Library stdpp.gmap

This files implements an efficient implementation of finite maps whose keys range over Coq's data type of any countable type K. The data structure is similar to Pmap, which in turn is based on the "canonical" binary tries representation by Appel and Leroy, https://hal.inria.fr/hal-03372247. It thus has the same good properties:
  • It guarantees logarithmic-time lookup and partial_alter, and linear-time merge. It has a low constant factor for computation in Coq compared to other versions (see the Appel and Leroy paper for benchmarks).
  • It satisfies extensional equality (∀ i, m1 !! i = m2 !! i) m1 = m2.
  • It can be used in nested recursive definitions, e.g., Inductive test := Test : gmap test test. This is possible because we do not use a Sigma type to ensure canonical representations (a Sigma type would break Coq's strict positivity check).
Compared to Pmap, we not only need to make sure the trie representation is canonical, we also need to make sure that all positions (of type positive) are valid encodings of K. That is, for each position q in the trie, we have:
encode <
From stdpp Require Export countable infinite fin_maps fin_map_dom.
From stdpp Require Import mapset pmap.
From stdpp Require Import options.

Local Open Scope positive_scope.

Local Notation "P ~ 0" := (λ p, P p~0) : function_scope.
Local Notation "P ~ 1" := (λ p, P p~1) : function_scope.
Implicit Type P : positive Prop.

The tree data structure

Inductive gmap_dep_ne (A : Type) (P : positive Prop) :=
  | GNode001 : gmap_dep_ne A P~1 gmap_dep_ne A P
  | GNode010 : P 1 A gmap_dep_ne A P
  | GNode011 : P 1 A gmap_dep_ne A P~1 gmap_dep_ne A P
  | GNode100 : gmap_dep_ne A P~0 gmap_dep_ne A P
  | GNode101 : gmap_dep_ne A P~0 gmap_dep_ne A P~1 gmap_dep_ne A P
  | GNode110 : gmap_dep_ne A P~0 P 1 A gmap_dep_ne A P
  | GNode111 : gmap_dep_ne A P~0 P 1 A gmap_dep_ne A P~1 gmap_dep_ne A P.
Global Arguments GNode001 {A P} _ : assert.
Global Arguments GNode010 {A P} _ _ : assert.
Global Arguments GNode011 {A P} _ _ _ : assert.
Global Arguments GNode100 {A P} _ : assert.
Global Arguments GNode101 {A P} _ _ : assert.
Global Arguments GNode110 {A P} _ _ _ : assert.
Global Arguments GNode111 {A P} _ _ _ _ : assert.

Using Variant we supress the generation of the induction scheme. We use the induction scheme gmap_ind in terms of the smart constructors to reduce the number of cases, similar to Appel and Leroy.
Variant gmap_dep (A : Type) (P : positive Prop) :=
  | GEmpty : gmap_dep A P
  | GNodes : gmap_dep_ne A P gmap_dep A P.
Global Arguments GEmpty {A P}.
Global Arguments GNodes {A P} _.

Record gmap_key K `{Countable K} (q : positive) :=
  GMapKey { _ : encode (A:=K) <$> decode q = Some q }.
Global Arguments GMapKey {_ _ _ _} _.

Lemma gmap_key_encode `{Countable K} (k : K) : gmap_key K (encode k).
Proof. constructor. by rewrite decode_encode. Qed.
Global Instance gmap_key_pi `{Countable K} q : ProofIrrel (gmap_key K q).
Proof. intros [?] [?]. f_equal. apply (proof_irrel _). Qed.

Record gmap K `{Countable K} A := GMap { gmap_car : gmap_dep A (gmap_key K) }.
Global Arguments GMap {_ _ _ _} _.
Global Arguments gmap_car {_ _ _ _} _.

Global Instance gmap_dep_ne_eq_dec {A P} :
  EqDecision A ( i, ProofIrrel (P i)) EqDecision (gmap_dep_ne A P).
Proof.
  intros ? Hirr t1 t2. revert P t1 t2 Hirr.
  refine (fix go {P} (t1 t2 : gmap_dep_ne A P) {Hirr : _} : Decision (t1 = t2) :=
    match t1, t2 with
    | GNode001 r1, GNode001 r2cast_if (go r1 r2)
    | GNode010 _ x1, GNode010 _ x2cast_if (decide (x1 = x2))
    | GNode011 _ x1 r1, GNode011 _ x2 r2
       cast_if_and (decide (x1 = x2)) (go r1 r2)
    | GNode100 l1, GNode100 l2cast_if (go l1 l2)
    | GNode101 l1 r1, GNode101 l2 r2cast_if_and (go l1 l2) (go r1 r2)
    | GNode110 l1 _ x1, GNode110 l2 _ x2
       cast_if_and (go l1 l2) (decide (x1 = x2))
    | GNode111 l1 _ x1 r1, GNode111 l2 _ x2 r2
       cast_if_and3 (go l1 l2) (decide (x1 = x2)) (go r1 r2)
    | _, _right _
    end);
    clear go; abstract first [congruence|f_equal; done || apply Hirr|idtac].
Defined.
Global Instance gmap_dep_eq_dec {A P} :
  ( i, ProofIrrel (P i)) EqDecision A EqDecision (gmap_dep A P).
Proof. intros. solve_decision. Defined.
Global Instance gmap_eq_dec `{Countable K} {A} :
  EqDecision A EqDecision (gmap K A).
Proof. intros. solve_decision. Defined.

