Library iris.proofmode.class_instances
From iris.bi Require Import telescopes.
From iris.proofmode Require Import base modality_instances classes classes_make.
From iris.proofmode Require Import ltac_tactics.
From iris.prelude Require Import options.
Import bi.
From iris.proofmode Require Import base modality_instances classes classes_make.
From iris.proofmode Require Import ltac_tactics.
From iris.prelude Require Import options.
Import bi.
The lemma from_assumption_exact is not an instance, but defined using
notypeclasses refine through Hint Extern to enable the better unification
algorithm. We use shelve to avoid the creation of unshelved goals for evars
by refine, which otherwise causes TC search to fail. Such unshelved goals are
created for example when solving FromAssumption p ?P ?Q where both ?P and
?Q are evars. See test_iApply_evar in tests/proofmode for an example.
Lemma from_assumption_exact {PROP : bi} p (P : PROP) : FromAssumption p P P.
Proof. by rewrite /FromAssumption /= intuitionistically_if_elim. Qed.
Global Hint Extern 0 (FromAssumption _ _ _) ⇒
notypeclasses refine (from_assumption_exact _ _); shelve : typeclass_instances.
Proof. by rewrite /FromAssumption /= intuitionistically_if_elim. Qed.
Global Hint Extern 0 (FromAssumption _ _ _) ⇒
notypeclasses refine (from_assumption_exact _ _); shelve : typeclass_instances.
Similarly, the lemma from_exist_exist is defined using a Hint Extern to
enable the better unification algorithm.
See https://gitlab.mpi-sws.org/iris/iris/issues/288
Lemma from_exist_exist {PROP : bi} {A} (Φ : A → PROP) : FromExist (∃ a, Φ a) Φ.
Proof. by rewrite /FromExist. Qed.
Global Hint Extern 0 (FromExist _ _) ⇒
notypeclasses refine (from_exist_exist _) : typeclass_instances.
Section class_instances.
Context {PROP : bi}.
Implicit Types P Q R : PROP.
Implicit Types mP : option PROP.
Proof. by rewrite /FromExist. Qed.
Global Hint Extern 0 (FromExist _ _) ⇒
notypeclasses refine (from_exist_exist _) : typeclass_instances.
Section class_instances.
Context {PROP : bi}.
Implicit Types P Q R : PROP.
Implicit Types mP : option PROP.
AsEmpValid
Global Instance as_emp_valid_emp_valid P : AsEmpValid0 (⊢ P) P | 0.
Proof. by rewrite /AsEmpValid. Qed.
Global Instance as_emp_valid_entails P Q : AsEmpValid0 (P ⊢ Q) (P -∗ Q).
Proof. split; [ apply bi.entails_wand | apply bi.wand_entails ]. Qed.
Global Instance as_emp_valid_equiv P Q : AsEmpValid0 (P ≡ Q) (P ∗-∗ Q).
Proof. split; [ apply bi.equiv_wand_iff | apply bi.wand_iff_equiv ]. Qed.
Global Instance as_emp_valid_forall {A : Type} (φ : A → Prop) (P : A → PROP) :
(∀ x, AsEmpValid (φ x) (P x)) → AsEmpValid (∀ x, φ x) (∀ x, P x).
Proof.
rewrite /AsEmpValid⇒H1. split⇒H2.
- apply bi.forall_intro=>?. apply H1, H2.
- intros x. apply H1. revert H2. by rewrite (bi.forall_elim x).
Qed.
Global Instance as_emp_valid_tforall {TT : tele} (φ : TT → Prop) (P : TT → PROP) :
(∀ x, AsEmpValid (φ x) (P x)) → AsEmpValid (∀.. x, φ x) (∀.. x, P x).
Proof.
rewrite /AsEmpValid !tforall_forall bi_tforall_forall.
apply as_emp_valid_forall.
Qed.
Proof. by rewrite /AsEmpValid. Qed.
Global Instance as_emp_valid_entails P Q : AsEmpValid0 (P ⊢ Q) (P -∗ Q).
Proof. split; [ apply bi.entails_wand | apply bi.wand_entails ]. Qed.
Global Instance as_emp_valid_equiv P Q : AsEmpValid0 (P ≡ Q) (P ∗-∗ Q).
Proof. split; [ apply bi.equiv_wand_iff | apply bi.wand_iff_equiv ]. Qed.
Global Instance as_emp_valid_forall {A : Type} (φ : A → Prop) (P : A → PROP) :
(∀ x, AsEmpValid (φ x) (P x)) → AsEmpValid (∀ x, φ x) (∀ x, P x).
Proof.
rewrite /AsEmpValid⇒H1. split⇒H2.
- apply bi.forall_intro=>?. apply H1, H2.
- intros x. apply H1. revert H2. by rewrite (bi.forall_elim x).
Qed.
Global Instance as_emp_valid_tforall {TT : tele} (φ : TT → Prop) (P : TT → PROP) :
(∀ x, AsEmpValid (φ x) (P x)) → AsEmpValid (∀.. x, φ x) (∀.. x, P x).
Proof.
rewrite /AsEmpValid !tforall_forall bi_tforall_forall.
apply as_emp_valid_forall.
Qed.
FromAffinely
Global Instance from_affinely_affine P : Affine P → FromAffinely P P.
Proof. intros. by rewrite /FromAffinely affinely_elim. Qed.
Global Instance from_affinely_default P : FromAffinely (<affine> P) P | 100.
Proof. by rewrite /FromAffinely. Qed.
Global Instance from_affinely_intuitionistically P :
FromAffinely (□ P) (<pers> P) | 100.
Proof. by rewrite /FromAffinely. Qed.
Proof. intros. by rewrite /FromAffinely affinely_elim. Qed.
Global Instance from_affinely_default P : FromAffinely (<affine> P) P | 100.
Proof. by rewrite /FromAffinely. Qed.
Global Instance from_affinely_intuitionistically P :
FromAffinely (□ P) (<pers> P) | 100.
Proof. by rewrite /FromAffinely. Qed.
IntoAbsorbingly
Global Instance into_absorbingly_True : @IntoAbsorbingly PROP True emp | 0.
Proof. by rewrite /IntoAbsorbingly -absorbingly_emp_True. Qed.
Global Instance into_absorbingly_absorbing P : Absorbing P → IntoAbsorbingly P P | 1.
Proof. intros. by rewrite /IntoAbsorbingly absorbing_absorbingly. Qed.
Global Instance into_absorbingly_intuitionistically P :
IntoAbsorbingly (<pers> P) (□ P) | 2.
Proof.
by rewrite /IntoAbsorbingly -absorbingly_intuitionistically_into_persistently.
Qed.
Global Instance into_absorbingly_default P : IntoAbsorbingly (<absorb> P) P | 100.
Proof. by rewrite /IntoAbsorbingly. Qed.
Proof. by rewrite /IntoAbsorbingly -absorbingly_emp_True. Qed.
Global Instance into_absorbingly_absorbing P : Absorbing P → IntoAbsorbingly P P | 1.
Proof. intros. by rewrite /IntoAbsorbingly absorbing_absorbingly. Qed.
Global Instance into_absorbingly_intuitionistically P :
IntoAbsorbingly (<pers> P) (□ P) | 2.
Proof.
by rewrite /IntoAbsorbingly -absorbingly_intuitionistically_into_persistently.
Qed.
Global Instance into_absorbingly_default P : IntoAbsorbingly (<absorb> P) P | 100.
Proof. by rewrite /IntoAbsorbingly. Qed.
FromAssumption
Global Instance from_assumption_persistently_r P Q :
FromAssumption true P Q → KnownRFromAssumption true P (<pers> Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
apply intuitionistically_persistent.
Qed.
Global Instance from_assumption_affinely_r P Q :
FromAssumption true P Q → KnownRFromAssumption true P (<affine> Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
by rewrite affinely_idemp.
Qed.
Global Instance from_assumption_intuitionistically_r P Q :
FromAssumption true P Q → KnownRFromAssumption true P (□ Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_idemp.
Qed.
Global Instance from_assumption_absorbingly_r p P Q :
FromAssumption p P Q → KnownRFromAssumption p P (<absorb> Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
apply absorbingly_intro.
Qed.
Global Instance from_assumption_intuitionistically_l p P Q :
FromAssumption true P Q → KnownLFromAssumption p (□ P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_if_elim.
Qed.
Global Instance from_assumption_persistently_l_true P Q :
FromAssumption true P Q → KnownLFromAssumption true (<pers> P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
rewrite intuitionistically_persistently_elim //.
Qed.
Global Instance from_assumption_persistently_l_false `{!BiAffine PROP} P Q :
FromAssumption true P Q → KnownLFromAssumption false (<pers> P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_into_persistently.
Qed.
Global Instance from_assumption_affinely_l_true p P Q :
FromAssumption p P Q → KnownLFromAssumption p (<affine> P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite affinely_elim.
Qed.
Global Instance from_assumption_intuitionistically_l_true p P Q :
FromAssumption p P Q → KnownLFromAssumption p (□ P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_elim.
Qed.
Global Instance from_assumption_forall {A} p (Φ : A → PROP) Q x :
FromAssumption p (Φ x) Q → KnownLFromAssumption p (∀ x, Φ x) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption⇒ <-.
by rewrite forall_elim.
Qed.
Global Instance from_assumption_tforall {TT : tele} p (Φ : TT → PROP) Q x :
FromAssumption p (Φ x) Q → KnownLFromAssumption p (∀.. x, Φ x) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption⇒ <-.
by rewrite bi_tforall_forall forall_elim.
Qed.
FromAssumption true P Q → KnownRFromAssumption true P (<pers> Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
apply intuitionistically_persistent.
Qed.
Global Instance from_assumption_affinely_r P Q :
FromAssumption true P Q → KnownRFromAssumption true P (<affine> Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
by rewrite affinely_idemp.
Qed.
Global Instance from_assumption_intuitionistically_r P Q :
FromAssumption true P Q → KnownRFromAssumption true P (□ Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_idemp.
Qed.
Global Instance from_assumption_absorbingly_r p P Q :
FromAssumption p P Q → KnownRFromAssumption p P (<absorb> Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption /= =><-.
apply absorbingly_intro.
Qed.
Global Instance from_assumption_intuitionistically_l p P Q :
FromAssumption true P Q → KnownLFromAssumption p (□ P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_if_elim.
Qed.
Global Instance from_assumption_persistently_l_true P Q :
FromAssumption true P Q → KnownLFromAssumption true (<pers> P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
rewrite intuitionistically_persistently_elim //.
Qed.
Global Instance from_assumption_persistently_l_false `{!BiAffine PROP} P Q :
FromAssumption true P Q → KnownLFromAssumption false (<pers> P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_into_persistently.
Qed.
Global Instance from_assumption_affinely_l_true p P Q :
FromAssumption p P Q → KnownLFromAssumption p (<affine> P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite affinely_elim.
Qed.
Global Instance from_assumption_intuitionistically_l_true p P Q :
FromAssumption p P Q → KnownLFromAssumption p (□ P) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite intuitionistically_elim.
Qed.
Global Instance from_assumption_forall {A} p (Φ : A → PROP) Q x :
FromAssumption p (Φ x) Q → KnownLFromAssumption p (∀ x, Φ x) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption⇒ <-.
by rewrite forall_elim.
Qed.
Global Instance from_assumption_tforall {TT : tele} p (Φ : TT → PROP) Q x :
FromAssumption p (Φ x) Q → KnownLFromAssumption p (∀.. x, Φ x) Q.
Proof.
rewrite /KnownLFromAssumption /FromAssumption⇒ <-.
by rewrite bi_tforall_forall forall_elim.
Qed.
IntoPure
Global Instance into_pure_pure φ : @IntoPure PROP ⌜φ⌝ φ.
Proof. by rewrite /IntoPure. Qed.
Global Instance into_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∧ P2) (φ1 ∧ φ2).
Proof. rewrite /IntoPure pure_and. by intros → →. Qed.
Global Instance into_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∨ P2) (φ1 ∨ φ2).
Proof. rewrite /IntoPure pure_or. by intros → →. Qed.
Global Instance into_pure_pure_impl `{!BiPureForall PROP} (φ1 φ2 : Prop) P1 P2 :
FromPure false P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 → P2) (φ1 → φ2).
Proof. rewrite /FromPure /IntoPure /= ⇒ <- →. apply pure_impl_2. Qed.
Global Instance into_pure_exist {A} (Φ : A → PROP) (φ : A → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃ x, Φ x) (∃ x, φ x).
Proof. rewrite /IntoPure⇒Hx. rewrite pure_exist. by setoid_rewrite Hx. Qed.
Global Instance into_pure_texist {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃.. x, Φ x) (∃.. x, φ x).
Proof. rewrite /IntoPure texist_exist bi_texist_exist. apply into_pure_exist. Qed.
Global Instance into_pure_forall `{!BiPureForall PROP}
{A} (Φ : A → PROP) (φ : A → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀ x, Φ x) (∀ x, φ x).
Proof. rewrite /IntoPure⇒Hx. rewrite -pure_forall_2. by setoid_rewrite Hx. Qed.
Global Instance into_pure_tforall `{!BiPureForall PROP}
{TT : tele} (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀.. x, Φ x) (∀.. x, φ x).
Proof.
rewrite /IntoPure !tforall_forall bi_tforall_forall. apply into_pure_forall.
Qed.
Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∗ P2) (φ1 ∧ φ2).
Proof. rewrite /IntoPure⇒ → →. by rewrite sep_and pure_and. Qed.
