auto using affinely_elim. Qed.
Lemma affinely_affinely_if p P : <affine> P ⊢ <affine>?p P.
Proof. destruct p; simpl; auto using affinely_elim. Qed.
Lemma affinely_if_intro' p P Q :
(<affine>?p P ⊢ Q) → <affine>?p P ⊢ <affine>?p Q.
Proof. destruct p; simpl; auto using affinely_intro'. Qed.
Lemma affinely_if_emp p : <affine>?p emp ⊣⊢ emp.
Proof. destruct p; simpl; auto using affinely_emp. Qed.
Lemma affinely_if_and p P Q : <affine>?p (P ∧ Q) ⊣⊢ <affine>?p P ∧ <affine>?p Q.
Proof. destruct p; simpl; auto using affinely_and. Qed.
Lemma affinely_if_or p P Q : <affine>?p (P ∨ Q) ⊣⊢ <affine>?p P ∨ <affine>?p Q.
Proof. destruct p; simpl; auto using affinely_or. Qed.
Lemma affinely_if_exist {A} p (Ψ : A → PROP) :
<affine>?p (∃ a, Ψ a) ⊣⊢ ∃ a, <affine>?p (Ψ a).
Proof. destruct p; simpl; auto using affinely_exist. Qed.
Lemma affinely_if_sep_2 p P Q : <affine>?p P ∗ <affine>?p Q ⊢ <affine>?p (P ∗ Q).
Proof. destruct p; simpl; auto using affinely_sep_2. Qed.
Lemma affinely_if_sep `{!BiPositive PROP} p P Q :
<affine>?p (P ∗ Q) ⊣⊢ <affine>?p P ∗ <affine>?p Q.
Proof. destruct p; simpl; auto using affinely_sep. Qed.
Lemma affinely_if_idemp p P : <affine>?p <affine>?p P ⊣⊢ <affine>?p P.
Proof. destruct p; simpl; auto using affinely_idemp. Qed.
Lemma affinely_if_and_l p P Q : <affine>?p P ∧ Q ⊣⊢ <affine>?p (P ∧ Q).
Proof. destruct p; simpl; auto using affinely_and_l. Qed.
Lemma affinely_if_and_r p P Q : P ∧ <affine>?p Q ⊣⊢ <affine>?p (P ∧ Q).
Proof. destruct p; simpl; auto using affinely_and_r. Qed.
Lemma affinely_if_and_lr p P Q : <affine>?p P ∧ Q ⊣⊢ P ∧ <affine>?p Q.
Proof. destruct p; simpl; auto using affinely_and_lr. Qed.
Global Instance absorbingly_if_ne p : NonExpansive (@bi_absorbingly_if PROP p).
Proof. solve_proper. Qed.
Global Instance absorbingly_if_proper p :
Proper ((⊣⊢) ==> (⊣⊢)) (@bi_absorbingly_if PROP p).
Proof. solve_proper. Qed.
Global Instance absorbingly_if_mono' p :
Proper ((⊢) ==> (⊢)) (@bi_absorbingly_if PROP p).
Proof. solve_proper. Qed.
Global Instance absorbingly_if_flip_mono' p :
Proper (flip (⊢) ==> flip (⊢)) (@bi_absorbingly_if PROP p).
Proof. solve_proper. Qed.
Global Instance absorbingly_if_persistent p P :
Persistent P → Persistent (<absorb>?p P).
Proof. destruct p; simpl; apply _. Qed.
Lemma absorbingly_if_absorbingly p P : <absorb>?p P ⊢ <absorb> P.
Proof. destruct p; simpl; auto using absorbingly_intro. Qed.
Lemma absorbingly_if_intro p P : P ⊢ <absorb>?p P.
Proof. destruct p; simpl; auto using absorbingly_intro. Qed.
Lemma absorbingly_if_mono p P Q : (P ⊢ Q) → <absorb>?p P ⊢ <absorb>?p Q.
Proof. by intros →. Qed.
Lemma absorbingly_if_flag_mono (p q : bool) P :
(p → q) → <absorb>?p P ⊢ <absorb>?q P.