The smart constructor GNode and eliminator gmap_dep_ne_case are used to reduce the number of cases, similar to Appel and Leroy.
Local Definition GNode {A P}
    (ml : gmap_dep A P~0)
    (mx : option (P 1 × A)) (mr : gmap_dep A P~1) : gmap_dep A P :=
  match ml, mx, mr with
  | GEmpty, None, GEmptyGEmpty
  | GEmpty, None, GNodes rGNodes (GNode001 r)
  | GEmpty, Some (p,x), GEmptyGNodes (GNode010 p x)
  | GEmpty, Some (p,x), GNodes rGNodes (GNode011 p x r)
  | GNodes l, None, GEmptyGNodes (GNode100 l)
  | GNodes l, None, GNodes rGNodes (GNode101 l r)
  | GNodes l, Some (p,x), GEmptyGNodes (GNode110 l p x)
  | GNodes l, Some (p,x), GNodes rGNodes (GNode111 l p x r)
  end.

Local Definition gmap_dep_ne_case {A P B} (t : gmap_dep_ne A P)
    (f : gmap_dep A P~0 option (P 1 × A) gmap_dep A P~1 B) : B :=
  match t with
  | GNode001 rf GEmpty None (GNodes r)
  | GNode010 p xf GEmpty (Some (p,x)) GEmpty
  | GNode011 p x rf GEmpty (Some (p,x)) (GNodes r)
  | GNode100 lf (GNodes l) None GEmpty
  | GNode101 l rf (GNodes l) None (GNodes r)
  | GNode110 l p xf (GNodes l) (Some (p,x)) GEmpty
  | GNode111 l p x rf (GNodes l) (Some (p,x)) (GNodes r)
  end.

Operations
Local Definition gmap_dep_ne_lookup {A} : {P}, positive gmap_dep_ne A P option A :=
  fix go {P} i t {struct t} :=
  match t, i with
  | (GNode010 _ x | GNode011 _ x _ | GNode110 _ _ x | GNode111 _ _ x _), 1 ⇒ Some x
  | (GNode100 l | GNode110 l _ _ | GNode101 l _ | GNode111 l _ _ _), i~0go i l
  | (GNode001 r | GNode011 _ _ r | GNode101 _ r | GNode111 _ _ _ r), i~1go i r
  | _, _None
  end.
Local Definition gmap_dep_lookup {A P}
    (i : positive) (mt : gmap_dep A P) : option A :=
  match mt with GEmptyNone | GNodes tgmap_dep_ne_lookup i t end.
Global Instance gmap_lookup `{Countable K} {A} :
    Lookup K A (gmap K A) := λ k mt,
  gmap_dep_lookup (encode k) (gmap_car mt).

Global Instance gmap_empty `{Countable K} {A} : Empty (gmap K A) := GMap GEmpty.

Block reduction, even on concrete gmaps. Marking gmap_empty as simpl never would not be enough, because of https://github.com/coq/coq/issues/2972 and https://github.com/coq/coq/issues/2986. And marking gmap consumers as simpl never does not work either, see: https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/171note_53216
Global Opaque gmap_empty.

Local Fixpoint gmap_dep_ne_singleton {A P} (i : positive) :
    P i A gmap_dep_ne A P :=
  match i with
  | 1 ⇒ GNode010
  | i~0λ p x, GNode100 (gmap_dep_ne_singleton i p x)
  | i~1λ p x, GNode001 (gmap_dep_ne_singleton i p x)
  end.

Local Definition gmap_partial_alter_aux {A P}
    (go : i, P i gmap_dep_ne A P gmap_dep A P)
    (f : option A option A) (i : positive) (p : P i)
    (mt : gmap_dep A P) : gmap_dep A P :=
  match mt with
  | GEmpty
     match f None with
     | NoneGEmpty | Some xGNodes (gmap_dep_ne_singleton i p x)
     end
  | GNodes tgo i p t
  end.
Local Definition gmap_dep_ne_partial_alter {A} (f : option A option A) :
     {P} (i : positive), P i gmap_dep_ne A P gmap_dep A P :=
  Eval lazy -[gmap_dep_ne_singleton] in
  fix go {P} i p t {struct t} :=
    gmap_dep_ne_case t $ λ ml mx mr,
      match i with
      | 1 ⇒ λ p, GNode ml ((p,.) <$> f (snd <$> mx)) mr
      | i~0λ p, GNode (gmap_partial_alter_aux go f i p ml) mx mr
      | i~1λ p, GNode ml mx (gmap_partial_alter_aux go f i p mr)
      end p.
Local Definition gmap_dep_partial_alter {A P}
    (f : option A option A) : i : positive, P i gmap_dep A P gmap_dep A P :=
  gmap_partial_alter_aux (gmap_dep_ne_partial_alter f) f.
Global Instance gmap_partial_alter `{Countable K} {A} :
    PartialAlter K A (gmap K A) := λ f k '(GMap mt),
  GMap $ gmap_dep_partial_alter f (encode k) (gmap_key_encode k) mt.

Local Definition gmap_dep_ne_fmap {A B} (f : A B) :
     {P}, gmap_dep_ne A P gmap_dep_ne B P :=
  fix go {P} t :=
    match t with
    | GNode001 rGNode001 (go r)
    | GNode010 p xGNode010 p (f x)
    | GNode011 p x rGNode011 p (f x) (go r)
    | GNode100 lGNode100 (go l)
    | GNode101 l rGNode101 (go l) (go r)
    | GNode110 l p xGNode110 (go l) p (f x)
    | GNode111 l p x rGNode111 (go l) p (f x) (go r)
    end.
Local Definition gmap_dep_fmap {A B P} (f : A B)
    (mt : gmap_dep A P) : gmap_dep B P :=
  match mt with GEmptyGEmpty | GNodes tGNodes (gmap_dep_ne_fmap f t) end.
Global Instance gmap_fmap `{Countable K} : FMap (gmap K) := λ {A B} f '(GMap mt),
  GMap $ gmap_dep_fmap f mt.