Global Instance into_pure_pure_wand `{!BiPureForall PROP} a (φ1 φ2 : Prop) P1 P2 :
FromPure a P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 -∗ P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure⇒ <- → /=. rewrite pure_impl.
apply impl_intro_l, pure_elim_l⇒ ?. rewrite (pure_True φ1) //.
by rewrite -affinely_affinely_if affinely_True_emp left_id.
Qed.
Global Instance into_pure_affinely P φ : IntoPure P φ → IntoPure (<affine> P) φ.
Proof. rewrite /IntoPure⇒ →. apply affinely_elim. Qed.
Global Instance into_pure_intuitionistically P φ :
IntoPure P φ → IntoPure (□ P) φ.
Proof. rewrite /IntoPure⇒ →. apply intuitionistically_elim. Qed.
Global Instance into_pure_absorbingly P φ : IntoPure P φ → IntoPure (<absorb> P) φ.
Proof. rewrite /IntoPure⇒ →. by rewrite absorbingly_pure. Qed.
Global Instance into_pure_persistently P φ :
IntoPure P φ → IntoPure (<pers> P) φ.
Proof. rewrite /IntoPure⇒ →. apply: persistently_elim. Qed.
Global Instance into_pure_big_sepL {A}
(Φ : nat → A → PROP) (φ : nat → A → Prop) (l : list A) :
(∀ k x, IntoPure (Φ k x) (φ k x)) →
IntoPure ([∗ list] k↦x ∈ l, Φ k x) (∀ k x, l !! k = Some x → φ k x).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepL_pure_1. done.
Qed.
Global Instance into_pure_big_sepM `{Countable K} {A}
(Φ : K → A → PROP) (φ : K → A → Prop) (m : gmap K A) :
(∀ k x, IntoPure (Φ k x) (φ k x)) →
IntoPure ([∗ map] k↦x ∈ m, Φ k x) (map_Forall φ m).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepM_pure_1. done.
Qed.
Global Instance into_pure_big_sepS `{Countable A}
(Φ : A → PROP) (φ : A → Prop) (X : gset A) :
(∀ x, IntoPure (Φ x) (φ x)) →
IntoPure ([∗ set] x ∈ X, Φ x) (set_Forall φ X).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepS_pure_1. done.
Qed.
Global Instance into_pure_big_sepMS `{Countable A}
(Φ : A → PROP) (φ : A → Prop) (X : gmultiset A) :
(∀ x, IntoPure (Φ x) (φ x)) →
IntoPure ([∗ mset] x ∈ X, Φ x) (∀ y : A, y ∈ X → φ y).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepMS_pure_1. done.
Qed.
Proof. by rewrite /IntoPure. Qed.
Global Instance into_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∧ P2) (φ1 ∧ φ2).
Proof. rewrite /IntoPure pure_and. by intros → →. Qed.
Global Instance into_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∨ P2) (φ1 ∨ φ2).
Proof. rewrite /IntoPure pure_or. by intros → →. Qed.
Global Instance into_pure_pure_impl `{!BiPureForall PROP} (φ1 φ2 : Prop) P1 P2 :
FromPure false P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 → P2) (φ1 → φ2).
Proof. rewrite /FromPure /IntoPure /= ⇒ <- →. apply pure_impl_2. Qed.
Global Instance into_pure_exist {A} (Φ : A → PROP) (φ : A → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃ x, Φ x) (∃ x, φ x).
Proof. rewrite /IntoPure⇒Hx. rewrite pure_exist. by setoid_rewrite Hx. Qed.
Global Instance into_pure_texist {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃.. x, Φ x) (∃.. x, φ x).
Proof. rewrite /IntoPure texist_exist bi_texist_exist. apply into_pure_exist. Qed.
Global Instance into_pure_forall `{!BiPureForall PROP}
{A} (Φ : A → PROP) (φ : A → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀ x, Φ x) (∀ x, φ x).
Proof. rewrite /IntoPure⇒Hx. rewrite -pure_forall_2. by setoid_rewrite Hx. Qed.
Global Instance into_pure_tforall `{!BiPureForall PROP}
{TT : tele} (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀.. x, Φ x) (∀.. x, φ x).
Proof.
rewrite /IntoPure !tforall_forall bi_tforall_forall. apply into_pure_forall.
Qed.
Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∗ P2) (φ1 ∧ φ2).
Proof. rewrite /IntoPure⇒ → →. by rewrite sep_and pure_and. Qed.
Global Instance into_pure_pure_wand `{!BiPureForall PROP} a (φ1 φ2 : Prop) P1 P2 :
FromPure a P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 -∗ P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure⇒ <- → /=. rewrite pure_impl.
apply impl_intro_l, pure_elim_l⇒ ?. rewrite (pure_True φ1) //.
by rewrite -affinely_affinely_if affinely_True_emp left_id.
Qed.
Global Instance into_pure_affinely P φ : IntoPure P φ → IntoPure (<affine> P) φ.
Proof. rewrite /IntoPure⇒ →. apply affinely_elim. Qed.
Global Instance into_pure_intuitionistically P φ :
IntoPure P φ → IntoPure (□ P) φ.
Proof. rewrite /IntoPure⇒ →. apply intuitionistically_elim. Qed.
Global Instance into_pure_absorbingly P φ : IntoPure P φ → IntoPure (<absorb> P) φ.
Proof. rewrite /IntoPure⇒ →. by rewrite absorbingly_pure. Qed.
Global Instance into_pure_persistently P φ :
IntoPure P φ → IntoPure (<pers> P) φ.
Proof. rewrite /IntoPure⇒ →. apply: persistently_elim. Qed.
Global Instance into_pure_big_sepL {A}
(Φ : nat → A → PROP) (φ : nat → A → Prop) (l : list A) :
(∀ k x, IntoPure (Φ k x) (φ k x)) →
IntoPure ([∗ list] k↦x ∈ l, Φ k x) (∀ k x, l !! k = Some x → φ k x).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepL_pure_1. done.
Qed.
Global Instance into_pure_big_sepM `{Countable K} {A}
(Φ : K → A → PROP) (φ : K → A → Prop) (m : gmap K A) :
(∀ k x, IntoPure (Φ k x) (φ k x)) →
IntoPure ([∗ map] k↦x ∈ m, Φ k x) (map_Forall φ m).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepM_pure_1. done.
Qed.
Global Instance into_pure_big_sepS `{Countable A}
(Φ : A → PROP) (φ : A → Prop) (X : gset A) :
(∀ x, IntoPure (Φ x) (φ x)) →
IntoPure ([∗ set] x ∈ X, Φ x) (set_Forall φ X).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepS_pure_1. done.
Qed.
Global Instance into_pure_big_sepMS `{Countable A}
(Φ : A → PROP) (φ : A → Prop) (X : gmultiset A) :
(∀ x, IntoPure (Φ x) (φ x)) →
IntoPure ([∗ mset] x ∈ X, Φ x) (∀ y : A, y ∈ X → φ y).
Proof.
rewrite /IntoPure. intros HΦ.
setoid_rewrite HΦ. rewrite big_sepMS_pure_1. done.
Qed.
FromPure
Global Instance from_pure_emp : @FromPure PROP true emp True.
Proof. rewrite /FromPure /=. apply (affine _). Qed.
Global Instance from_pure_pure φ : @FromPure PROP false ⌜φ⌝ φ.
Proof. by rewrite /FromPure /=. Qed.
Global Instance from_pure_pure_and a1 a2 (φ1 φ2 : Prop) P1 P2 :
FromPure a1 P1 φ1 → FromPure a2 P2 φ2 →
FromPure (if a1 then true else a2) (P1 ∧ P2) (φ1 ∧ φ2).
Proof.
rewrite /FromPure pure_and⇒ <- <- /=. rewrite affinely_if_and.
f_equiv; apply affinely_if_flag_mono; destruct a1; naive_solver.
Qed.
Global Instance from_pure_pure_or a1 a2 (φ1 φ2 : Prop) P1 P2 :
FromPure a1 P1 φ1 → FromPure a2 P2 φ2 →
FromPure (if a1 then true else a2) (P1 ∨ P2) (φ1 ∨ φ2).
Proof.
rewrite /FromPure pure_or⇒ <- <- /=. rewrite affinely_if_or.
f_equiv; apply affinely_if_flag_mono; destruct a1; naive_solver.
Qed.
Global Instance from_pure_pure_impl a (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → FromPure a P2 φ2 → FromPure a (P1 → P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure pure_impl_1⇒ → <-. destruct a=>//=.
apply bi.impl_intro_l. by rewrite affinely_and_r bi.impl_elim_r.
Qed.
Global Instance from_pure_exist {A} a (Φ : A → PROP) (φ : A → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∃ x, Φ x) (∃ x, φ x).
Proof.
rewrite /FromPure⇒Hx. rewrite pure_exist affinely_if_exist.
by setoid_rewrite Hx.
Qed.
Global Instance from_pure_texist {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∃.. x, Φ x) (∃.. x, φ x).
Proof. rewrite /FromPure texist_exist bi_texist_exist. apply from_pure_exist. Qed.
Global Instance from_pure_forall {A} a (Φ : A → PROP) (φ : A → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀ x, Φ x) (∀ x, φ x).
Proof.
rewrite /FromPure⇒Hx. rewrite pure_forall_1. setoid_rewrite <-Hx.
destruct a=>//=. apply affinely_forall.
Qed.
Global Instance from_pure_tforall {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀.. x, Φ x) (∀.. x, φ x).
Proof.
rewrite /FromPure !tforall_forall bi_tforall_forall. apply from_pure_forall.
Qed.
Global Instance from_pure_pure_sep_true a1 a2 (φ1 φ2 : Prop) P1 P2 :
FromPure a1 P1 φ1 → FromPure a2 P2 φ2 →
FromPure (if a1 then a2 else false) (P1 ∗ P2) (φ1 ∧ φ2).
Proof.
rewrite /FromPure⇒ <- <-. destruct a1; simpl.
- by rewrite pure_and -persistent_and_affinely_sep_l affinely_if_and_r.
- by rewrite pure_and -affinely_affinely_if -persistent_and_affinely_sep_r_1.
Qed.
Global Instance from_pure_pure_wand a (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → FromPure a P2 φ2 →
TCOr (TCEq a false) (Affine P1) →
FromPure a (P1 -∗ P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure⇒ HP1 <- Ha /=. apply wand_intro_l.
destruct a; simpl.
- destruct Ha as [Ha|?]; first inversion Ha.
rewrite -persistent_and_affinely_sep_r -(affine_affinely P1) HP1.
by rewrite affinely_and_l pure_impl_1 impl_elim_r.
- by rewrite HP1 sep_and pure_impl_1 impl_elim_r.
Qed.
Global Instance from_pure_persistently P a φ :
FromPure true P φ → FromPure a (<pers> P) φ.
Proof.
rewrite /FromPure⇒ <- /=.
by rewrite persistently_affinely_elim affinely_if_elim persistently_pure.
Qed.
Global Instance from_pure_affinely_true a P φ :
FromPure a P φ → FromPure true (<affine> P) φ.
Proof. rewrite /FromPure=><- /=. by rewrite -affinely_affinely_if affinely_idemp. Qed.
Global Instance from_pure_intuitionistically_true a P φ :
FromPure a P φ → FromPure true (□ P) φ.
Proof.
rewrite /FromPure=><- /=.
rewrite -intuitionistically_affinely_elim -affinely_affinely_if affinely_idemp.
by rewrite intuitionistic_intuitionistically.
Qed.
Global Instance from_pure_absorbingly a P φ :
FromPure a P φ → FromPure false (<absorb> P) φ.
Proof.
rewrite /FromPure⇒ <- /=. rewrite -affinely_affinely_if.
by rewrite -persistent_absorbingly_affinely_2.
Qed.
Global Instance from_pure_big_sepL {A}
a (Φ : nat → A → PROP) (φ : nat → A → Prop) (l : list A) :
(∀ k x, FromPure a (Φ k x) (φ k x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ list] k↦x ∈ l, Φ k x) (∀ k x, l !! k = Some x → φ k x).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepL_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepL_pure. setoid_rewrite HΦ. done.
Qed.
Global Instance from_pure_big_sepM `{Countable K} {A}
a (Φ : K → A → PROP) (φ : K → A → Prop) (m : gmap K A) :
(∀ k x, FromPure a (Φ k x) (φ k x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ map] k↦x ∈ m, Φ k x) (map_Forall φ m).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepM_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepM_pure. setoid_rewrite HΦ. done.
Qed.
Global Instance from_pure_big_sepS `{Countable A}
a (Φ : A → PROP) (φ : A → Prop) (X : gset A) :
(∀ x, FromPure a (Φ x) (φ x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ set] x ∈ X, Φ x) (set_Forall φ X).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepS_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepS_pure. setoid_rewrite HΦ. done.
Qed.
Global Instance from_pure_big_sepMS `{Countable A}
a (Φ : A → PROP) (φ : A → Prop) (X : gmultiset A) :
(∀ x, FromPure a (Φ x) (φ x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ mset] x ∈ X, Φ x) (∀ y : A, y ∈ X → φ y).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepMS_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepMS_pure. setoid_rewrite HΦ. done.
Qed.
Proof. rewrite /FromPure /=. apply (affine _). Qed.
Global Instance from_pure_pure φ : @FromPure PROP false ⌜φ⌝ φ.
Proof. by rewrite /FromPure /=. Qed.
Global Instance from_pure_pure_and a1 a2 (φ1 φ2 : Prop) P1 P2 :
FromPure a1 P1 φ1 → FromPure a2 P2 φ2 →
FromPure (if a1 then true else a2) (P1 ∧ P2) (φ1 ∧ φ2).