Proof. destruct p, q; try naive_solver auto using absorbingly_intro. Qed.
Lemma absorbingly_if_idemp p P : <absorb>?p <absorb>?p P ⊣⊢ <absorb>?p P.
Proof. destruct p; simpl; auto using absorbingly_idemp. Qed.
Lemma absorbingly_if_pure p φ : <absorb>?p ⌜ φ ⌝ ⊣⊢ ⌜ φ ⌝.
Proof. destruct p; simpl; auto using absorbingly_pure. Qed.
Lemma absorbingly_if_or p P Q :
<absorb>?p (P ∨ Q) ⊣⊢ <absorb>?p P ∨ <absorb>?p Q.
Proof. destruct p; simpl; auto using absorbingly_or. Qed.
Lemma absorbingly_if_and_1 p P Q :
<absorb>?p (P ∧ Q) ⊢ <absorb>?p P ∧ <absorb>?p Q.
Proof. destruct p; simpl; auto using absorbingly_and_1. Qed.
Lemma absorbingly_if_forall {A} p (Φ : A → PROP) :
<absorb>?p (∀ a, Φ a) ⊢ ∀ a, <absorb>?p (Φ a).
Proof. destruct p; simpl; auto using absorbingly_forall. Qed.
Lemma absorbingly_if_exist {A} p (Φ : A → PROP) :
<absorb>?p (∃ a, Φ a) ⊣⊢ ∃ a, <absorb>?p (Φ a).
Proof. destruct p; simpl; auto using absorbingly_exist. Qed.
Lemma absorbingly_if_sep p P Q :
<absorb>?p (P ∗ Q) ⊣⊢ <absorb>?p P ∗ <absorb>?p Q.
Proof. destruct p; simpl; auto using absorbingly_sep. Qed.
Lemma absorbingly_if_wand p P Q :
<absorb>?p (P -∗ Q) ⊢ <absorb>?p P -∗ <absorb>?p Q.
Proof. destruct p; simpl; auto using absorbingly_wand. Qed.
Lemma absorbingly_if_sep_l p P Q : <absorb>?p P ∗ Q ⊣⊢ <absorb>?p (P ∗ Q).
Proof. destruct p; simpl; auto using absorbingly_sep_l. Qed.
Lemma absorbingly_if_sep_r p P Q : P ∗ <absorb>?p Q ⊣⊢ <absorb>?p (P ∗ Q).
Proof. destruct p; simpl; auto using absorbingly_sep_r. Qed.
Lemma absorbingly_if_sep_lr p P Q : <absorb>?p P ∗ Q ⊣⊢ P ∗ <absorb>?p Q.
Proof. destruct p; simpl; auto using absorbingly_sep_lr. Qed.
Lemma affinely_if_absorbingly_if_elim `{!BiPositive PROP} p P :
<affine>?p <absorb>?p P ⊣⊢ <affine>?p P.
Proof. destruct p; simpl; auto using affinely_absorbingly_elim. Qed.
Global Instance persistently_if_ne p : NonExpansive (@bi_persistently_if PROP p).
Proof. solve_proper. Qed.
Global Instance persistently_if_proper p :
Proper ((⊣⊢) ==> (⊣⊢)) (@bi_persistently_if PROP p).
Proof. solve_proper. Qed.
Global Instance persistently_if_mono' p :
Proper ((⊢) ==> (⊢)) (@bi_persistently_if PROP p).
Proof. solve_proper. Qed.
Global Instance persistently_if_flip_mono' p :
Proper (flip (⊢) ==> flip (⊢)) (@bi_persistently_if PROP p).
Proof. solve_proper. Qed.
Global Instance persistently_if_absorbing P p :
Absorbing P → Absorbing (<pers>?p P).
Proof. intros; destruct p; simpl; apply _. Qed.
Lemma persistently_if_mono p P Q : (P ⊢ Q) → <pers>?p P ⊢ <pers>?p Q.
Proof. by intros →. Qed.
Lemma persistently_if_pure p φ : <pers>?p ⌜φ⌝ ⊣⊢ ⌜φ⌝.