Local Definition gmap_dep_omap_aux {A B P}
    (go : gmap_dep_ne A P gmap_dep B P) (tm : gmap_dep A P) : gmap_dep B P :=
  match tm with GEmptyGEmpty | GNodes t'go t' end.
Local Definition gmap_dep_ne_omap {A B} (f : A option B) :
     {P}, gmap_dep_ne A P gmap_dep B P :=
  fix go {P} t :=
    gmap_dep_ne_case t $ λ ml mx mr,
      GNode (gmap_dep_omap_aux go ml) ('(p,x) mx; (p,.) <$> f x)
            (gmap_dep_omap_aux go mr).
Local Definition gmap_dep_omap {A B P} (f : A option B) :
  gmap_dep A P gmap_dep B P := gmap_dep_omap_aux (gmap_dep_ne_omap f).
Global Instance gmap_omap `{Countable K} : OMap (gmap K) := λ {A B} f '(GMap mt),
  GMap $ gmap_dep_omap f mt.

Local Definition gmap_merge_aux {A B C P}
    (go : gmap_dep_ne A P gmap_dep_ne B P gmap_dep C P)
    (f : option A option B option C)
    (mt1 : gmap_dep A P) (mt2 : gmap_dep B P) : gmap_dep C P :=
  match mt1, mt2 with
  | GEmpty, GEmptyGEmpty
  | GNodes t1', GEmptygmap_dep_ne_omap (λ x, f (Some x) None) t1'
  | GEmpty, GNodes t2'gmap_dep_ne_omap (λ x, f None (Some x)) t2'
  | GNodes t1', GNodes t2'go t1' t2'
  end.

Local Definition diag_None' {A B C} {P : Prop}
    (f : option A option B option C)
    (mx : option (P × A)) (my : option (P × B)) : option (P × C) :=
  match mx, my with
  | None, NoneNone
  | Some (p,x), None(p,.) <$> f (Some x) None
  | None, Some (p,y)(p,.) <$> f None (Some y)
  | Some (p,x), Some (_,y)(p,.) <$> f (Some x) (Some y)
  end.

Local Definition gmap_dep_ne_merge {A B C} (f : option A option B option C) :
     {P}, gmap_dep_ne A P gmap_dep_ne B P gmap_dep C P :=
  fix go {P} t1 t2 {struct t1} :=
    gmap_dep_ne_case t1 $ λ ml1 mx1 mr1,
      gmap_dep_ne_case t2 $ λ ml2 mx2 mr2,
        GNode (gmap_merge_aux go f ml1 ml2) (diag_None' f mx1 mx2)
              (gmap_merge_aux go f mr1 mr2).
Local Definition gmap_dep_merge {A B C P} (f : option A option B option C) :
    gmap_dep A P gmap_dep B P gmap_dep C P :=
  gmap_merge_aux (gmap_dep_ne_merge f) f.
Global Instance gmap_merge `{Countable K} : Merge (gmap K) :=
  λ {A B C} f '(GMap mt1) '(GMap mt2), GMap $ gmap_dep_merge f mt1 mt2.

Local Definition gmap_fold_aux {A B P}
    (go : positive B gmap_dep_ne A P B)
    (i : positive) (y : B) (mt : gmap_dep A P) : B :=
  match mt with GEmptyy | GNodes tgo i y t end.
Local Definition gmap_dep_ne_fold {A B} (f : positive A B B) :
     {P}, positive B gmap_dep_ne A P B :=
  fix go {P} i y t :=
    gmap_dep_ne_case t $ λ ml mx mr,
      gmap_fold_aux go i~1
        (gmap_fold_aux go i~0
          match mx with Noney | Some (p,x)f (Pos.reverse i) x y end ml) mr.
Local Definition gmap_dep_fold {A B P} (f : positive A B B) :
    positive B gmap_dep A P B :=
  gmap_fold_aux (gmap_dep_ne_fold f).
Global Instance gmap_fold `{Countable K} {A} :
    MapFold K A (gmap K A) := λ {B} f y '(GMap mt),
  gmap_dep_fold (λ i x, match decode i with Some kf k x | Noneid end) 1 y mt.

Proofs
Local Definition GNode_valid {A P}
    (ml : gmap_dep A P~0) (mx : option (P 1 × A)) (mr : gmap_dep A P~1) :=
  match ml, mx, mr with GEmpty, None, GEmptyFalse | _, _, _True end.
Local Lemma gmap_dep_ind A (Q : P, gmap_dep A P Prop) :
  ( P, Q P GEmpty)
  ( P ml mx mr, GNode_valid ml mx mr Q _ ml Q _ mr Q P (GNode ml mx mr))
   P mt, Q P mt.
Proof.
  intros Hemp Hnode P [|t]; [done|]. induction t.
  - by apply (Hnode _ GEmpty None (GNodes _)).
  - by apply (Hnode _ GEmpty (Some (_,_)) GEmpty).
  - by apply (Hnode _ GEmpty (Some (_,_)) (GNodes _)).
  - by apply (Hnode _ (GNodes _) None GEmpty).
  - by apply (Hnode _ (GNodes _) None (GNodes _)).
  - by apply (Hnode _ (GNodes _) (Some (_,_)) GEmpty).
  - by apply (Hnode _ (GNodes _) (Some (_,_)) (GNodes _)).
Qed.