Proof.
rewrite /FromPure pure_and⇒ <- <- /=. rewrite affinely_if_and.
f_equiv; apply affinely_if_flag_mono; destruct a1; naive_solver.
Qed.
Global Instance from_pure_pure_or a1 a2 (φ1 φ2 : Prop) P1 P2 :
FromPure a1 P1 φ1 → FromPure a2 P2 φ2 →
FromPure (if a1 then true else a2) (P1 ∨ P2) (φ1 ∨ φ2).
Proof.
rewrite /FromPure pure_or⇒ <- <- /=. rewrite affinely_if_or.
f_equiv; apply affinely_if_flag_mono; destruct a1; naive_solver.
Qed.
Global Instance from_pure_pure_impl a (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → FromPure a P2 φ2 → FromPure a (P1 → P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure pure_impl_1⇒ → <-. destruct a=>//=.
apply bi.impl_intro_l. by rewrite affinely_and_r bi.impl_elim_r.
Qed.
Global Instance from_pure_exist {A} a (Φ : A → PROP) (φ : A → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∃ x, Φ x) (∃ x, φ x).
Proof.
rewrite /FromPure⇒Hx. rewrite pure_exist affinely_if_exist.
by setoid_rewrite Hx.
Qed.
Global Instance from_pure_texist {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∃.. x, Φ x) (∃.. x, φ x).
Proof. rewrite /FromPure texist_exist bi_texist_exist. apply from_pure_exist. Qed.
Global Instance from_pure_forall {A} a (Φ : A → PROP) (φ : A → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀ x, Φ x) (∀ x, φ x).
Proof.
rewrite /FromPure⇒Hx. rewrite pure_forall_1. setoid_rewrite <-Hx.
destruct a=>//=. apply affinely_forall.
Qed.
Global Instance from_pure_tforall {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) :
(∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀.. x, Φ x) (∀.. x, φ x).
Proof.
rewrite /FromPure !tforall_forall bi_tforall_forall. apply from_pure_forall.
Qed.
Global Instance from_pure_pure_sep_true a1 a2 (φ1 φ2 : Prop) P1 P2 :
FromPure a1 P1 φ1 → FromPure a2 P2 φ2 →
FromPure (if a1 then a2 else false) (P1 ∗ P2) (φ1 ∧ φ2).
Proof.
rewrite /FromPure⇒ <- <-. destruct a1; simpl.
- by rewrite pure_and -persistent_and_affinely_sep_l affinely_if_and_r.
- by rewrite pure_and -affinely_affinely_if -persistent_and_affinely_sep_r_1.
Qed.
Global Instance from_pure_pure_wand a (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → FromPure a P2 φ2 →
TCOr (TCEq a false) (Affine P1) →
FromPure a (P1 -∗ P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure⇒ HP1 <- Ha /=. apply wand_intro_l.
destruct a; simpl.
- destruct Ha as [Ha|?]; first inversion Ha.
rewrite -persistent_and_affinely_sep_r -(affine_affinely P1) HP1.
by rewrite affinely_and_l pure_impl_1 impl_elim_r.
- by rewrite HP1 sep_and pure_impl_1 impl_elim_r.
Qed.
Global Instance from_pure_persistently P a φ :
FromPure true P φ → FromPure a (<pers> P) φ.
Proof.
rewrite /FromPure⇒ <- /=.
by rewrite persistently_affinely_elim affinely_if_elim persistently_pure.
Qed.
Global Instance from_pure_affinely_true a P φ :
FromPure a P φ → FromPure true (<affine> P) φ.
Proof. rewrite /FromPure=><- /=. by rewrite -affinely_affinely_if affinely_idemp. Qed.
Global Instance from_pure_intuitionistically_true a P φ :
FromPure a P φ → FromPure true (□ P) φ.
Proof.
rewrite /FromPure=><- /=.
rewrite -intuitionistically_affinely_elim -affinely_affinely_if affinely_idemp.
by rewrite intuitionistic_intuitionistically.
Qed.
Global Instance from_pure_absorbingly a P φ :
FromPure a P φ → FromPure false (<absorb> P) φ.
Proof.
rewrite /FromPure⇒ <- /=. rewrite -affinely_affinely_if.
by rewrite -persistent_absorbingly_affinely_2.
Qed.
Global Instance from_pure_big_sepL {A}
a (Φ : nat → A → PROP) (φ : nat → A → Prop) (l : list A) :
(∀ k x, FromPure a (Φ k x) (φ k x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ list] k↦x ∈ l, Φ k x) (∀ k x, l !! k = Some x → φ k x).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepL_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepL_pure. setoid_rewrite HΦ. done.
Qed.
Global Instance from_pure_big_sepM `{Countable K} {A}
a (Φ : K → A → PROP) (φ : K → A → Prop) (m : gmap K A) :
(∀ k x, FromPure a (Φ k x) (φ k x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ map] k↦x ∈ m, Φ k x) (map_Forall φ m).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepM_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepM_pure. setoid_rewrite HΦ. done.
Qed.
Global Instance from_pure_big_sepS `{Countable A}
a (Φ : A → PROP) (φ : A → Prop) (X : gset A) :
(∀ x, FromPure a (Φ x) (φ x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ set] x ∈ X, Φ x) (set_Forall φ X).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepS_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepS_pure. setoid_rewrite HΦ. done.
Qed.
Global Instance from_pure_big_sepMS `{Countable A}
a (Φ : A → PROP) (φ : A → Prop) (X : gmultiset A) :
(∀ x, FromPure a (Φ x) (φ x)) →
TCOr (TCEq a true) (BiAffine PROP) →
FromPure a ([∗ mset] x ∈ X, Φ x) (∀ y : A, y ∈ X → φ y).
Proof.
rewrite /FromPure. destruct a; simpl; intros HΦ Haffine.
- rewrite big_sepMS_affinely_pure_2.
setoid_rewrite HΦ. done.
- destruct Haffine as [[=]%TCEq_eq|?].
rewrite -big_sepMS_pure. setoid_rewrite HΦ. done.
Qed.
IntoPersistent
Global Instance into_persistent_persistently p P Q :
IntoPersistent true P Q → IntoPersistent p (<pers> P) Q | 0.
Proof.
rewrite /IntoPersistent /= ⇒ →.
destruct p; simpl; auto using persistently_idemp_1.
Qed.
Global Instance into_persistent_affinely p P Q :
IntoPersistent p P Q → IntoPersistent p (<affine> P) Q | 0.
Proof. rewrite /IntoPersistent /= ⇒ <-. by rewrite affinely_elim. Qed.
Global Instance into_persistent_intuitionistically p P Q :
IntoPersistent true P Q → IntoPersistent p (□ P) Q | 0.
Proof.
rewrite /IntoPersistent /= =><-.
destruct p; simpl;
eauto using persistently_mono, intuitionistically_elim,
intuitionistically_into_persistently_1.
Qed.
Global Instance into_persistent_here P : IntoPersistent true P P | 1.
Proof. by rewrite /IntoPersistent. Qed.
Global Instance into_persistent_persistent P :
Persistent P → IntoPersistent false P P | 100.
Proof. intros. by rewrite /IntoPersistent. Qed.
IntoPersistent true P Q → IntoPersistent p (<pers> P) Q | 0.
Proof.
rewrite /IntoPersistent /= ⇒ →.
destruct p; simpl; auto using persistently_idemp_1.
Qed.
Global Instance into_persistent_affinely p P Q :
IntoPersistent p P Q → IntoPersistent p (<affine> P) Q | 0.
Proof. rewrite /IntoPersistent /= ⇒ <-. by rewrite affinely_elim. Qed.
Global Instance into_persistent_intuitionistically p P Q :
IntoPersistent true P Q → IntoPersistent p (□ P) Q | 0.
Proof.
rewrite /IntoPersistent /= =><-.
destruct p; simpl;
eauto using persistently_mono, intuitionistically_elim,
intuitionistically_into_persistently_1.
Qed.
Global Instance into_persistent_here P : IntoPersistent true P P | 1.
Proof. by rewrite /IntoPersistent. Qed.
Global Instance into_persistent_persistent P :
Persistent P → IntoPersistent false P P | 100.
Proof. intros. by rewrite /IntoPersistent. Qed.
FromModal
Global Instance from_modal_affinely P :
FromModal True modality_affinely (<affine> P) (<affine> P) P | 2.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_persistently P :
FromModal True modality_persistently (<pers> P) (<pers> P) P | 2.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_intuitionistically P :
FromModal True modality_intuitionistically (□ P) (□ P) P | 1.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_intuitionistically_affine_bi P :
BiAffine PROP → FromModal True modality_persistently (□ P) (□ P) P | 0.
Proof.
intros. by rewrite /FromModal /= intuitionistically_into_persistently.
Qed.
Global Instance from_modal_absorbingly P :
FromModal True modality_id (<absorb> P) (<absorb> P) P.
Proof. by rewrite /FromModal /= -absorbingly_intro. Qed.
FromModal True modality_affinely (<affine> P) (<affine> P) P | 2.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_persistently P :
FromModal True modality_persistently (<pers> P) (<pers> P) P | 2.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_intuitionistically P :
FromModal True modality_intuitionistically (□ P) (□ P) P | 1.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_intuitionistically_affine_bi P :
BiAffine PROP → FromModal True modality_persistently (□ P) (□ P) P | 0.
Proof.
intros. by rewrite /FromModal /= intuitionistically_into_persistently.
Qed.
Global Instance from_modal_absorbingly P :
FromModal True modality_id (<absorb> P) (<absorb> P) P.
Proof. by rewrite /FromModal /= -absorbingly_intro. Qed.
IntoWand
Global Instance into_wand_wand' p q (P Q P' Q' : PROP) :
IntoWand' p q (P -∗ Q) P' Q' → IntoWand p q (P -∗ Q) P' Q' | 100.
Proof. done. Qed.
Global Instance into_wand_impl' p q (P Q P' Q' : PROP) :
IntoWand' p q (P → Q) P' Q' → IntoWand p q (P → Q) P' Q' | 100.
Proof. done. Qed.
Global Instance into_wand_wandM' p q mP (Q P' Q' : PROP) :
IntoWand' p q (mP -∗? Q) P' Q' → IntoWand p q (mP -∗? Q) P' Q' | 100.
Proof. done. Qed.
Global Instance into_wand_wand p q P Q P' :
FromAssumption q P P' → IntoWand p q (P' -∗ Q) P Q.
Proof.
rewrite /FromAssumption /IntoWand⇒ HP. by rewrite HP intuitionistically_if_elim.
Qed.
IntoWand' p q (P -∗ Q) P' Q' → IntoWand p q (P -∗ Q) P' Q' | 100.
Proof. done. Qed.
Global Instance into_wand_impl' p q (P Q P' Q' : PROP) :
IntoWand' p q (P → Q) P' Q' → IntoWand p q (P → Q) P' Q' | 100.
Proof. done. Qed.
Global Instance into_wand_wandM' p q mP (Q P' Q' : PROP) :
IntoWand' p q (mP -∗? Q) P' Q' → IntoWand p q (mP -∗? Q) P' Q' | 100.
Proof. done. Qed.
Global Instance into_wand_wand p q P Q P' :
FromAssumption q P P' → IntoWand p q (P' -∗ Q) P Q.
Proof.
rewrite /FromAssumption /IntoWand⇒ HP. by rewrite HP intuitionistically_if_elim.
Qed.
Implication instances
For non-affine BIs, generally we assume P → ... is written in cases where
that would be equivalent to <affine> P -∗ ..., i.e., P is absorbing and
persistent and an affinely modality is added when proving the premise. If the
implication itself or the premise are taken from the persistent context,
things become a bit easier and we can drop some of these requirements. We also
support arbitrary implications for affine BIs via BiAffine.
Global Instance into_wand_impl_false_false P Q P' P'' :
Absorbing P →
TCOr (BiAffine PROP) (Persistent P) →
MakeAffinely P P' →
FromAssumption false P'' P' →
IntoWand false false (P → Q) P'' Q.
Proof.
rewrite /MakeAffinely /IntoWand /FromAssumption /= ⇒ ? Hpers <- →.
apply wand_intro_l. destruct Hpers.
- rewrite impl_wand_1 affinely_elim wand_elim_r //.
- rewrite persistent_impl_wand_affinely wand_elim_r //.
Qed.
Global Instance into_wand_impl_false_true P Q P' :
Absorbing P' →
FromAssumption true P P' →
IntoWand false true (P' → Q) P Q.
Proof.
rewrite /IntoWand /FromAssumption /= ⇒ ? HP. apply wand_intro_l.
rewrite -(persistently_elim P').
rewrite persistent_impl_wand_affinely.
rewrite -(intuitionistically_idemp P) HP.
apply wand_elim_r.
Qed.
Global Instance into_wand_impl_true_false P Q P' P'' :
MakeAffinely P P' →
FromAssumption false P'' P' →
IntoWand true false (P → Q) P'' Q.
Proof.
rewrite /MakeAffinely /IntoWand /FromAssumption /= ⇒ <- →.
apply wand_intro_r.
rewrite sep_and intuitionistically_elim affinely_elim impl_elim_l //.
Qed.
Global Instance into_wand_impl_true_true P Q P' :
FromAssumption true P P' →
IntoWand true true (P' → Q) P Q.