Proof. destruct p; simpl; auto using persistently_pure. Qed.
Lemma persistently_if_and p P Q : <pers>?p (P ∧ Q) ⊣⊢ <pers>?p P ∧ <pers>?p Q.
Proof. destruct p; simpl; auto using persistently_and. Qed.
Lemma persistently_if_or p P Q : <pers>?p (P ∨ Q) ⊣⊢ <pers>?p P ∨ <pers>?p Q.
Proof. destruct p; simpl; auto using persistently_or. Qed.
Lemma persistently_if_exist {A} p (Ψ : A → PROP) :
(<pers>?p (∃ a, Ψ a)) ⊣⊢ ∃ a, <pers>?p (Ψ a).
Proof. destruct p; simpl; auto using persistently_exist. Qed.
Lemma persistently_if_sep_2 p P Q : <pers>?p P ∗ <pers>?p Q ⊢ <pers>?p (P ∗ Q).
Proof. destruct p; simpl; auto using persistently_sep_2. Qed.
Lemma persistently_if_sep `{!BiPositive PROP} p P Q :
<pers>?p (P ∗ Q) ⊣⊢ <pers>?p P ∗ <pers>?p Q.
Proof. destruct p; simpl; auto using persistently_sep. Qed.
Lemma persistently_if_idemp p P : <pers>?p <pers>?p P ⊣⊢ <pers>?p P.
Proof. destruct p; simpl; auto using persistently_idemp. Qed.
Global Instance intuitionistically_if_ne p :
NonExpansive (@bi_intuitionistically_if PROP p).
Proof. solve_proper. Qed.
Global Instance intuitionistically_if_proper p :
Proper ((⊣⊢) ==> (⊣⊢)) (@bi_intuitionistically_if PROP p).
Proof. solve_proper. Qed.
Global Instance intuitionistically_if_mono' p :
Proper ((⊢) ==> (⊢)) (@bi_intuitionistically_if PROP p).
Proof. solve_proper. Qed.
Global Instance intuitionistically_if_flip_mono' p :
Proper (flip (⊢) ==> flip (⊢)) (@bi_intuitionistically_if PROP p).
Proof. solve_proper. Qed.
Global Instance intuitionistically_if_affine p P : Affine P → Affine (□?p P).
Proof. destruct p; simpl; apply _. Qed.
Lemma intuitionistically_if_mono p P Q : (P ⊢ Q) → □?p P ⊢ □?p Q.
Proof. by intros →. Qed.
Lemma intuitionistically_if_flag_mono (p q : bool) P :
(q → p) → □?p P ⊢ □?q P.
Proof. destruct p, q; naive_solver auto using intuitionistically_elim. Qed.
Lemma intuitionistically_if_elim p P : □?p P ⊢ P.
Proof. destruct p; simpl; auto using intuitionistically_elim. Qed.
Lemma intuitionistically_intuitionistically_if p P : □ P ⊢ □?p P.
Proof. destruct p; simpl; auto using intuitionistically_elim. Qed.
Lemma intuitionistically_if_intro' p P Q : (□?p P ⊢ Q) → □?p P ⊢ □?p Q.
Proof. destruct p; simpl; auto using intuitionistically_intro'. Qed.
Lemma intuitionistically_if_emp p : □?p emp ⊣⊢ emp.
Proof. destruct p; simpl; auto using intuitionistically_emp. Qed.
Lemma intuitionistically_if_False p : □?p False ⊣⊢ False.
Proof. destruct p; simpl; auto using intuitionistically_False. Qed.
Lemma intuitionistically_if_and p P Q : □?p (P ∧ Q) ⊣⊢ □?p P ∧ □?p Q.
Proof. destruct p; simpl; auto using intuitionistically_and. Qed.
Lemma intuitionistically_if_or p P Q : □?p (P ∨ Q) ⊣⊢ □?p P ∨ □?p Q.
Proof. destruct p; simpl; auto using intuitionistically_or. Qed.