Local Lemma gmap_dep_lookup_GNode {A P} (ml : gmap_dep A P~0) mr mx i :
  gmap_dep_lookup i (GNode ml mx mr) =
    match i with
    | 1 ⇒ snd <$> mx | i~0gmap_dep_lookup i ml | i~1gmap_dep_lookup i mr
    end.
Proof. by destruct ml, mx as [[]|], mr, i. Qed.

Local Lemma gmap_dep_ne_lookup_not_None {A P} (t : gmap_dep_ne A P) :
   i, P i gmap_dep_ne_lookup i t None.
Proof.
  induction t; repeat select ( _, _) (fun Hdestruct H);
    try first [by eexists 1|by eexists _~0|by eexists _~1].
Qed.
Local Lemma gmap_dep_eq_empty {A P} (mt : gmap_dep A P) :
  ( i, P i gmap_dep_lookup i mt = None) mt = GEmpty.
Proof.
  intros Hlookup. destruct mt as [|t]; [done|].
  destruct (gmap_dep_ne_lookup_not_None t); naive_solver.
Qed.
Local Lemma gmap_dep_eq {A P} (mt1 mt2 : gmap_dep A P) :
  ( i, ProofIrrel (P i))
  ( i, P i gmap_dep_lookup i mt1 = gmap_dep_lookup i mt2) mt1 = mt2.
Proof.
  revert mt2. induction mt1 as [|P ml1 mx1 mr1 _ IHl IHr] using gmap_dep_ind;
    intros mt2 ? Hlookup;
    destruct mt2 as [|? ml2 mx2 mr2 _ _ _] using gmap_dep_ind.
  - done.
  - symmetry. apply gmap_dep_eq_empty. naive_solver.
  - apply gmap_dep_eq_empty. naive_solver.
  - f_equal.
    + apply (IHl _ _). intros i. generalize (Hlookup (i~0)).
      by rewrite !gmap_dep_lookup_GNode.
    + generalize (Hlookup 1). rewrite !gmap_dep_lookup_GNode.
      destruct mx1 as [[]|], mx2 as [[]|]; intros; simplify_eq/=;
        repeat f_equal; try apply proof_irrel; naive_solver.
    + apply (IHr _ _). intros i. generalize (Hlookup (i~1)).
      by rewrite !gmap_dep_lookup_GNode.
Qed.

Local Lemma gmap_dep_ne_lookup_singleton {A P} i (p : P i) (x : A) :
  gmap_dep_ne_lookup i (gmap_dep_ne_singleton i p x) = Some x.
Proof. revert P p. induction i; by simpl. Qed.
Local Lemma gmap_dep_ne_lookup_singleton_ne {A P} i j (p : P i) (x : A) :
  i j gmap_dep_ne_lookup j (gmap_dep_ne_singleton i p x) = None.
Proof. revert P j p. induction i; intros ? [?|?|]; naive_solver. Qed.

Local Lemma gmap_dep_partial_alter_GNode {A P} (f : option A option A)
    i (p : P i) (ml : gmap_dep A P~0) mx mr :
  GNode_valid ml mx mr
  gmap_dep_partial_alter f i p (GNode ml mx mr) =
    match i with
    | 1 ⇒ λ p, GNode ml ((p,.) <$> f (snd <$> mx)) mr
    | i~0λ p, GNode (gmap_dep_partial_alter f i p ml) mx mr
    | i~1λ p, GNode ml mx (gmap_dep_partial_alter f i p mr)
    end p.
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_lookup_partial_alter {A P} (f : option A option A)
    (mt : gmap_dep A P) i (p : P i) :
  gmap_dep_lookup i (gmap_dep_partial_alter f i p mt) = f (gmap_dep_lookup i mt).
Proof.
  revert i p. induction mt using gmap_dep_ind.
  { intros i p; simpl. destruct (f None); simpl; [|done].
    by rewrite gmap_dep_ne_lookup_singleton. }
  intros [] ?;
    rewrite gmap_dep_partial_alter_GNode, !gmap_dep_lookup_GNode by done;
    done || by destruct (f _).
Qed.
Local Lemma gmap_dep_lookup_partial_alter_ne {A P} (f : option A option A)
    (mt : gmap_dep A P) i (p : P i) j :
  i j
  gmap_dep_lookup j (gmap_dep_partial_alter f i p mt) = gmap_dep_lookup j mt.
Proof.
  revert i p j; induction mt using gmap_dep_ind.
  { intros i p j ?; simpl. destruct (f None); simpl; [|done].
    by rewrite gmap_dep_ne_lookup_singleton_ne. }
  intros [] ? [] ?;
    rewrite gmap_dep_partial_alter_GNode, !gmap_dep_lookup_GNode by done;
    auto with lia.
Qed.

Local Lemma gmap_dep_lookup_fmap {A B P} (f : A B) (mt : gmap_dep A P) i :
  gmap_dep_lookup i (gmap_dep_fmap f mt) = f <$> gmap_dep_lookup i mt.
Proof.
  destruct mt as [|t]; simpl; [done|].
  revert i. induction t; intros []; by simpl.
Qed.