Proof.
rewrite /FromAssumption /IntoWand /= ⇒ <-. apply wand_intro_l.
rewrite sep_and [(□ (_ → _))%I]intuitionistically_elim impl_elim_r //.
Qed.
Global Instance into_wand_wandM p q mP' P Q :
FromAssumption q P (default emp%I mP') → IntoWand p q (mP' -∗? Q) P Q.
Proof. rewrite /IntoWand wandM_sound. exact: into_wand_wand. Qed.
Global Instance into_wand_and_l p q R1 R2 P' Q' :
IntoWand p q R1 P' Q' → IntoWand p q (R1 ∧ R2) P' Q'.
Proof. rewrite /IntoWand⇒ ?. by rewrite /bi_wand_iff and_elim_l. Qed.
Global Instance into_wand_and_r p q R1 R2 P' Q' :
IntoWand p q R2 Q' P' → IntoWand p q (R1 ∧ R2) Q' P'.
Proof. rewrite /IntoWand⇒ ?. by rewrite /bi_wand_iff and_elim_r. Qed.
Global Instance into_wand_forall_prop_true p (φ : Prop) P :
IntoWand p true (∀ _ : φ, P) ⌜ φ ⌝ P.
Proof.
rewrite /IntoWand (intuitionistically_if_elim p) /=
-impl_wand_intuitionistically -pure_impl_forall
bi.persistently_elim //.
Qed.
Global Instance into_wand_forall_prop_false p (φ : Prop) Pφ P :
MakeAffinely ⌜ φ ⌝ Pφ →
IntoWand p false (∀ _ : φ, P) Pφ P.
Proof.
rewrite /MakeAffinely /IntoWand⇒ <-.
rewrite (intuitionistically_if_elim p) /=.
by rewrite -pure_impl_forall -persistent_impl_wand_affinely.
Qed.
Global Instance into_wand_forall {A} p q (Φ : A → PROP) P Q x :
IntoWand p q (Φ x) P Q → IntoWand p q (∀ x, Φ x) P Q.
Proof. rewrite /IntoWand⇒ <-. by rewrite (forall_elim x). Qed.
Global Instance into_wand_tforall {TT : tele} p q (Φ : TT → PROP) P Q x :
IntoWand p q (Φ x) P Q → IntoWand p q (∀.. x, Φ x) P Q.
Proof. rewrite /IntoWand⇒ <-. by rewrite bi_tforall_forall (forall_elim x). Qed.
Global Instance into_wand_affine p q R P Q :
IntoWand p q R P Q → IntoWand p q (<affine> R) (<affine> P) (<affine> Q).
Proof.
rewrite /IntoWand /= ⇒ HR. apply wand_intro_r. destruct p; simpl in ×.
- rewrite (affinely_elim R) -(affine_affinely (□ R)) HR. destruct q; simpl in ×.
+ rewrite (affinely_elim P) -{2}(affine_affinely (□ P)).
by rewrite affinely_sep_2 wand_elim_l.
+ by rewrite affinely_sep_2 wand_elim_l.
- rewrite HR. destruct q; simpl in ×.
+ rewrite (affinely_elim P) -{2}(affine_affinely (□ P)).
by rewrite affinely_sep_2 wand_elim_l.
+ by rewrite affinely_sep_2 wand_elim_l.
Qed.
Global Instance into_wand_affine_args q R P Q :
IntoWand true q R P Q → IntoWand' true q R (<affine> P) (<affine> Q).
Proof.
rewrite /IntoWand' /IntoWand /= ⇒ HR. apply wand_intro_r.
rewrite -(affine_affinely (□ R)) HR. destruct q; simpl.
- rewrite (affinely_elim P) -{2}(affine_affinely (□ P)).
by rewrite affinely_sep_2 wand_elim_l.
- by rewrite affinely_sep_2 wand_elim_l.
Qed.
Global Instance into_wand_intuitionistically p q R P Q :
IntoWand true q R P Q → IntoWand p q (□ R) P Q.
Proof. rewrite /IntoWand /= ⇒ →. by rewrite {1}intuitionistically_if_elim. Qed.
Global Instance into_wand_persistently_true q R P Q :
IntoWand true q R P Q → IntoWand true q (<pers> R) P Q.
Proof. by rewrite /IntoWand /= intuitionistically_persistently_elim. Qed.
Global Instance into_wand_persistently_false q R P Q :
Absorbing R → IntoWand false q R P Q → IntoWand false q (<pers> R) P Q.
Proof. intros ?. by rewrite /IntoWand persistently_elim. Qed.
Absorbing P →
TCOr (BiAffine PROP) (Persistent P) →
MakeAffinely P P' →
FromAssumption false P'' P' →
IntoWand false false (P → Q) P'' Q.
Proof.
rewrite /MakeAffinely /IntoWand /FromAssumption /= ⇒ ? Hpers <- →.
apply wand_intro_l. destruct Hpers.
- rewrite impl_wand_1 affinely_elim wand_elim_r //.
- rewrite persistent_impl_wand_affinely wand_elim_r //.
Qed.
Global Instance into_wand_impl_false_true P Q P' :
Absorbing P' →
FromAssumption true P P' →
IntoWand false true (P' → Q) P Q.
Proof.
rewrite /IntoWand /FromAssumption /= ⇒ ? HP. apply wand_intro_l.
rewrite -(persistently_elim P').
rewrite persistent_impl_wand_affinely.
rewrite -(intuitionistically_idemp P) HP.
apply wand_elim_r.
Qed.
Global Instance into_wand_impl_true_false P Q P' P'' :
MakeAffinely P P' →
FromAssumption false P'' P' →
IntoWand true false (P → Q) P'' Q.
Proof.
rewrite /MakeAffinely /IntoWand /FromAssumption /= ⇒ <- →.
apply wand_intro_r.
rewrite sep_and intuitionistically_elim affinely_elim impl_elim_l //.
Qed.
Global Instance into_wand_impl_true_true P Q P' :
FromAssumption true P P' →
IntoWand true true (P' → Q) P Q.
Proof.
rewrite /FromAssumption /IntoWand /= ⇒ <-. apply wand_intro_l.
rewrite sep_and [(□ (_ → _))%I]intuitionistically_elim impl_elim_r //.
Qed.
Global Instance into_wand_wandM p q mP' P Q :
FromAssumption q P (default emp%I mP') → IntoWand p q (mP' -∗? Q) P Q.
Proof. rewrite /IntoWand wandM_sound. exact: into_wand_wand. Qed.
Global Instance into_wand_and_l p q R1 R2 P' Q' :
IntoWand p q R1 P' Q' → IntoWand p q (R1 ∧ R2) P' Q'.
Proof. rewrite /IntoWand⇒ ?. by rewrite /bi_wand_iff and_elim_l. Qed.
Global Instance into_wand_and_r p q R1 R2 P' Q' :
IntoWand p q R2 Q' P' → IntoWand p q (R1 ∧ R2) Q' P'.
Proof. rewrite /IntoWand⇒ ?. by rewrite /bi_wand_iff and_elim_r. Qed.
Global Instance into_wand_forall_prop_true p (φ : Prop) P :
IntoWand p true (∀ _ : φ, P) ⌜ φ ⌝ P.
Proof.
rewrite /IntoWand (intuitionistically_if_elim p) /=
-impl_wand_intuitionistically -pure_impl_forall
bi.persistently_elim //.
Qed.
Global Instance into_wand_forall_prop_false p (φ : Prop) Pφ P :
MakeAffinely ⌜ φ ⌝ Pφ →
IntoWand p false (∀ _ : φ, P) Pφ P.
Proof.
rewrite /MakeAffinely /IntoWand⇒ <-.
rewrite (intuitionistically_if_elim p) /=.
by rewrite -pure_impl_forall -persistent_impl_wand_affinely.
Qed.
Global Instance into_wand_forall {A} p q (Φ : A → PROP) P Q x :
IntoWand p q (Φ x) P Q → IntoWand p q (∀ x, Φ x) P Q.
Proof. rewrite /IntoWand⇒ <-. by rewrite (forall_elim x). Qed.
Global Instance into_wand_tforall {TT : tele} p q (Φ : TT → PROP) P Q x :
IntoWand p q (Φ x) P Q → IntoWand p q (∀.. x, Φ x) P Q.
Proof. rewrite /IntoWand⇒ <-. by rewrite bi_tforall_forall (forall_elim x). Qed.
Global Instance into_wand_affine p q R P Q :
IntoWand p q R P Q → IntoWand p q (<affine> R) (<affine> P) (<affine> Q).
Proof.
rewrite /IntoWand /= ⇒ HR. apply wand_intro_r. destruct p; simpl in ×.
- rewrite (affinely_elim R) -(affine_affinely (□ R)) HR. destruct q; simpl in ×.
+ rewrite (affinely_elim P) -{2}(affine_affinely (□ P)).
by rewrite affinely_sep_2 wand_elim_l.
+ by rewrite affinely_sep_2 wand_elim_l.
- rewrite HR. destruct q; simpl in ×.
+ rewrite (affinely_elim P) -{2}(affine_affinely (□ P)).
by rewrite affinely_sep_2 wand_elim_l.
+ by rewrite affinely_sep_2 wand_elim_l.
Qed.
Global Instance into_wand_affine_args q R P Q :
IntoWand true q R P Q → IntoWand' true q R (<affine> P) (<affine> Q).
Proof.
rewrite /IntoWand' /IntoWand /= ⇒ HR. apply wand_intro_r.
rewrite -(affine_affinely (□ R)) HR. destruct q; simpl.
- rewrite (affinely_elim P) -{2}(affine_affinely (□ P)).
by rewrite affinely_sep_2 wand_elim_l.
- by rewrite affinely_sep_2 wand_elim_l.
Qed.
Global Instance into_wand_intuitionistically p q R P Q :
IntoWand true q R P Q → IntoWand p q (□ R) P Q.
Proof. rewrite /IntoWand /= ⇒ →. by rewrite {1}intuitionistically_if_elim. Qed.
Global Instance into_wand_persistently_true q R P Q :
IntoWand true q R P Q → IntoWand true q (<pers> R) P Q.
Proof. by rewrite /IntoWand /= intuitionistically_persistently_elim. Qed.
Global Instance into_wand_persistently_false q R P Q :
Absorbing R → IntoWand false q R P Q → IntoWand false q (<pers> R) P Q.
Proof. intros ?. by rewrite /IntoWand persistently_elim. Qed.
FromWand
Global Instance from_wand_wand P1 P2 : FromWand (P1 -∗ P2) P1 P2.
Proof. by rewrite /FromWand. Qed.
Global Instance from_wand_wandM mP1 P2 :
FromWand (mP1 -∗? P2) (default emp mP1)%I P2.
Proof. by rewrite /FromWand wandM_sound. Qed.
Proof. by rewrite /FromWand. Qed.
Global Instance from_wand_wandM mP1 P2 :
FromWand (mP1 -∗? P2) (default emp mP1)%I P2.
Proof. by rewrite /FromWand wandM_sound. Qed.
FromImpl
FromAnd
Global Instance from_and_and P1 P2 : FromAnd (P1 ∧ P2) P1 P2 | 100.
Proof. by rewrite /FromAnd. Qed.
Global Instance from_and_sep_persistent_l P1 P1' P2 :
Persistent P1 → IntoAbsorbingly P1' P1 → FromAnd (P1 ∗ P2) P1' P2 | 9.
Proof.
rewrite /IntoAbsorbingly /FromAnd⇒ ? →.
rewrite persistent_and_affinely_sep_l_1 {1}(persistent_persistently_2 P1).
by rewrite absorbingly_elim_persistently -{2}(intuitionistically_elim P1).
Qed.
Global Instance from_and_sep_persistent_r P1 P2 P2' :
Persistent P2 → IntoAbsorbingly P2' P2 → FromAnd (P1 ∗ P2) P1 P2' | 10.
Proof.
rewrite /IntoAbsorbingly /FromAnd⇒ ? →.
rewrite persistent_and_affinely_sep_r_1 {1}(persistent_persistently_2 P2).
by rewrite absorbingly_elim_persistently -{2}(intuitionistically_elim P2).
Qed.
Global Instance from_and_pure φ ψ : @FromAnd PROP ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromAnd pure_and. Qed.
Global Instance from_and_persistently P Q1 Q2 :
FromAnd P Q1 Q2 →
FromAnd (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /FromAnd⇒ <-. by rewrite persistently_and. Qed.
Global Instance from_and_persistently_sep P Q1 Q2 :
FromSep P Q1 Q2 →
FromAnd (<pers> P) (<pers> Q1) (<pers> Q2) | 11.
Proof. rewrite /FromAnd⇒ <-. by rewrite -persistently_and persistently_and_sep. Qed.
Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat → A → PROP) l x l' :
IsCons l x l' →
Persistent (Φ 0 x) →
FromAnd ([∗ list] k ↦ y ∈ l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons⇒ → ?. by rewrite /FromAnd big_sepL_cons persistent_and_sep_1. Qed.
Global Instance from_and_big_sepL_app_persistent {A} (Φ : nat → A → PROP) l l1 l2 :
IsApp l l1 l2 →
(∀ k y, Persistent (Φ k y)) →
FromAnd ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp⇒ → ?. by rewrite /FromAnd big_sepL_app persistent_and_sep_1. Qed.
Global Instance from_and_big_sepL2_cons_persistent {A B}
(Φ : nat → A → B → PROP) l1 x1 l1' l2 x2 l2' :
IsCons l1 x1 l1' → IsCons l2 x2 l2' →
Persistent (Φ 0 x1 x2) →
FromAnd ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
(Φ 0 x1 x2) ([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ (S k) y1 y2).