Lemma intuitionistically_if_exist {A} p (Ψ : A → PROP) :
(□?p ∃ a, Ψ a) ⊣⊢ ∃ a, □?p Ψ a.
Proof. destruct p; simpl; auto using intuitionistically_exist. Qed.
Lemma intuitionistically_if_sep_2 p P Q : □?p P ∗ □?p Q ⊢ □?p (P ∗ Q).
Proof. destruct p; simpl; auto using intuitionistically_sep_2. Qed.
Lemma intuitionistically_if_sep `{!BiPositive PROP} p P Q :
□?p (P ∗ Q) ⊣⊢ □?p P ∗ □?p Q.
Proof. destruct p; simpl; auto using intuitionistically_sep. Qed.
Lemma intuitionistically_if_idemp p P : □?p □?p P ⊣⊢ □?p P.
Proof. destruct p; simpl; auto using intuitionistically_idemp. Qed.
Lemma intuitionistically_if_unfold p P : □?p P ⊣⊢ <affine>?p <pers>?p P.
Proof. by destruct p. Qed.
Global Instance Persistent_proper : Proper ((≡) ==> iff) (@Persistent PROP).
Proof. solve_proper. Qed.
Lemma persistent_persistently_2 P `{!Persistent P} : P ⊢ <pers> P.
Proof. done. Qed.
Lemma persistent_persistently P `{!Persistent P, !Absorbing P} : <pers> P ⊣⊢ P.
Proof.
apply (anti_symm _); auto using persistent_persistently_2, persistently_elim.
Qed.
Lemma persistently_intro P Q `{!Persistent P} : (P ⊢ Q) → P ⊢ <pers> Q.
Proof. intros HP. by rewrite (persistent P) HP. Qed.
Lemma persistent_and_affinely_sep_l_1 P Q `{!Persistent P} :
P ∧ Q ⊢ <affine> P ∗ Q.
Proof.
rewrite {1}(persistent_persistently_2 P).
rewrite persistently_and_intuitionistically_sep_l.
rewrite intuitionistically_affinely //.
Qed.
Lemma persistent_and_affinely_sep_r_1 P Q `{!Persistent Q} :
P ∧ Q ⊢ P ∗ <affine> Q.
Proof. by rewrite !(comm _ P) persistent_and_affinely_sep_l_1. Qed.
Lemma persistent_and_affinely_sep_l P Q `{!Persistent P, !Absorbing P} :
P ∧ Q ⊣⊢ <affine> P ∗ Q.
Proof.
rewrite -(persistent_persistently P).
by rewrite persistently_and_intuitionistically_sep_l.
Qed.
Lemma persistent_and_affinely_sep_r P Q `{!Persistent Q, !Absorbing Q} :
P ∧ Q ⊣⊢ P ∗ <affine> Q.
Proof.
rewrite -(persistent_persistently Q).
by rewrite persistently_and_intuitionistically_sep_r.
Qed.
Lemma persistent_and_sep_1 P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} :
P ∧ Q ⊢ P ∗ Q.
Proof.
destruct HPQ.
- by rewrite persistent_and_affinely_sep_l_1 affinely_elim.
- by rewrite persistent_and_affinely_sep_r_1 affinely_elim.
Qed.
Lemma persistent_sep_dup P
`{HP : !TCOr (Affine P) (Absorbing P), !Persistent P} :
P ⊣⊢ P ∗ P.
Proof.
destruct HP; last by rewrite -(persistent_persistently P) -persistently_sep_dup.
apply (anti_symm (⊢)).
- by rewrite -{1}(intuitionistic_intuitionistically P)
intuitionistically_sep_dup intuitionistically_elim.
- by rewrite {1}(affine P) left_id.
Qed.
Lemma persistent_entails_l P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ Q ∗ P.
Proof. intros. rewrite -persistent_and_sep_1; auto. Qed.
Lemma persistent_entails_r P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ P ∗ Q.
Proof. intros. rewrite -persistent_and_sep_1; auto. Qed.
Lemma absorbingly_intuitionistically_into_persistently P :
<absorb> □ P ⊣⊢ <pers> P.