Local Lemma gmap_dep_omap_GNode {A B P} (f : A option B)
    (ml : gmap_dep A P~0) mx mr :
  GNode_valid ml mx mr
  gmap_dep_omap f (GNode ml mx mr) =
    GNode (gmap_dep_omap f ml) ('(p,x) mx; (p,.) <$> f x) (gmap_dep_omap f mr).
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_lookup_omap {A B P} (f : A option B) (mt : gmap_dep A P) i :
  gmap_dep_lookup i (gmap_dep_omap f mt) = gmap_dep_lookup i mt ≫= f.
Proof.
  revert i. induction mt using gmap_dep_ind; [done|].
  intros [];
    rewrite gmap_dep_omap_GNode, !gmap_dep_lookup_GNode by done; [done..|].
  destruct select (option _) as [[]|]; simpl; by try destruct (f _).
Qed.

Section gmap_merge.
  Context {A B C} (f : option A option B option C).

  Local Lemma gmap_dep_merge_GNode_GEmpty {P} (ml : gmap_dep A P~0) mx mr :
    GNode_valid ml mx mr
    gmap_dep_merge f (GNode ml mx mr) GEmpty =
      GNode (gmap_dep_omap (λ x, f (Some x) None) ml) (diag_None' f mx None)
            (gmap_dep_omap (λ x, f (Some x) None) mr).
  Proof. by destruct ml, mx as [[]|], mr. Qed.
  Local Lemma gmap_dep_merge_GEmpty_GNode {P} (ml : gmap_dep B P~0) mx mr :
    GNode_valid ml mx mr
    gmap_dep_merge f GEmpty (GNode ml mx mr) =
      GNode (gmap_dep_omap (λ x, f None (Some x)) ml) (diag_None' f None mx)
            (gmap_dep_omap (λ x, f None (Some x)) mr).
  Proof. by destruct ml, mx as [[]|], mr. Qed.
  Local Lemma gmap_dep_merge_GNode_GNode {P}
      (ml1 : gmap_dep A P~0) ml2 mx1 mx2 mr1 mr2 :
    GNode_valid ml1 mx1 mr1 GNode_valid ml2 mx2 mr2
    gmap_dep_merge f (GNode ml1 mx1 mr1) (GNode ml2 mx2 mr2) =
      GNode (gmap_dep_merge f ml1 ml2) (diag_None' f mx1 mx2)
            (gmap_dep_merge f mr1 mr2).
  Proof. by destruct ml1, mx1 as [[]|], mr1, ml2, mx2 as [[]|], mr2. Qed.

  Local Lemma gmap_dep_lookup_merge {P} (mt1 : gmap_dep A P) (mt2 : gmap_dep B P) i :
    gmap_dep_lookup i (gmap_dep_merge f mt1 mt2) =
      diag_None f (gmap_dep_lookup i mt1) (gmap_dep_lookup i mt2).
  Proof.
    revert mt2 i; induction mt1 using gmap_dep_ind; intros mt2 i.
    { induction mt2 using gmap_dep_ind; [done|].
      rewrite gmap_dep_merge_GEmpty_GNode, gmap_dep_lookup_GNode by done.
      destruct i as [i|i|];
        rewrite ?gmap_dep_lookup_omap, gmap_dep_lookup_GNode; simpl;
        [by destruct (gmap_dep_lookup i _)..|].
      destruct select (option _) as [[]|]; simpl; by try destruct (f _). }
    destruct mt2 using gmap_dep_ind.
    { rewrite gmap_dep_merge_GNode_GEmpty, gmap_dep_lookup_GNode by done.
      destruct i as [i|i|];
        rewrite ?gmap_dep_lookup_omap, gmap_dep_lookup_GNode; simpl;
        [by destruct (gmap_dep_lookup i _)..|].
      destruct select (option _) as [[]|]; simpl; by try destruct (f _). }
    rewrite gmap_dep_merge_GNode_GNode by done.
    destruct i; rewrite ?gmap_dep_lookup_GNode; [done..|].
    repeat destruct select (option _) as [[]|]; simpl; by try destruct (f _).
  Qed.
End gmap_merge.

Section gmap_fold.
  Context {A B} (f : positive A B B).

  Local Lemma gmap_dep_fold_GNode {P} i y (ml : gmap_dep A P~0) mx mr :
    GNode_valid ml mx mr
    gmap_dep_fold f i y (GNode ml mx mr) = gmap_dep_fold f i~1
      (gmap_dep_fold f i~0
        match mx with Noney | Some (_,x)f (Pos.reverse i) x y end ml) mr.
  Proof. by destruct ml, mx as [[]|], mr. Qed.

  Local Lemma gmap_dep_fold_ind {P} (Q : B gmap_dep A P Prop) (b : B) j :
    Q b GEmpty
    ( i p x mt r, gmap_dep_lookup i mt = None
      Q r mt
      Q (f (Pos.reverse_go i j) x r) (gmap_dep_partial_alter (λ _, Some x) i p mt))
     mt, Q (gmap_dep_fold f j b mt) mt.
  Proof.
    intros Hemp Hinsert mt. revert Q b j Hemp Hinsert.
    induction mt as [|P ml mx mr ? IHl IHr] using gmap_dep_ind;
      intros Q b j Hemp Hinsert; [done|].
    rewrite gmap_dep_fold_GNode by done.
    apply (IHr (λ y mt, Q y (GNode ml mx mt))).
    { apply (IHl (λ y mt, Q y (GNode mt mx GEmpty))).
      { destruct mx as [[p x]|]; [|done].
        replace (GNode GEmpty (Some (p,x)) GEmpty) with
          (gmap_dep_partial_alter (λ _, Some x) 1 p GEmpty) by done.
        by apply Hinsert. }
      intros i p x mt r ??.
      replace (GNode (gmap_dep_partial_alter (λ _, Some x) i p mt) mx GEmpty)
        with (gmap_dep_partial_alter (λ _, Some x) (i~0) p (GNode mt mx GEmpty))
        by (by destruct mt, mx as [[]|]).
      apply Hinsert; by rewrite ?gmap_dep_lookup_GNode. }
    intros i p x mt r ??.
    replace (GNode ml mx (gmap_dep_partial_alter (λ _, Some x) i p mt))
      with (gmap_dep_partial_alter (λ _, Some x) (i~1) p (GNode ml mx mt))
      by (by destruct ml, mx as [[]|], mt).
    apply Hinsert; by rewrite ?gmap_dep_lookup_GNode.
  Qed.
End gmap_fold.