Proof.
rewrite /IsCons⇒ → → ?.
by rewrite /FromAnd big_sepL2_cons persistent_and_sep_1.
Qed.
Global Instance from_and_big_sepL2_app_persistent {A B}
(Φ : nat → A → B → PROP) l1 l1' l1'' l2 l2' l2'' :
IsApp l1 l1' l1'' → IsApp l2 l2' l2'' →
(∀ k y1 y2, Persistent (Φ k y1 y2)) →
FromAnd ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1'';l2'', Φ (length l1' + k) y1 y2).
Proof.
rewrite /IsApp⇒ → → ?. rewrite /FromAnd persistent_and_sep_1.
apply wand_elim_l', big_sepL2_app.
Qed.
Global Instance from_and_big_sepMS_disj_union_persistent
`{Countable A} (Φ : A → PROP) X1 X2 :
(∀ y, Persistent (Φ y)) →
FromAnd ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y).
Proof. intros. by rewrite /FromAnd big_sepMS_disj_union persistent_and_sep_1. Qed.
Proof. by rewrite /FromAnd. Qed.
Global Instance from_and_sep_persistent_l P1 P1' P2 :
Persistent P1 → IntoAbsorbingly P1' P1 → FromAnd (P1 ∗ P2) P1' P2 | 9.
Proof.
rewrite /IntoAbsorbingly /FromAnd⇒ ? →.
rewrite persistent_and_affinely_sep_l_1 {1}(persistent_persistently_2 P1).
by rewrite absorbingly_elim_persistently -{2}(intuitionistically_elim P1).
Qed.
Global Instance from_and_sep_persistent_r P1 P2 P2' :
Persistent P2 → IntoAbsorbingly P2' P2 → FromAnd (P1 ∗ P2) P1 P2' | 10.
Proof.
rewrite /IntoAbsorbingly /FromAnd⇒ ? →.
rewrite persistent_and_affinely_sep_r_1 {1}(persistent_persistently_2 P2).
by rewrite absorbingly_elim_persistently -{2}(intuitionistically_elim P2).
Qed.
Global Instance from_and_pure φ ψ : @FromAnd PROP ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromAnd pure_and. Qed.
Global Instance from_and_persistently P Q1 Q2 :
FromAnd P Q1 Q2 →
FromAnd (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /FromAnd⇒ <-. by rewrite persistently_and. Qed.
Global Instance from_and_persistently_sep P Q1 Q2 :
FromSep P Q1 Q2 →
FromAnd (<pers> P) (<pers> Q1) (<pers> Q2) | 11.
Proof. rewrite /FromAnd⇒ <-. by rewrite -persistently_and persistently_and_sep. Qed.
Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat → A → PROP) l x l' :
IsCons l x l' →
Persistent (Φ 0 x) →
FromAnd ([∗ list] k ↦ y ∈ l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons⇒ → ?. by rewrite /FromAnd big_sepL_cons persistent_and_sep_1. Qed.
Global Instance from_and_big_sepL_app_persistent {A} (Φ : nat → A → PROP) l l1 l2 :
IsApp l l1 l2 →
(∀ k y, Persistent (Φ k y)) →
FromAnd ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp⇒ → ?. by rewrite /FromAnd big_sepL_app persistent_and_sep_1. Qed.
Global Instance from_and_big_sepL2_cons_persistent {A B}
(Φ : nat → A → B → PROP) l1 x1 l1' l2 x2 l2' :
IsCons l1 x1 l1' → IsCons l2 x2 l2' →
Persistent (Φ 0 x1 x2) →
FromAnd ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
(Φ 0 x1 x2) ([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ (S k) y1 y2).
Proof.
rewrite /IsCons⇒ → → ?.
by rewrite /FromAnd big_sepL2_cons persistent_and_sep_1.
Qed.
Global Instance from_and_big_sepL2_app_persistent {A B}
(Φ : nat → A → B → PROP) l1 l1' l1'' l2 l2' l2'' :
IsApp l1 l1' l1'' → IsApp l2 l2' l2'' →
(∀ k y1 y2, Persistent (Φ k y1 y2)) →
FromAnd ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1'';l2'', Φ (length l1' + k) y1 y2).
Proof.
rewrite /IsApp⇒ → → ?. rewrite /FromAnd persistent_and_sep_1.
apply wand_elim_l', big_sepL2_app.
Qed.
Global Instance from_and_big_sepMS_disj_union_persistent
`{Countable A} (Φ : A → PROP) X1 X2 :
(∀ y, Persistent (Φ y)) →
FromAnd ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y).
Proof. intros. by rewrite /FromAnd big_sepMS_disj_union persistent_and_sep_1. Qed.
FromSep
Global Instance from_sep_sep P1 P2 : FromSep (P1 ∗ P2) P1 P2 | 100.
Proof. by rewrite /FromSep. Qed.
Global Instance from_sep_and P1 P2 :
TCOr (Affine P1) (Absorbing P2) → TCOr (Affine P2) (Absorbing P1) →
FromSep (P1 ∧ P2) P1 P2 | 101.
Proof. intros. by rewrite /FromSep sep_and. Qed.
Global Instance from_sep_pure φ ψ : @FromSep PROP ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromSep pure_and sep_and. Qed.
Global Instance from_sep_affinely P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (<affine> P) (<affine> Q1) (<affine> Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite affinely_sep_2. Qed.
Global Instance from_sep_intuitionistically P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (□ P) (□ Q1) (□ Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite intuitionistically_sep_2. Qed.
Global Instance from_sep_absorbingly P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (<absorb> P) (<absorb> Q1) (<absorb> Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite absorbingly_sep. Qed.
Global Instance from_sep_persistently P Q1 Q2 :
FromSep P Q1 Q2 →
FromSep (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite persistently_sep_2. Qed.
Global Instance from_sep_big_sepL_cons {A} (Φ : nat → A → PROP) l x l' :
IsCons l x l' →
FromSep ([∗ list] k ↦ y ∈ l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons⇒ →. by rewrite /FromSep big_sepL_cons. Qed.
Global Instance from_sep_big_sepL_app {A} (Φ : nat → A → PROP) l l1 l2 :
IsApp l l1 l2 →
FromSep ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp⇒ →. by rewrite /FromSep big_opL_app. Qed.
Global Instance from_sep_big_sepL2_cons {A B} (Φ : nat → A → B → PROP)
l1 x1 l1' l2 x2 l2' :
IsCons l1 x1 l1' → IsCons l2 x2 l2' →
FromSep ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
(Φ 0 x1 x2) ([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ (S k) y1 y2).
Proof. rewrite /IsCons⇒ → →. by rewrite /FromSep big_sepL2_cons. Qed.
Global Instance from_sep_big_sepL2_app {A B} (Φ : nat → A → B → PROP)
l1 l1' l1'' l2 l2' l2'' :
IsApp l1 l1' l1'' → IsApp l2 l2' l2'' →
FromSep ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1'';l2'', Φ (length l1' + k) y1 y2).
Proof. rewrite /IsApp=>-> →. apply wand_elim_l', big_sepL2_app. Qed.
Global Instance from_sep_big_sepMS_disj_union `{Countable A} (Φ : A → PROP) X1 X2 :
FromSep ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y).
Proof. by rewrite /FromSep big_sepMS_disj_union. Qed.
Proof. by rewrite /FromSep. Qed.
Global Instance from_sep_and P1 P2 :
TCOr (Affine P1) (Absorbing P2) → TCOr (Affine P2) (Absorbing P1) →
FromSep (P1 ∧ P2) P1 P2 | 101.
Proof. intros. by rewrite /FromSep sep_and. Qed.
Global Instance from_sep_pure φ ψ : @FromSep PROP ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromSep pure_and sep_and. Qed.
Global Instance from_sep_affinely P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (<affine> P) (<affine> Q1) (<affine> Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite affinely_sep_2. Qed.
Global Instance from_sep_intuitionistically P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (□ P) (□ Q1) (□ Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite intuitionistically_sep_2. Qed.
Global Instance from_sep_absorbingly P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (<absorb> P) (<absorb> Q1) (<absorb> Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite absorbingly_sep. Qed.
Global Instance from_sep_persistently P Q1 Q2 :
FromSep P Q1 Q2 →
FromSep (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /FromSep⇒ <-. by rewrite persistently_sep_2. Qed.
Global Instance from_sep_big_sepL_cons {A} (Φ : nat → A → PROP) l x l' :
IsCons l x l' →
FromSep ([∗ list] k ↦ y ∈ l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons⇒ →. by rewrite /FromSep big_sepL_cons. Qed.
Global Instance from_sep_big_sepL_app {A} (Φ : nat → A → PROP) l l1 l2 :
IsApp l l1 l2 →
FromSep ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp⇒ →. by rewrite /FromSep big_opL_app. Qed.
Global Instance from_sep_big_sepL2_cons {A B} (Φ : nat → A → B → PROP)
l1 x1 l1' l2 x2 l2' :
IsCons l1 x1 l1' → IsCons l2 x2 l2' →
FromSep ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
(Φ 0 x1 x2) ([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ (S k) y1 y2).
Proof. rewrite /IsCons⇒ → →. by rewrite /FromSep big_sepL2_cons. Qed.
Global Instance from_sep_big_sepL2_app {A B} (Φ : nat → A → B → PROP)
l1 l1' l1'' l2 l2' l2'' :
IsApp l1 l1' l1'' → IsApp l2 l2' l2'' →
FromSep ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ k y1 y2)
([∗ list] k ↦ y1;y2 ∈ l1'';l2'', Φ (length l1' + k) y1 y2).
Proof. rewrite /IsApp=>-> →. apply wand_elim_l', big_sepL2_app. Qed.
Global Instance from_sep_big_sepMS_disj_union `{Countable A} (Φ : A → PROP) X1 X2 :
FromSep ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y).
Proof. by rewrite /FromSep big_sepMS_disj_union. Qed.
MaybeCombineSepAs
Global Instance maybe_combine_sep_as_affinely Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (<affine> Q1) (<affine> Q2) (<affine> P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite affinely_sep_2. Qed.
Global Instance maybe_combine_sep_as_intuitionistically Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (□ Q1) (□ Q2) (□ P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite intuitionistically_sep_2. Qed.
Global Instance maybe_combine_sep_as_absorbingly Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (<absorb> Q1) (<absorb> Q2) (<absorb> P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite absorbingly_sep. Qed.
Global Instance maybe_combine_sep_as_persistently Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (<pers> Q1) (<pers> Q2) (<pers> P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite persistently_sep_2. Qed.
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (<affine> Q1) (<affine> Q2) (<affine> P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite affinely_sep_2. Qed.
Global Instance maybe_combine_sep_as_intuitionistically Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (□ Q1) (□ Q2) (□ P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite intuitionistically_sep_2. Qed.
Global Instance maybe_combine_sep_as_absorbingly Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (<absorb> Q1) (<absorb> Q2) (<absorb> P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite absorbingly_sep. Qed.
Global Instance maybe_combine_sep_as_persistently Q1 Q2 P progress :
MaybeCombineSepAs Q1 Q2 P progress →
MaybeCombineSepAs (<pers> Q1) (<pers> Q2) (<pers> P) progress | 30.
Proof. rewrite /MaybeCombineSepAs =><-. by rewrite persistently_sep_2. Qed.
CombineSepGives
Global Instance combine_sep_as_affinely Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (<affine> Q1) (<affine> Q2) P | 30.
Proof. by rewrite /CombineSepGives affinely_sep_2 affinely_elim ⇒ →. Qed.
Global Instance combine_sep_as_intuitionistically Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (□ Q1) (□ Q2) P | 30.
Proof. rewrite /CombineSepGives ⇒ <-. by rewrite !intuitionistically_elim. Qed.
Global Instance combine_sep_as_absorbingly Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (<absorb> Q1) (<absorb> Q2) P | 30.
Proof.
rewrite /CombineSepGives -absorbingly_sep =>->.
by rewrite absorbingly_elim_persistently.
Qed.
Global Instance combine_sep_as_persistently Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (<pers> Q1) (<pers> Q2) P | 30.
Proof.
rewrite /CombineSepGives persistently_sep_2 ⇒ →.
by rewrite persistently_idemp.
Qed.
CombineSepGives Q1 Q2 P → CombineSepGives (<affine> Q1) (<affine> Q2) P | 30.
Proof. by rewrite /CombineSepGives affinely_sep_2 affinely_elim ⇒ →. Qed.
Global Instance combine_sep_as_intuitionistically Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (□ Q1) (□ Q2) P | 30.
Proof. rewrite /CombineSepGives ⇒ <-. by rewrite !intuitionistically_elim. Qed.
Global Instance combine_sep_as_absorbingly Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (<absorb> Q1) (<absorb> Q2) P | 30.
Proof.
rewrite /CombineSepGives -absorbingly_sep =>->.
by rewrite absorbingly_elim_persistently.
Qed.
Global Instance combine_sep_as_persistently Q1 Q2 P :
CombineSepGives Q1 Q2 P → CombineSepGives (<pers> Q1) (<pers> Q2) P | 30.
Proof.
rewrite /CombineSepGives persistently_sep_2 ⇒ →.
by rewrite persistently_idemp.
Qed.
IntoAnd
Global Instance into_and_and p P Q : IntoAnd p (P ∧ Q) P Q | 10.
Proof. by rewrite /IntoAnd intuitionistically_if_and. Qed.
Global Instance into_and_and_affine_l P Q Q' :
Affine P → FromAffinely Q' Q → IntoAnd false (P ∧ Q) P Q'.