Proof.
apply (anti_symm _).
- rewrite intuitionistically_into_persistently_1.
by rewrite absorbingly_elim_persistently.
- rewrite -{1}(idemp bi_and (<pers> _)%I).
rewrite persistently_and_intuitionistically_sep_r.
by rewrite {1} (True_intro (<pers> _)%I).
Qed.
Lemma persistent_absorbingly_affinely_2 P `{!Persistent P} :
P ⊢ <absorb> <affine> P.
Proof.
rewrite {1}(persistent P) -absorbingly_intuitionistically_into_persistently.
by rewrite intuitionistically_affinely.
Qed.
Lemma persistent_absorbingly_affinely P `{!Persistent P, !Absorbing P} :
<absorb> <affine> P ⊣⊢ P.
Proof.
rewrite -(persistent_persistently P).
by rewrite absorbingly_intuitionistically_into_persistently.
Qed.
Lemma persistent_and_sep_assoc P `{!Persistent P, !Absorbing P} Q R :
P ∧ (Q ∗ R) ⊣⊢ (P ∧ Q) ∗ R.
Proof. by rewrite -(persistent_persistently P) persistently_and_sep_assoc. Qed.
Lemma persistent_impl_wand_affinely P `{!Persistent P, !Absorbing P} Q :
(P → Q) ⊣⊢ (<affine> P -∗ Q).
Proof.
apply (anti_symm _).
- apply wand_intro_l. rewrite -persistent_and_affinely_sep_l impl_elim_r //.
- apply impl_intro_l. rewrite persistent_and_affinely_sep_l wand_elim_r //.
Qed.
Lemma impl_wand_2 P `{!Persistent P} Q : (P -∗ Q) ⊢ P → Q.
Proof. apply impl_intro_l. by rewrite persistent_and_sep_1 wand_elim_r. Qed.
We don't have a Intuitionistic typeclass, but if we did, this
would be its only field.
Lemma intuitionistic P `{!Persistent P, !Affine P} : P ⊢ □ P.
Proof. rewrite intuitionistic_intuitionistically. done. Qed.
Lemma intuitionistically_intro P Q `{!Affine P, !Persistent P} : (P ⊢ Q) → P ⊢ □ Q.
Proof. intros. apply: affinely_intro. by apply: persistently_intro. Qed.
Section persistent_bi_absorbing.
Context `{!BiAffine PROP}.
Lemma persistent_and_sep P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} :
P ∧ Q ⊣⊢ P ∗ Q.
Proof.
destruct HPQ.
- by rewrite -(persistent_persistently P) persistently_and_sep_l.
- by rewrite -(persistent_persistently Q) persistently_and_sep_r.
Qed.
Lemma impl_wand P `{!Persistent P} Q : (P → Q) ⊣⊢ (P -∗ Q).
Proof. apply (anti_symm _); auto using impl_wand_1, impl_wand_2. Qed.
End persistent_bi_absorbing.
Global Instance impl_absorbing P Q :
Persistent P → Absorbing P → Absorbing Q → Absorbing (P → Q).
Proof.
intros. rewrite /Absorbing. apply impl_intro_l.
rewrite persistent_and_affinely_sep_l_1 absorbingly_sep_r.
by rewrite -persistent_and_affinely_sep_l impl_elim_r.
Qed.
Global Instance bi_and_monoid : Monoid (@bi_and PROP) :=
{| monoid_unit := True%I |}.
Global Instance bi_or_monoid : Monoid (@bi_or PROP) :=
{| monoid_unit := False%I |}.
Global Instance bi_sep_monoid : Monoid (@bi_sep PROP) :=
{| monoid_unit := emp%I |}.
Global Instance bi_persistently_and_homomorphism :
MonoidHomomorphism bi_and bi_and (≡) (@bi_persistently PROP).
Proof.
split; [split|]; try apply _.
- apply persistently_and.
- apply persistently_pure.
Qed.
Global Instance bi_persistently_or_homomorphism :
MonoidHomomorphism bi_or bi_or (≡) (@bi_persistently PROP).