Instance of the finite map type class
Global Instance gmap_finmap `{Countable K} : FinMap K (gmap K).
Proof.
  split.
  - intros A [mt1] [mt2] Hlookup. f_equal. apply (gmap_dep_eq _ _ _).
    intros i [Hk]. destruct (decode i) as [k|]; simplify_eq/=. apply Hlookup.
  - done.
  - intros A f [mt] i. apply gmap_dep_lookup_partial_alter.
  - intros A f [mt] i j ?. apply gmap_dep_lookup_partial_alter_ne. naive_solver.
  - intros A b f [mt] i. apply gmap_dep_lookup_fmap.
  - intros A B f [mt] i. apply gmap_dep_lookup_omap.
  - intros A B C f [mt1] [mt2] i. apply gmap_dep_lookup_merge.
  - intros A B P f b Hemp Hinsert [mt].
    apply (gmap_dep_fold_ind _ (λ r mt, P r (GMap mt))); clear mt; [done|].
    intros i [Hk] x mt r ??; simpl. destruct (fmap_Some_1 _ _ _ Hk) as (k&->&->).
    assert (GMapKey Hk = gmap_key_encode k) asby (apply proof_irrel).
    by apply (Hinsert _ _ (GMap mt)).
Qed.

Global Program Instance gmap_countable
    `{Countable K, Countable A} : Countable (gmap K A) := {
  encode m := encode (map_to_list m : list (K × A));
  decode p := list_to_map <$> decode p
}.
Next Obligation.
  intros K ?? A ?? m; simpl. rewrite decode_encode; simpl.
  by rewrite list_to_map_to_list.
Qed.

Conversion to/from Pmap
Local Definition gmap_dep_ne_to_pmap_ne {A} : {P}, gmap_dep_ne A P Pmap_ne A :=
  fix go {P} t :=
    match t with
    | GNode001 rPNode001 (go r)
    | GNode010 _ xPNode010 x
    | GNode011 _ x rPNode011 x (go r)
    | GNode100 lPNode100 (go l)
    | GNode101 l rPNode101 (go l) (go r)
    | GNode110 l _ xPNode110 (go l) x
    | GNode111 l _ x rPNode111 (go l) x (go r)
    end.
Local Definition gmap_dep_to_pmap {A P} (mt : gmap_dep A P) : Pmap A :=
  match mt with
  | GEmptyPEmpty
  | GNodes tPNodes (gmap_dep_ne_to_pmap_ne t)
  end.
Definition gmap_to_pmap {A} (m : gmap positive A) : Pmap A :=
  let '(GMap mt) := m in gmap_dep_to_pmap mt.

Local Lemma lookup_gmap_dep_ne_to_pmap_ne {A P} (t : gmap_dep_ne A P) i :
  gmap_dep_ne_to_pmap_ne t !! i = gmap_dep_ne_lookup i t.
Proof. revert i; induction t; intros []; by simpl. Qed.
Lemma lookup_gmap_to_pmap {A} (m : gmap positive A) i :
  gmap_to_pmap m !! i = m !! i.
Proof. destruct m as [[|t]]; [done|]. apply lookup_gmap_dep_ne_to_pmap_ne. Qed.

Local Definition pmap_ne_to_gmap_dep_ne {A} :
     {P}, ( i, P i) Pmap_ne A gmap_dep_ne A P :=
  fix go {P} (p : i, P i) t :=
    match t with
    | PNode001 rGNode001 (go p~1 r)
    | PNode010 xGNode010 (p 1) x
    | PNode011 x rGNode011 (p 1) x (go p~1 r)
    | PNode100 lGNode100 (go p~0 l)
    | PNode101 l rGNode101 (go p~0 l) (go p~1 r)
    | PNode110 l xGNode110 (go p~0 l) (p 1) x
    | PNode111 l x rGNode111 (go p~0 l) (p 1) x (go p~1 r)
    end%function.
Local Definition pmap_to_gmap_dep {A P}
    (p : i, P i) (mt : Pmap A) : gmap_dep A P :=
  match mt with
  | PEmptyGEmpty
  | PNodes tGNodes (pmap_ne_to_gmap_dep_ne p t)
  end.
Definition pmap_to_gmap {A} (m : Pmap A) : gmap positive A :=
  GMap $ pmap_to_gmap_dep gmap_key_encode m.

Local Lemma lookup_pmap_ne_to_gmap_dep_ne {A P} (p : i, P i) (t : Pmap_ne A) i :
  gmap_dep_ne_lookup i (pmap_ne_to_gmap_dep_ne p t) = t !! i.
Proof. revert P i p; induction t; intros ? [] ?; by simpl. Qed.
Lemma lookup_pmap_to_gmap {A} (m : Pmap A) i : pmap_to_gmap m !! i = m !! i.
Proof. destruct m as [|t]; [done|]. apply lookup_pmap_ne_to_gmap_dep_ne. Qed.