Proof.
intros. rewrite /IntoAnd /=.
by rewrite -(affine_affinely P) affinely_and_l affinely_and (from_affinely Q').
Qed.
Global Instance into_and_and_affine_r P P' Q :
Affine Q → FromAffinely P' P → IntoAnd false (P ∧ Q) P' Q.
Proof.
intros. rewrite /IntoAnd /=.
by rewrite -(affine_affinely Q) affinely_and_r affinely_and (from_affinely P').
Qed.
Global Instance into_and_sep `{!BiPositive PROP} P Q : IntoAnd true (P ∗ Q) P Q.
Proof.
rewrite /IntoAnd /= intuitionistically_sep
-and_sep_intuitionistically intuitionistically_and //.
Qed.
Global Instance into_and_sep_affine p P Q :
TCOr (Affine P) (Absorbing Q) → TCOr (Affine Q) (Absorbing P) →
IntoAnd p (P ∗ Q) P Q.
Proof. intros. by rewrite /IntoAnd /= sep_and. Qed.
Global Instance into_and_pure p φ ψ : @IntoAnd PROP p ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoAnd pure_and intuitionistically_if_and. Qed.
Global Instance into_and_affinely p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (<affine> P) (<affine> Q1) (<affine> Q2).
Proof.
rewrite /IntoAnd. destruct p; simpl.
- rewrite -affinely_and !intuitionistically_affinely_elim //.
- intros →. by rewrite affinely_and.
Qed.
Global Instance into_and_intuitionistically p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (□ P) (□ Q1) (□ Q2).
Proof.
rewrite /IntoAnd. destruct p; simpl.
- rewrite -intuitionistically_and !intuitionistically_idemp //.
- intros →. by rewrite intuitionistically_and.
Qed.
Global Instance into_and_persistently p P Q1 Q2 :
IntoAnd p P Q1 Q2 →
IntoAnd p (<pers> P) (<pers> Q1) (<pers> Q2).
Proof.
rewrite /IntoAnd /=. destruct p; simpl.
- rewrite -persistently_and !intuitionistically_persistently_elim //.
- intros →. by rewrite persistently_and.
Qed.
Proof. by rewrite /IntoAnd intuitionistically_if_and. Qed.
Global Instance into_and_and_affine_l P Q Q' :
Affine P → FromAffinely Q' Q → IntoAnd false (P ∧ Q) P Q'.
Proof.
intros. rewrite /IntoAnd /=.
by rewrite -(affine_affinely P) affinely_and_l affinely_and (from_affinely Q').
Qed.
Global Instance into_and_and_affine_r P P' Q :
Affine Q → FromAffinely P' P → IntoAnd false (P ∧ Q) P' Q.
Proof.
intros. rewrite /IntoAnd /=.
by rewrite -(affine_affinely Q) affinely_and_r affinely_and (from_affinely P').
Qed.
Global Instance into_and_sep `{!BiPositive PROP} P Q : IntoAnd true (P ∗ Q) P Q.
Proof.
rewrite /IntoAnd /= intuitionistically_sep
-and_sep_intuitionistically intuitionistically_and //.
Qed.
Global Instance into_and_sep_affine p P Q :
TCOr (Affine P) (Absorbing Q) → TCOr (Affine Q) (Absorbing P) →
IntoAnd p (P ∗ Q) P Q.
Proof. intros. by rewrite /IntoAnd /= sep_and. Qed.
Global Instance into_and_pure p φ ψ : @IntoAnd PROP p ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoAnd pure_and intuitionistically_if_and. Qed.
Global Instance into_and_affinely p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (<affine> P) (<affine> Q1) (<affine> Q2).
Proof.
rewrite /IntoAnd. destruct p; simpl.
- rewrite -affinely_and !intuitionistically_affinely_elim //.
- intros →. by rewrite affinely_and.
Qed.
Global Instance into_and_intuitionistically p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (□ P) (□ Q1) (□ Q2).
Proof.
rewrite /IntoAnd. destruct p; simpl.
- rewrite -intuitionistically_and !intuitionistically_idemp //.
- intros →. by rewrite intuitionistically_and.
Qed.
Global Instance into_and_persistently p P Q1 Q2 :
IntoAnd p P Q1 Q2 →
IntoAnd p (<pers> P) (<pers> Q1) (<pers> Q2).
Proof.
rewrite /IntoAnd /=. destruct p; simpl.
- rewrite -persistently_and !intuitionistically_persistently_elim //.
- intros →. by rewrite persistently_and.
Qed.
IntoSep
Global Instance into_sep_sep P Q : IntoSep (P ∗ Q) P Q.
Proof. by rewrite /IntoSep. Qed.
Inductive AndIntoSep : PROP → PROP → PROP → PROP → Prop :=
| and_into_sep_affine P Q Q' : Affine P → FromAffinely Q' Q → AndIntoSep P P Q Q'
| and_into_sep P Q : AndIntoSep P (<affine> P) Q Q.
Existing Class AndIntoSep.
Global Existing Instance and_into_sep_affine | 0.
Global Existing Instance and_into_sep | 2.
Global Instance into_sep_and_persistent_l P P' Q Q' :
Persistent P → AndIntoSep P P' Q Q' → IntoSep (P ∧ Q) P' Q'.
Proof.
destruct 2 as [P Q Q'|P Q]; rewrite /IntoSep.
- rewrite -(from_affinely Q' Q) -(affine_affinely P) affinely_and_lr.
by rewrite persistent_and_affinely_sep_l_1.
- by rewrite persistent_and_affinely_sep_l_1.
Qed.
Global Instance into_sep_and_persistent_r P P' Q Q' :
Persistent Q → AndIntoSep Q Q' P P' → IntoSep (P ∧ Q) P' Q'.
Proof.
destruct 2 as [Q P P'|Q P]; rewrite /IntoSep.
- rewrite -(from_affinely P' P) -(affine_affinely Q) -affinely_and_lr.
by rewrite persistent_and_affinely_sep_r_1.
- by rewrite persistent_and_affinely_sep_r_1.
Qed.
Global Instance into_sep_pure φ ψ : @IntoSep PROP ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoSep pure_and persistent_and_sep_1. Qed.
Global Instance into_sep_affinely `{!BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (<affine> P) (<affine> Q1) (<affine> Q2) | 0.
Proof. rewrite /IntoSep /= ⇒ →. by rewrite affinely_sep. Qed.
Global Instance into_sep_intuitionistically `{!BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (□ P) (□ Q1) (□ Q2) | 0.
Proof. rewrite /IntoSep /= ⇒ →. by rewrite intuitionistically_sep. Qed.
Global Instance into_sep_affinely_trim P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (<affine> P) Q1 Q2 | 20.
Proof. rewrite /IntoSep /= ⇒ →. by rewrite affinely_elim. Qed.
Global Instance into_sep_persistently `{!BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 →
IntoSep (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /IntoSep /= ⇒ →. by rewrite persistently_sep. Qed.
Global Instance into_sep_persistently_affine P Q1 Q2 :
IntoSep P Q1 Q2 →
TCOr (Affine Q1) (Absorbing Q2) → TCOr (Affine Q2) (Absorbing Q1) →
IntoSep (<pers> P) (<pers> Q1) (<pers> Q2).
Proof.
rewrite /IntoSep /= ⇒ → ??.
by rewrite sep_and persistently_and persistently_and_sep_l_1.
Qed.
Global Instance into_sep_intuitionistically_affine P Q1 Q2 :
IntoSep P Q1 Q2 →
TCOr (Affine Q1) (Absorbing Q2) → TCOr (Affine Q2) (Absorbing Q1) →
IntoSep (□ P) (□ Q1) (□ Q2).
Proof.
rewrite /IntoSep /= ⇒ → ??.
by rewrite sep_and intuitionistically_and and_sep_intuitionistically.
Qed.
Global Instance into_sep_big_sepL_cons {A} (Φ : nat → A → PROP) l x l' :
IsCons l x l' →
IntoSep ([∗ list] k ↦ y ∈ l, Φ k y)
(Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons=>->. by rewrite /IntoSep big_sepL_cons. Qed.
Global Instance into_sep_big_sepL_app {A} (Φ : nat → A → PROP) l l1 l2 :
IsApp l l1 l2 →
IntoSep ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp=>->. by rewrite /IntoSep big_sepL_app. Qed.
Global Instance into_sep_big_sepL2_cons {A B}
(Φ : nat → A → B → PROP) l1 x1 l1' l2 x2 l2' :
IsCons l1 x1 l1' → IsCons l2 x2 l2' →
IntoSep ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
(Φ 0 x1 x2) ([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ (S k) y1 y2).
Proof. rewrite /IsCons=>-> →. by rewrite /IntoSep big_sepL2_cons. Qed.
Global Instance into_sep_big_sepMS_disj_union `{Countable A} (Φ : A → PROP) X1 X2 :
IntoSep ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y).
Proof. by rewrite /IntoSep big_sepMS_disj_union. Qed.
Proof. by rewrite /IntoSep. Qed.
Inductive AndIntoSep : PROP → PROP → PROP → PROP → Prop :=
| and_into_sep_affine P Q Q' : Affine P → FromAffinely Q' Q → AndIntoSep P P Q Q'
| and_into_sep P Q : AndIntoSep P (<affine> P) Q Q.
Existing Class AndIntoSep.
Global Existing Instance and_into_sep_affine | 0.
Global Existing Instance and_into_sep | 2.
Global Instance into_sep_and_persistent_l P P' Q Q' :
Persistent P → AndIntoSep P P' Q Q' → IntoSep (P ∧ Q) P' Q'.
Proof.
destruct 2 as [P Q Q'|P Q]; rewrite /IntoSep.
- rewrite -(from_affinely Q' Q) -(affine_affinely P) affinely_and_lr.
by rewrite persistent_and_affinely_sep_l_1.
- by rewrite persistent_and_affinely_sep_l_1.
Qed.
Global Instance into_sep_and_persistent_r P P' Q Q' :
Persistent Q → AndIntoSep Q Q' P P' → IntoSep (P ∧ Q) P' Q'.
Proof.
destruct 2 as [Q P P'|Q P]; rewrite /IntoSep.
- rewrite -(from_affinely P' P) -(affine_affinely Q) -affinely_and_lr.
by rewrite persistent_and_affinely_sep_r_1.
- by rewrite persistent_and_affinely_sep_r_1.
Qed.
Global Instance into_sep_pure φ ψ : @IntoSep PROP ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoSep pure_and persistent_and_sep_1. Qed.
Global Instance into_sep_affinely `{!BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (<affine> P) (<affine> Q1) (<affine> Q2) | 0.
Proof. rewrite /IntoSep /= ⇒ →. by rewrite affinely_sep. Qed.
Global Instance into_sep_intuitionistically `{!BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (□ P) (□ Q1) (□ Q2) | 0.
Proof. rewrite /IntoSep /= ⇒ →. by rewrite intuitionistically_sep. Qed.
Global Instance into_sep_affinely_trim P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (<affine> P) Q1 Q2 | 20.
Proof. rewrite /IntoSep /= ⇒ →. by rewrite affinely_elim. Qed.
Global Instance into_sep_persistently `{!BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 →
IntoSep (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /IntoSep /= ⇒ →. by rewrite persistently_sep. Qed.
Global Instance into_sep_persistently_affine P Q1 Q2 :
IntoSep P Q1 Q2 →
TCOr (Affine Q1) (Absorbing Q2) → TCOr (Affine Q2) (Absorbing Q1) →
IntoSep (<pers> P) (<pers> Q1) (<pers> Q2).
Proof.
rewrite /IntoSep /= ⇒ → ??.
by rewrite sep_and persistently_and persistently_and_sep_l_1.
Qed.
Global Instance into_sep_intuitionistically_affine P Q1 Q2 :
IntoSep P Q1 Q2 →
TCOr (Affine Q1) (Absorbing Q2) → TCOr (Affine Q2) (Absorbing Q1) →
IntoSep (□ P) (□ Q1) (□ Q2).
Proof.
rewrite /IntoSep /= ⇒ → ??.
by rewrite sep_and intuitionistically_and and_sep_intuitionistically.
Qed.
Global Instance into_sep_big_sepL_cons {A} (Φ : nat → A → PROP) l x l' :
IsCons l x l' →
IntoSep ([∗ list] k ↦ y ∈ l, Φ k y)
(Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons=>->. by rewrite /IntoSep big_sepL_cons. Qed.
Global Instance into_sep_big_sepL_app {A} (Φ : nat → A → PROP) l l1 l2 :
IsApp l l1 l2 →
IntoSep ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp=>->. by rewrite /IntoSep big_sepL_app. Qed.
Global Instance into_sep_big_sepL2_cons {A B}
(Φ : nat → A → B → PROP) l1 x1 l1' l2 x2 l2' :
IsCons l1 x1 l1' → IsCons l2 x2 l2' →
IntoSep ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2)
(Φ 0 x1 x2) ([∗ list] k ↦ y1;y2 ∈ l1';l2', Φ (S k) y1 y2).
Proof. rewrite /IsCons=>-> →. by rewrite /IntoSep big_sepL2_cons. Qed.
Global Instance into_sep_big_sepMS_disj_union `{Countable A} (Φ : A → PROP) X1 X2 :
IntoSep ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y).
Proof. by rewrite /IntoSep big_sepMS_disj_union. Qed.
FromOr
Global Instance from_or_or P1 P2 : FromOr (P1 ∨ P2) P1 P2.
Proof. by rewrite /FromOr. Qed.