Proof.
split; [split|]; try apply _.
- apply persistently_or.
- apply persistently_pure.
Qed.
Global Instance bi_persistently_sep_weak_homomorphism `{!BiPositive PROP} :
WeakMonoidHomomorphism bi_sep bi_sep (≡) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. apply persistently_sep. Qed.
Global Instance bi_persistently_sep_homomorphism `{!BiAffine PROP} :
MonoidHomomorphism bi_sep bi_sep (≡) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. apply persistently_emp. Qed.
Global Instance bi_persistently_sep_entails_weak_homomorphism :
WeakMonoidHomomorphism bi_sep bi_sep (flip (⊢)) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. intros P Q; by rewrite persistently_sep_2. Qed.
Global Instance bi_persistently_sep_entails_homomorphism :
MonoidHomomorphism bi_sep bi_sep (flip (⊢)) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. simpl. apply persistently_emp_intro. Qed.
Lemma limit_preserving_entails {A : ofe} `{!Cofe A} (Φ Ψ : A → PROP) :
NonExpansive Φ → NonExpansive Ψ → LimitPreserving (λ x, Φ x ⊢ Ψ x).
Proof.
intros HΦ HΨ c Hc. apply entails_eq_True, equiv_dist⇒n.
rewrite conv_compl. apply equiv_dist, entails_eq_True. done.
Qed.
Lemma limit_preserving_emp_valid {A : ofe} `{!Cofe A} (Φ : A → PROP) :
NonExpansive Φ → LimitPreserving (λ x, ⊢ Φ x).
Proof.
intros. apply limit_preserving_entails; first solve_proper. done.
Qed.
Lemma limit_preserving_equiv {A : ofe} `{!Cofe A} (Φ Ψ : A → PROP) :
NonExpansive Φ → NonExpansive Ψ → LimitPreserving (λ x, Φ x ⊣⊢ Ψ x).
Proof.
intros HΦ HΨ. eapply limit_preserving_ext.
{ intros x. symmetry; apply equiv_entails. }
apply limit_preserving_and; by apply limit_preserving_entails.
Qed.
Global Instance limit_preserving_Persistent {A : ofe} `{!Cofe A} (Φ : A → PROP) :
NonExpansive Φ → LimitPreserving (λ x, Persistent (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Lemma iter_modal_intro (M : PROP → PROP) P (n : nat) :
(∀ Q, Q ⊢ M Q) →
P ⊢ Nat.iter n M P.
Proof.
intros Hintro; induction n as [|n IHn]; simpl; first done.
etransitivity; first apply IHn. apply Hintro.
Qed.
Lemma iter_modal_mono (M : PROP → PROP) P Q (n : nat) :
(∀ P Q, (P -∗ Q) ⊢ M P -∗ M Q) →
(P -∗ Q) ⊢
Nat.iter n M P -∗ Nat.iter n M Q.
Proof.
intros Hmono; induction n as [|n IHn]; simpl; first done.
rewrite -Hmono //.
Qed.
End derived.
End bi.
Proof. rewrite intuitionistic_intuitionistically. done. Qed.
Lemma intuitionistically_intro P Q `{!Affine P, !Persistent P} : (P ⊢ Q) → P ⊢ □ Q.
Proof. intros. apply: affinely_intro. by apply: persistently_intro. Qed.
Section persistent_bi_absorbing.
Context `{!BiAffine PROP}.
Lemma persistent_and_sep P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} :
P ∧ Q ⊣⊢ P ∗ Q.
Proof.
destruct HPQ.
- by rewrite -(persistent_persistently P) persistently_and_sep_l.
- by rewrite -(persistent_persistently Q) persistently_and_sep_r.
Qed.
Lemma impl_wand P `{!Persistent P} Q : (P → Q) ⊣⊢ (P -∗ Q).
Proof. apply (anti_symm _); auto using impl_wand_1, impl_wand_2. Qed.
End persistent_bi_absorbing.
Global Instance impl_absorbing P Q :
Persistent P → Absorbing P → Absorbing Q → Absorbing (P → Q).