Curry and uncurry

Definition gmap_uncurry `{Countable K1, Countable K2} {A} :
    gmap K1 (gmap K2 A) gmap (K1 × K2) A :=
  map_fold (λ i1 m' macc,
    map_fold (λ i2 x, <[(i1,i2):=x]>) macc m') .
Definition gmap_curry `{Countable K1, Countable K2} {A} :
    gmap (K1 × K2) A gmap K1 (gmap K2 A) :=
  map_fold (λ '(i1, i2) x,
    partial_alter (Some <[i2:=x]> default ) i1) .

Section curry_uncurry.
  Context `{Countable K1, Countable K2} {A : Type}.

  Lemma lookup_gmap_uncurry (m : gmap K1 (gmap K2 A)) i j :
    gmap_uncurry m !! (i,j) = m !! i ≫= (.!! j).
  Proof.
    apply (map_fold_ind (λ mr m, mr !! (i,j) = m !! i ≫= (.!! j))).
    { by rewrite !lookup_empty. }
    clear m; intros i' m2 m m12 Hi' IH.
    apply (map_fold_ind (λ m2r m2, m2r !! (i,j) = <[i':=m2]> m !! i ≫= (.!! j))).
    { rewrite IH. destruct (decide (i' = i)) as [->|].
      - rewrite lookup_insert, Hi'; simpl; by rewrite lookup_empty.
      - by rewrite lookup_insert_ne by done. }
    intros j' y m2' m12' Hj' IH'. destruct (decide (i = i')) as [->|].
    - rewrite lookup_insert; simpl. destruct (decide (j = j')) as [->|].
      + by rewrite !lookup_insert.
      + by rewrite !lookup_insert_ne, IH', lookup_insert by congruence.
    - by rewrite !lookup_insert_ne, IH', lookup_insert_ne by congruence.
  Qed.

  Lemma lookup_gmap_curry (m : gmap (K1 × K2) A) i j :
    gmap_curry m !! i ≫= (.!! j) = m !! (i, j).
  Proof.
    apply (map_fold_ind (λ mr m, mr !! i ≫= (.!! j) = m !! (i, j))).
    { by rewrite !lookup_empty. }
    clear m; intros [i' j'] x m12 mr Hij' IH.
    destruct (decide (i = i')) as [->|].
    - rewrite lookup_partial_alter. destruct (decide (j = j')) as [->|].
      + destruct (mr !! i'); simpl; by rewrite !lookup_insert.
      + destruct (mr !! i'); simpl; by rewrite !lookup_insert_ne by congruence.
    - by rewrite lookup_partial_alter_ne, lookup_insert_ne by congruence.
  Qed.

  Lemma lookup_gmap_curry_None (m : gmap (K1 × K2) A) i :
    gmap_curry m !! i = None ( j, m !! (i, j) = None).
  Proof.
    apply (map_fold_ind (λ mr m, mr !! i = None ( j, m !! (i, j) = None)));
      [done|].
    clear m; intros [i' j'] x m12 mr Hij' IH.
    destruct (decide (i = i')) as [->|].
    - split; [by rewrite lookup_partial_alter|].
      intros Hi. specialize (Hi j'). by rewrite lookup_insert in Hi.
    - rewrite lookup_partial_alter_ne, IH; [|done]. apply forall_proper.
      intros j. rewrite lookup_insert_ne; [done|congruence].
  Qed.

  Lemma gmap_uncurry_curry (m : gmap (K1 × K2) A) :
    gmap_uncurry (gmap_curry m) = m.
  Proof.
   apply map_eq; intros [i j]. by rewrite lookup_gmap_uncurry, lookup_gmap_curry.
  Qed.

  Lemma gmap_curry_non_empty (m : gmap (K1 × K2) A) i x :
    gmap_curry m !! i = Some x x .
  Proof.
    intros Hm →. eapply eq_None_not_Some; [|by eexists].
    eapply lookup_gmap_curry_None; intros j.
    by rewrite <-lookup_gmap_curry, Hm.
  Qed.

  Lemma gmap_curry_uncurry_non_empty (m : gmap K1 (gmap K2 A)) :
    ( i x, m !! i = Some x x )
    gmap_curry (gmap_uncurry m) = m.
  Proof.
    intros Hne. apply map_eq; intros i. destruct (m !! i) as [m2|] eqn:Hm.
    - destruct (gmap_curry (gmap_uncurry m) !! i) as [m2'|] eqn:Hcurry.
      + f_equal. apply map_eq. intros j.
        trans (gmap_curry (gmap_uncurry m) !! i ≫= (.!! j)).
        { by rewrite Hcurry. }
        by rewrite lookup_gmap_curry, lookup_gmap_uncurry, Hm.
      + rewrite lookup_gmap_curry_None in Hcurry.
        exfalso; apply (Hne i m2), map_eq; [done|intros j].
        by rewrite lookup_empty, <-(Hcurry j), lookup_gmap_uncurry, Hm.
   - apply lookup_gmap_curry_None; intros j. by rewrite lookup_gmap_uncurry, Hm.
  Qed.
End curry_uncurry.

Finite sets

Definition gset K `{Countable K} := mapset (gmap K).