Global Instance from_or_pure φ ψ : @FromOr PROP ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromOr pure_or. Qed.
Global Instance from_or_affinely P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (<affine> P) (<affine> Q1) (<affine> Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite affinely_or. Qed.
Global Instance from_or_intuitionistically P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (□ P) (□ Q1) (□ Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite intuitionistically_or. Qed.
Global Instance from_or_absorbingly P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (<absorb> P) (<absorb> Q1) (<absorb> Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite absorbingly_or. Qed.
Global Instance from_or_persistently P Q1 Q2 :
FromOr P Q1 Q2 →
FromOr (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite persistently_or. Qed.
Proof. by rewrite /FromOr. Qed.
Global Instance from_or_pure φ ψ : @FromOr PROP ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromOr pure_or. Qed.
Global Instance from_or_affinely P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (<affine> P) (<affine> Q1) (<affine> Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite affinely_or. Qed.
Global Instance from_or_intuitionistically P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (□ P) (□ Q1) (□ Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite intuitionistically_or. Qed.
Global Instance from_or_absorbingly P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (<absorb> P) (<absorb> Q1) (<absorb> Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite absorbingly_or. Qed.
Global Instance from_or_persistently P Q1 Q2 :
FromOr P Q1 Q2 →
FromOr (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /FromOr⇒ <-. by rewrite persistently_or. Qed.
IntoOr
Global Instance into_or_or P Q : IntoOr (P ∨ Q) P Q.
Proof. by rewrite /IntoOr. Qed.
Global Instance into_or_pure φ ψ : @IntoOr PROP ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoOr pure_or. Qed.
Global Instance into_or_affinely P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (<affine> P) (<affine> Q1) (<affine> Q2).
Proof. rewrite /IntoOr=>->. by rewrite affinely_or. Qed.
Global Instance into_or_intuitionistically P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (□ P) (□ Q1) (□ Q2).
Proof. rewrite /IntoOr=>->. by rewrite intuitionistically_or. Qed.
Global Instance into_or_absorbingly P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (<absorb> P) (<absorb> Q1) (<absorb> Q2).
Proof. rewrite /IntoOr=>->. by rewrite absorbingly_or. Qed.
Global Instance into_or_persistently P Q1 Q2 :
IntoOr P Q1 Q2 →
IntoOr (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /IntoOr=>->. by rewrite persistently_or. Qed.
Proof. by rewrite /IntoOr. Qed.
Global Instance into_or_pure φ ψ : @IntoOr PROP ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoOr pure_or. Qed.
Global Instance into_or_affinely P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (<affine> P) (<affine> Q1) (<affine> Q2).
Proof. rewrite /IntoOr=>->. by rewrite affinely_or. Qed.
Global Instance into_or_intuitionistically P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (□ P) (□ Q1) (□ Q2).
Proof. rewrite /IntoOr=>->. by rewrite intuitionistically_or. Qed.
Global Instance into_or_absorbingly P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (<absorb> P) (<absorb> Q1) (<absorb> Q2).
Proof. rewrite /IntoOr=>->. by rewrite absorbingly_or. Qed.
Global Instance into_or_persistently P Q1 Q2 :
IntoOr P Q1 Q2 →
IntoOr (<pers> P) (<pers> Q1) (<pers> Q2).
Proof. rewrite /IntoOr=>->. by rewrite persistently_or. Qed.
FromExist
Global Instance from_exist_texist {TT : tele} (Φ : TT → PROP) :
FromExist (∃.. a, Φ a) Φ.
Proof. by rewrite /FromExist bi_texist_exist. Qed.
Global Instance from_exist_pure {A} (φ : A → Prop) :
@FromExist PROP A ⌜∃ x, φ x⌝ (λ a, ⌜φ a⌝)%I.
Proof. by rewrite /FromExist pure_exist. Qed.
Global Instance from_exist_affinely {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (<affine> P) (λ a, <affine> (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite affinely_exist. Qed.
Global Instance from_exist_intuitionistically {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (□ P) (λ a, □ (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite intuitionistically_exist. Qed.
Global Instance from_exist_absorbingly {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (<absorb> P) (λ a, <absorb> (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite absorbingly_exist. Qed.
Global Instance from_exist_persistently {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (<pers> P) (λ a, <pers> (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite persistently_exist. Qed.
FromExist (∃.. a, Φ a) Φ.
Proof. by rewrite /FromExist bi_texist_exist. Qed.
Global Instance from_exist_pure {A} (φ : A → Prop) :
@FromExist PROP A ⌜∃ x, φ x⌝ (λ a, ⌜φ a⌝)%I.
Proof. by rewrite /FromExist pure_exist. Qed.
Global Instance from_exist_affinely {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (<affine> P) (λ a, <affine> (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite affinely_exist. Qed.
Global Instance from_exist_intuitionistically {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (□ P) (λ a, □ (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite intuitionistically_exist. Qed.
Global Instance from_exist_absorbingly {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (<absorb> P) (λ a, <absorb> (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite absorbingly_exist. Qed.
Global Instance from_exist_persistently {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (<pers> P) (λ a, <pers> (Φ a))%I.
Proof. rewrite /FromExist⇒ <-. by rewrite persistently_exist. Qed.
IntoExist
Global Instance into_exist_exist {A} (Φ : A → PROP) name :
AsIdentName Φ name → IntoExist (bi_exist Φ) Φ name.
Proof. by rewrite /IntoExist. Qed.
Global Instance into_exist_pure {A} (φ : A → Prop) name :
AsIdentName φ name →
@IntoExist PROP A ⌜ex φ⌝ (λ a, ⌜φ a⌝)%I name.
Proof. by rewrite /IntoExist pure_exist. Qed.
Global Instance into_exist_texist {TT : tele} (Φ : TT → PROP) name :
AsIdentName Φ name → IntoExist (bi_texist Φ) Φ name | 10.
Proof. by rewrite /IntoExist bi_texist_exist. Qed.
Global Instance into_exist_affinely {A} P (Φ : A → PROP) name :
IntoExist P Φ name → IntoExist (<affine> P) (λ a, <affine> (Φ a))%I name.
Proof. rewrite /IntoExist⇒ HP. by rewrite HP affinely_exist. Qed.
Global Instance into_exist_intuitionistically {A} P (Φ : A → PROP) name :
IntoExist P Φ name → IntoExist (□ P) (λ a, □ (Φ a))%I name.
Proof. rewrite /IntoExist⇒ HP. by rewrite HP intuitionistically_exist. Qed.
Global Instance into_exist_and_pure PQ P Q (φ : Type) :
IntoAnd false PQ P Q →
IntoPureT P φ →
IntoExist PQ (λ _ : φ, Q) (to_ident_name H) | 10.
Proof.
intros HPQ (φ'&->&?). rewrite /IntoAnd /= in HPQ.
rewrite /IntoExist HPQ (into_pure P).
apply pure_elim_l⇒ Hφ. by rewrite -(exist_intro Hφ).
Qed.
Global Instance into_exist_sep_pure P Q (φ : Type) :
IntoPureT P φ →
TCOr (Affine P) (Absorbing Q) →
IntoExist (P ∗ Q) (λ _ : φ, Q) (to_ident_name H).
Proof.
intros (φ'&->&?) ?. rewrite /IntoExist.
eapply (pure_elim φ'); [by rewrite (into_pure P); apply sep_elim_l, _|]=>?.
rewrite -exist_intro //. apply sep_elim_r, _.
Qed.
Global Instance into_exist_absorbingly {A} P (Φ : A → PROP) name :
IntoExist P Φ name → IntoExist (<absorb> P) (λ a, <absorb> (Φ a))%I name.
Proof. rewrite /IntoExist⇒ HP. by rewrite HP absorbingly_exist. Qed.
Global Instance into_exist_persistently {A} P (Φ : A → PROP) name :
IntoExist P Φ name → IntoExist (<pers> P) (λ a, <pers> (Φ a))%I name.
Proof. rewrite /IntoExist⇒ HP. by rewrite HP persistently_exist. Qed.
IntoForall
Global Instance into_forall_forall {A} (Φ : A → PROP) : IntoForall (∀ a, Φ a) Φ.
Proof. by rewrite /IntoForall. Qed.
Global Instance into_forall_tforall {TT : tele} (Φ : TT → PROP) :
IntoForall (∀.. a, Φ a) Φ | 10.
Proof. by rewrite /IntoForall bi_tforall_forall. Qed.
Global Instance into_forall_affinely {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (<affine> P) (λ a, <affine> (Φ a))%I.
Proof. rewrite /IntoForall⇒ HP. by rewrite HP affinely_forall. Qed.
Global Instance into_forall_intuitionistically {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (□ P) (λ a, □ (Φ a))%I.
Proof. rewrite /IntoForall⇒ HP. by rewrite HP intuitionistically_forall. Qed.
Global Instance into_forall_persistently `{!BiPersistentlyForall PROP} {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (<pers> P) (λ a, <pers> (Φ a))%I.
Proof. rewrite /IntoForall⇒ HP. by rewrite HP persistently_forall. Qed.
Global Instance into_forall_impl_pure a φ P Q :
FromPureT a P φ →
TCOr (TCEq a false) (BiAffine PROP) →
IntoForall (P → Q) (λ _ : φ, Q).
Proof.
rewrite /FromPureT /FromPure /IntoForall⇒ -[φ' [-> <-]] [->|?] /=.
- by rewrite pure_impl_forall.
- by rewrite -affinely_affinely_if affine_affinely pure_impl_forall.
Qed.
Global Instance into_forall_wand_pure a φ P Q :
FromPureT a P φ → IntoForall (P -∗ Q) (λ _ : φ, Q).
Proof.
rewrite /FromPureT /FromPure /IntoForall⇒ -[φ' [-> <-]] /=.
apply forall_intro=>? /=. rewrite -affinely_affinely_if.
by rewrite -(pure_intro _ True) // /bi_affinely right_id emp_wand.
Qed.
Global Instance into_forall_wand P Q :
IntoForall (P -∗ Q) (λ _ : ⊢ P, Q) | 10.
Proof. rewrite /IntoForall. apply forall_intro=><-. rewrite emp_wand //. Qed.
Global Instance into_forall_impl `{!BiAffine PROP} P Q :
IntoForall (P → Q) (λ _ : ⊢ P, Q) | 10.
Proof.
rewrite /IntoForall. apply forall_intro=><-. rewrite -True_emp True_impl //.
Qed.
Proof. by rewrite /IntoForall. Qed.
Global Instance into_forall_tforall {TT : tele} (Φ : TT → PROP) :
IntoForall (∀.. a, Φ a) Φ | 10.
Proof. by rewrite /IntoForall bi_tforall_forall. Qed.
Global Instance into_forall_affinely {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (<affine> P) (λ a, <affine> (Φ a))%I.
Proof. rewrite /IntoForall⇒ HP. by rewrite HP affinely_forall. Qed.
Global Instance into_forall_intuitionistically {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (□ P) (λ a, □ (Φ a))%I.
Proof. rewrite /IntoForall⇒ HP. by rewrite HP intuitionistically_forall. Qed.
Global Instance into_forall_persistently `{!BiPersistentlyForall PROP} {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (<pers> P) (λ a, <pers> (Φ a))%I.
Proof. rewrite /IntoForall⇒ HP. by rewrite HP persistently_forall. Qed.
Global Instance into_forall_impl_pure a φ P Q :
FromPureT a P φ →
TCOr (TCEq a false) (BiAffine PROP) →
IntoForall (P → Q) (λ _ : φ, Q).
Proof.
rewrite /FromPureT /FromPure /IntoForall⇒ -[φ' [-> <-]] [->|?] /=.
- by rewrite pure_impl_forall.
- by rewrite -affinely_affinely_if affine_affinely pure_impl_forall.
Qed.
Global Instance into_forall_wand_pure a φ P Q :
FromPureT a P φ → IntoForall (P -∗ Q) (λ _ : φ, Q).
Proof.
rewrite /FromPureT /FromPure /IntoForall⇒ -[φ' [-> <-]] /=.
apply forall_intro=>? /=. rewrite -affinely_affinely_if.
by rewrite -(pure_intro _ True) // /bi_affinely right_id emp_wand.
Qed.
Global Instance into_forall_wand P Q :
IntoForall (P -∗ Q) (λ _ : ⊢ P, Q) | 10.
Proof. rewrite /IntoForall. apply forall_intro=><-. rewrite emp_wand //. Qed.
Global Instance into_forall_impl `{!BiAffine PROP} P Q :
IntoForall (P → Q) (λ _ : ⊢ P, Q) | 10.
Proof.
rewrite /IntoForall. apply forall_intro=><-. rewrite -True_emp True_impl //.
Qed.
FromForall
Global Instance from_forall_forall {A} (Φ : A → PROP) name :
AsIdentName Φ name → FromForall (bi_forall Φ) Φ name.
Proof. by rewrite /FromForall. Qed.
Global Instance from_forall_tforall {TT : tele} (Φ : TT → PROP) name :
AsIdentName Φ name → FromForall (bi_tforall Φ) Φ name.
Proof. by rewrite /FromForall bi_tforall_forall. Qed.
Global Instance from_forall_pure `{!BiPureForall PROP} {A} (φ : A → Prop) name :
AsIdentName φ name → @FromForall PROP A ⌜∀ a : A, φ a⌝ (λ a, ⌜ φ a ⌝)%I name.
Proof. by rewrite /FromForall pure_forall_2. Qed.