Proof.
intros. rewrite /Absorbing. apply impl_intro_l.
rewrite persistent_and_affinely_sep_l_1 absorbingly_sep_r.
by rewrite -persistent_and_affinely_sep_l impl_elim_r.
Qed.
Global Instance bi_and_monoid : Monoid (@bi_and PROP) :=
{| monoid_unit := True%I |}.
Global Instance bi_or_monoid : Monoid (@bi_or PROP) :=
{| monoid_unit := False%I |}.
Global Instance bi_sep_monoid : Monoid (@bi_sep PROP) :=
{| monoid_unit := emp%I |}.
Global Instance bi_persistently_and_homomorphism :
MonoidHomomorphism bi_and bi_and (≡) (@bi_persistently PROP).
Proof.
split; [split|]; try apply _.
- apply persistently_and.
- apply persistently_pure.
Qed.
Global Instance bi_persistently_or_homomorphism :
MonoidHomomorphism bi_or bi_or (≡) (@bi_persistently PROP).
Proof.
split; [split|]; try apply _.
- apply persistently_or.
- apply persistently_pure.
Qed.
Global Instance bi_persistently_sep_weak_homomorphism `{!BiPositive PROP} :
WeakMonoidHomomorphism bi_sep bi_sep (≡) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. apply persistently_sep. Qed.
Global Instance bi_persistently_sep_homomorphism `{!BiAffine PROP} :
MonoidHomomorphism bi_sep bi_sep (≡) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. apply persistently_emp. Qed.
Global Instance bi_persistently_sep_entails_weak_homomorphism :
WeakMonoidHomomorphism bi_sep bi_sep (flip (⊢)) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. intros P Q; by rewrite persistently_sep_2. Qed.
Global Instance bi_persistently_sep_entails_homomorphism :
MonoidHomomorphism bi_sep bi_sep (flip (⊢)) (@bi_persistently PROP).
Proof. split; [by apply _ ..|]. simpl. apply persistently_emp_intro. Qed.
Lemma limit_preserving_entails {A : ofe} `{!Cofe A} (Φ Ψ : A → PROP) :
NonExpansive Φ → NonExpansive Ψ → LimitPreserving (λ x, Φ x ⊢ Ψ x).
Proof.
intros HΦ HΨ c Hc. apply entails_eq_True, equiv_dist⇒n.
rewrite conv_compl. apply equiv_dist, entails_eq_True. done.
Qed.
Lemma limit_preserving_emp_valid {A : ofe} `{!Cofe A} (Φ : A → PROP) :
NonExpansive Φ → LimitPreserving (λ x, ⊢ Φ x).
Proof.
intros. apply limit_preserving_entails; first solve_proper. done.
Qed.
Lemma limit_preserving_equiv {A : ofe} `{!Cofe A} (Φ Ψ : A → PROP) :
NonExpansive Φ → NonExpansive Ψ → LimitPreserving (λ x, Φ x ⊣⊢ Ψ x).
Proof.
intros HΦ HΨ. eapply limit_preserving_ext.
{ intros x. symmetry; apply equiv_entails. }
apply limit_preserving_and; by apply limit_preserving_entails.
Qed.
Global Instance limit_preserving_Persistent {A : ofe} `{!Cofe A} (Φ : A → PROP) :
NonExpansive Φ → LimitPreserving (λ x, Persistent (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Lemma iter_modal_intro (M : PROP → PROP) P (n : nat) :
(∀ Q, Q ⊢ M Q) →
P ⊢ Nat.iter n M P.
Proof.
intros Hintro; induction n as [|n IHn]; simpl; first done.
etransitivity; first apply IHn. apply Hintro.
Qed.
Lemma iter_modal_mono (M : PROP → PROP) P Q (n : nat) :
(∀ P Q, (P -∗ Q) ⊢ M P -∗ M Q) →
(P -∗ Q) ⊢
Nat.iter n M P -∗ Nat.iter n M Q.
Proof.
intros Hmono; induction n as [|n IHn]; simpl; first done.
rewrite -Hmono //.
Qed.
End derived.
End bi.