Global Instance from_tforall_pure `{!BiPureForall PROP}
{TT : tele} (φ : TT → Prop) name :
AsIdentName φ name → @FromForall PROP TT ⌜tforall φ⌝ (λ x, ⌜ φ x ⌝)%I name.
Proof. by rewrite /FromForall tforall_forall pure_forall. Qed.
Global Instance from_forall_pure_not `{!BiPureForall PROP} (φ : Prop) :
@FromForall PROP φ ⌜¬ φ⌝ (λ _ : φ, False)%I (to_ident_name H).
Proof. by rewrite /FromForall pure_forall. Qed.
Global Instance from_forall_impl_pure P Q φ :
IntoPureT P φ → FromForall (P → Q) (λ _ : φ, Q) (to_ident_name H).
Proof.
intros (φ'&->&?). by rewrite /FromForall -pure_impl_forall (into_pure P).
Qed.
Global Instance from_forall_wand_pure P Q φ :
IntoPureT P φ → TCOr (Affine P) (Absorbing Q) →
FromForall (P -∗ Q) (λ _ : φ, Q)%I (to_ident_name H).
Proof.
intros (φ'&->&?) [|]; rewrite /FromForall; apply wand_intro_r.
- rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_r.
apply pure_elim_r=>?. by rewrite forall_elim.
- by rewrite (into_pure P) -pure_wand_forall wand_elim_l.
Qed.
Global Instance from_forall_intuitionistically `{!BiAffine PROP, !BiPersistentlyForall PROP}
{A} P (Φ : A → PROP) name :
FromForall P Φ name → FromForall (□ P) (λ a, □ (Φ a))%I name.
Proof.
rewrite /FromForall⇒ <-. setoid_rewrite intuitionistically_into_persistently.
by rewrite persistently_forall.
Qed.
Global Instance from_forall_persistently `{!BiPersistentlyForall PROP}
{A} P (Φ : A → PROP) name :
FromForall P Φ name → FromForall (<pers> P) (λ a, <pers> (Φ a))%I name.
Proof. rewrite /FromForall⇒ <-. by rewrite persistently_forall. Qed.
AsIdentName Φ name → FromForall (bi_forall Φ) Φ name.
Proof. by rewrite /FromForall. Qed.
Global Instance from_forall_tforall {TT : tele} (Φ : TT → PROP) name :
AsIdentName Φ name → FromForall (bi_tforall Φ) Φ name.
Proof. by rewrite /FromForall bi_tforall_forall. Qed.
Global Instance from_forall_pure `{!BiPureForall PROP} {A} (φ : A → Prop) name :
AsIdentName φ name → @FromForall PROP A ⌜∀ a : A, φ a⌝ (λ a, ⌜ φ a ⌝)%I name.
Proof. by rewrite /FromForall pure_forall_2. Qed.
Global Instance from_tforall_pure `{!BiPureForall PROP}
{TT : tele} (φ : TT → Prop) name :
AsIdentName φ name → @FromForall PROP TT ⌜tforall φ⌝ (λ x, ⌜ φ x ⌝)%I name.
Proof. by rewrite /FromForall tforall_forall pure_forall. Qed.
Global Instance from_forall_pure_not `{!BiPureForall PROP} (φ : Prop) :
@FromForall PROP φ ⌜¬ φ⌝ (λ _ : φ, False)%I (to_ident_name H).
Proof. by rewrite /FromForall pure_forall. Qed.
Global Instance from_forall_impl_pure P Q φ :
IntoPureT P φ → FromForall (P → Q) (λ _ : φ, Q) (to_ident_name H).
Proof.
intros (φ'&->&?). by rewrite /FromForall -pure_impl_forall (into_pure P).
Qed.
Global Instance from_forall_wand_pure P Q φ :
IntoPureT P φ → TCOr (Affine P) (Absorbing Q) →
FromForall (P -∗ Q) (λ _ : φ, Q)%I (to_ident_name H).
Proof.
intros (φ'&->&?) [|]; rewrite /FromForall; apply wand_intro_r.
- rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_r.
apply pure_elim_r=>?. by rewrite forall_elim.
- by rewrite (into_pure P) -pure_wand_forall wand_elim_l.
Qed.
Global Instance from_forall_intuitionistically `{!BiAffine PROP, !BiPersistentlyForall PROP}
{A} P (Φ : A → PROP) name :
FromForall P Φ name → FromForall (□ P) (λ a, □ (Φ a))%I name.
Proof.
rewrite /FromForall⇒ <-. setoid_rewrite intuitionistically_into_persistently.
by rewrite persistently_forall.
Qed.
Global Instance from_forall_persistently `{!BiPersistentlyForall PROP}
{A} P (Φ : A → PROP) name :
FromForall P Φ name → FromForall (<pers> P) (λ a, <pers> (Φ a))%I name.
Proof. rewrite /FromForall⇒ <-. by rewrite persistently_forall. Qed.
ElimModal
Global Instance elim_modal_wand φ p p' P P' Q Q' R :
ElimModal φ p p' P P' Q Q' → ElimModal φ p p' P P' (R -∗ Q) (R -∗ Q').
Proof.
rewrite /ElimModal⇒ H Hφ. apply wand_intro_r.
rewrite wand_curry -assoc (comm _ (□?p' _)%I) -wand_curry wand_elim_l; auto.
Qed.
Global Instance elim_modal_wandM φ p p' P P' Q Q' mR :
ElimModal φ p p' P P' Q Q' →
ElimModal φ p p' P P' (mR -∗? Q) (mR -∗? Q').
Proof. rewrite /ElimModal !wandM_sound. exact: elim_modal_wand. Qed.
Global Instance elim_modal_forall {A} φ p p' P P' (Φ Ψ : A → PROP) :
(∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) →
ElimModal φ p p' P P' (∀ x, Φ x) (∀ x, Ψ x).
Proof.
rewrite /ElimModal⇒ H ?. apply forall_intro⇒ a. rewrite (forall_elim a); auto.
Qed.
Global Instance elim_modal_tforall {TT : tele} φ p p' P P' (Φ Ψ : TT → PROP) :
(∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) →
ElimModal φ p p' P P' (∀.. x, Φ x) (∀.. x, Ψ x).
Proof. rewrite /ElimModal !bi_tforall_forall. apply elim_modal_forall. Qed.
Global Instance elim_modal_absorbingly_here p P Q :
Absorbing Q → ElimModal True p false (<absorb> P) P Q Q.
Proof.
rewrite /ElimModal⇒ ? _. by rewrite intuitionistically_if_elim
absorbingly_sep_l wand_elim_r absorbing_absorbingly.
Qed.
ElimModal φ p p' P P' Q Q' → ElimModal φ p p' P P' (R -∗ Q) (R -∗ Q').
Proof.
rewrite /ElimModal⇒ H Hφ. apply wand_intro_r.
rewrite wand_curry -assoc (comm _ (□?p' _)%I) -wand_curry wand_elim_l; auto.
Qed.
Global Instance elim_modal_wandM φ p p' P P' Q Q' mR :
ElimModal φ p p' P P' Q Q' →
ElimModal φ p p' P P' (mR -∗? Q) (mR -∗? Q').
Proof. rewrite /ElimModal !wandM_sound. exact: elim_modal_wand. Qed.
Global Instance elim_modal_forall {A} φ p p' P P' (Φ Ψ : A → PROP) :
(∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) →
ElimModal φ p p' P P' (∀ x, Φ x) (∀ x, Ψ x).
Proof.
rewrite /ElimModal⇒ H ?. apply forall_intro⇒ a. rewrite (forall_elim a); auto.
Qed.
Global Instance elim_modal_tforall {TT : tele} φ p p' P P' (Φ Ψ : TT → PROP) :
(∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) →
ElimModal φ p p' P P' (∀.. x, Φ x) (∀.. x, Ψ x).
Proof. rewrite /ElimModal !bi_tforall_forall. apply elim_modal_forall. Qed.
Global Instance elim_modal_absorbingly_here p P Q :
Absorbing Q → ElimModal True p false (<absorb> P) P Q Q.
Proof.
rewrite /ElimModal⇒ ? _. by rewrite intuitionistically_if_elim
absorbingly_sep_l wand_elim_r absorbing_absorbingly.
Qed.
AddModal
Global Instance add_modal_wand P P' Q R :
AddModal P P' Q → AddModal P P' (R -∗ Q).
Proof.
rewrite /AddModal⇒ H. apply wand_intro_r.
by rewrite wand_curry -assoc (comm _ P') -wand_curry wand_elim_l.
Qed.
Global Instance add_modal_wandM P P' Q mR :
AddModal P P' Q → AddModal P P' (mR -∗? Q).
Proof. rewrite /AddModal wandM_sound. exact: add_modal_wand. Qed.
Global Instance add_modal_forall {A} P P' (Φ : A → PROP) :
(∀ x, AddModal P P' (Φ x)) → AddModal P P' (∀ x, Φ x).
Proof.
rewrite /AddModal⇒ H. apply forall_intro⇒ a. by rewrite (forall_elim a).
Qed.
Global Instance add_modal_tforall {TT : tele} P P' (Φ : TT → PROP) :
(∀ x, AddModal P P' (Φ x)) → AddModal P P' (∀.. x, Φ x).
Proof. rewrite /AddModal bi_tforall_forall. apply add_modal_forall. Qed.
AddModal P P' Q → AddModal P P' (R -∗ Q).
Proof.
rewrite /AddModal⇒ H. apply wand_intro_r.
by rewrite wand_curry -assoc (comm _ P') -wand_curry wand_elim_l.
Qed.
Global Instance add_modal_wandM P P' Q mR :
AddModal P P' Q → AddModal P P' (mR -∗? Q).
Proof. rewrite /AddModal wandM_sound. exact: add_modal_wand. Qed.
Global Instance add_modal_forall {A} P P' (Φ : A → PROP) :
(∀ x, AddModal P P' (Φ x)) → AddModal P P' (∀ x, Φ x).
Proof.
rewrite /AddModal⇒ H. apply forall_intro⇒ a. by rewrite (forall_elim a).
Qed.
Global Instance add_modal_tforall {TT : tele} P P' (Φ : TT → PROP) :
(∀ x, AddModal P P' (Φ x)) → AddModal P P' (∀.. x, Φ x).
Proof. rewrite /AddModal bi_tforall_forall. apply add_modal_forall. Qed.
ElimInv
Global Instance elim_inv_acc_without_close {X : Type}
φ1 φ2 Pinv Pin (M1 M2 : PROP → PROP) α β mγ Q (Q' : X → PROP) :
IntoAcc (X:=X) Pinv φ1 Pin M1 M2 α β mγ →
ElimAcc (X:=X) φ2 M1 M2 α β mγ Q Q' →
ElimInv (φ1 ∧ φ2) Pinv Pin α None Q Q'.
Proof.
rewrite /ElimAcc /IntoAcc /ElimInv.
iIntros (Hacc Helim [??]) "(Hinv & Hin & Hcont)".
iApply (Helim with "[Hcont]"); first done.
- iIntros (x) "Hα". iApply "Hcont". iSplitL; simpl; done.
- iApply (Hacc with "Hinv Hin"). done.
Qed.
Global Instance elim_inv_acc_with_close {X : Type}
φ1 φ2 Pinv Pin (M1 M2 : PROP → PROP) α β mγ Q Q' :
IntoAcc Pinv φ1 Pin M1 M2 α β mγ →
(∀ R, ElimModal φ2 false false (M1 R) R Q Q') →
ElimInv (X:=X) (φ1 ∧ φ2) Pinv Pin
α
(Some (λ x, β x -∗ M2 (pm_default emp (mγ x))))%I
Q (λ _, Q').
Proof.
rewrite /ElimAcc /IntoAcc /ElimInv.
iIntros (Hacc Helim [??]) "(Hinv & Hin & Hcont)".
iMod (Hacc with "Hinv Hin") as (x) "[Hα Hclose]"; first done.
iApply "Hcont". simpl. iSplitL "Hα"; done.
Qed.
End class_instances.
φ1 φ2 Pinv Pin (M1 M2 : PROP → PROP) α β mγ Q (Q' : X → PROP) :
IntoAcc (X:=X) Pinv φ1 Pin M1 M2 α β mγ →
ElimAcc (X:=X) φ2 M1 M2 α β mγ Q Q' →
ElimInv (φ1 ∧ φ2) Pinv Pin α None Q Q'.
Proof.
rewrite /ElimAcc /IntoAcc /ElimInv.
iIntros (Hacc Helim [??]) "(Hinv & Hin & Hcont)".
iApply (Helim with "[Hcont]"); first done.
- iIntros (x) "Hα". iApply "Hcont". iSplitL; simpl; done.
- iApply (Hacc with "Hinv Hin"). done.
Qed.
Global Instance elim_inv_acc_with_close {X : Type}
φ1 φ2 Pinv Pin (M1 M2 : PROP → PROP) α β mγ Q Q' :
IntoAcc Pinv φ1 Pin M1 M2 α β mγ →
(∀ R, ElimModal φ2 false false (M1 R) R Q Q') →
ElimInv (X:=X) (φ1 ∧ φ2) Pinv Pin
α
(Some (λ x, β x -∗ M2 (pm_default emp (mγ x))))%I
Q (λ _, Q').
Proof.
rewrite /ElimAcc /IntoAcc /ElimInv.
iIntros (Hacc Helim [??]) "(Hinv & Hin & Hcont)".
iMod (Hacc with "Hinv Hin") as (x) "[Hα Hclose]"; first done.
iApply "Hcont". simpl. iSplitL "Hα"; done.
Qed.
End class_instances.