Section gset.
  Context `{Countable K}.
  Global Instance gset_elem_of: ElemOf K (gset K) := _.
  Global Instance gset_empty : Empty (gset K) := _.
  Global Instance gset_singleton : Singleton K (gset K) := _.
  Global Instance gset_union: Union (gset K) := _.
  Global Instance gset_intersection: Intersection (gset K) := _.
  Global Instance gset_difference: Difference (gset K) := _.
  Global Instance gset_elements: Elements K (gset K) := _.
  Global Instance gset_eq_dec : EqDecision (gset K) := _.
  Global Instance gset_countable : Countable (gset K) := _.
  Global Instance gset_equiv_dec : RelDecision (≡@{gset K}) | 1 := _.
  Global Instance gset_elem_of_dec : RelDecision (∈@{gset K}) | 1 := _.
  Global Instance gset_disjoint_dec : RelDecision (##@{gset K}) := _.
  Global Instance gset_subseteq_dec : RelDecision (⊆@{gset K}) := _.

We put in an eta expansion to avoid injection from unfolding equalities like dom (gset _) m1 = dom (gset _) m2.
  Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := λ m,
    let '(GMap mt) := m in mapset_dom (GMap mt).

  Global Arguments gset_elem_of : simpl never.
  Global Arguments gset_empty : simpl never.
  Global Arguments gset_singleton : simpl never.
  Global Arguments gset_union : simpl never.
  Global Arguments gset_intersection : simpl never.
  Global Arguments gset_difference : simpl never.
  Global Arguments gset_elements : simpl never.
  Global Arguments gset_eq_dec : simpl never.
  Global Arguments gset_countable : simpl never.
  Global Arguments gset_equiv_dec : simpl never.
  Global Arguments gset_elem_of_dec : simpl never.
  Global Arguments gset_disjoint_dec : simpl never.
  Global Arguments gset_subseteq_dec : simpl never.
  Global Arguments gset_dom : simpl never.

  Global Instance gset_leibniz : LeibnizEquiv (gset K) := _.
  Global Instance gset_semi_set : SemiSet K (gset K) | 1 := _.
  Global Instance gset_set : Set_ K (gset K) | 1 := _.
  Global Instance gset_fin_set : FinSet K (gset K) := _.
  Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K).
  Proof.
    pose proof (mapset_dom_spec (M:=gmap K)) as [?? Hdom]; split; auto.
    intros A m. specialize (Hdom A m). by destruct m.
  Qed.

If you are looking for a lemma showing that gset is extensional, see sets.set_eq.
The function gset_to_gmap x X converts a set X to a map with domain X where each key has value x. Compared to the generic conversion set_to_map, the function gset_to_gmap has O(n) instead of O(n log n) complexity and has an easier and better developed theory.

  Definition gset_to_gmap {A} (x : A) (X : gset K) : gmap K A :=
    (λ _, x) <$> mapset_car X.

  Lemma lookup_gset_to_gmap {A} (x : A) (X : gset K) i :
    gset_to_gmap x X !! i = (guard (i X);; Some x).
  Proof.
    destruct X as [X].
    unfold gset_to_gmap, gset_elem_of, elem_of, mapset_elem_of; simpl.
    rewrite lookup_fmap.
    case_guard; destruct (X !! i) as [[]|]; naive_solver.
  Qed.
  Lemma lookup_gset_to_gmap_Some {A} (x : A) (X : gset K) i y :
    gset_to_gmap x X !! i = Some y i X x = y.
  Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
  Lemma lookup_gset_to_gmap_None {A} (x : A) (X : gset K) i :
    gset_to_gmap x X !! i = None i X.
  Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.

  Lemma gset_to_gmap_empty {A} (x : A) : gset_to_gmap x = .
  Proof. apply fmap_empty. Qed.
  Lemma gset_to_gmap_union_singleton {A} (x : A) i Y :
    gset_to_gmap x ({[ i ]} Y) = <[i:=x]>(gset_to_gmap x Y).
  Proof.
    apply map_eq; intros j; apply option_eq; intros y.
    rewrite lookup_insert_Some, !lookup_gset_to_gmap_Some, elem_of_union,
      elem_of_singleton; destruct (decide (i = j)); intuition.
  Qed.
  Lemma gset_to_gmap_difference_singleton {A} (x : A) i Y :
    gset_to_gmap x (Y {[i]}) = delete i (gset_to_gmap x Y).
  Proof.
    apply map_eq; intros j; apply option_eq; intros y.
    rewrite lookup_delete_Some, !lookup_gset_to_gmap_Some, elem_of_difference,
      elem_of_singleton; destruct (decide (i = j)); intuition.
  Qed.

  Lemma fmap_gset_to_gmap {A B} (f : A B) (X : gset K) (x : A) :
    f <$> gset_to_gmap x X = gset_to_gmap (f x) X.
  Proof.
    apply map_eq; intros j. rewrite lookup_fmap, !lookup_gset_to_gmap.
    by simplify_option_eq.
  Qed.
  Lemma gset_to_gmap_dom {A B} (m : gmap K A) (y : B) :
    gset_to_gmap y (dom m) = const y <$> m.
  Proof.
    apply map_eq; intros j. rewrite lookup_fmap, lookup_gset_to_gmap.
    destruct (m !! j) as [x|] eqn:?.
    - by rewrite option_guard_True by (rewrite elem_of_dom; eauto).
    - by rewrite option_guard_False by (rewrite not_elem_of_dom; eauto).
  Qed.
  Lemma dom_gset_to_gmap {A} (X : gset K) (x : A) :
    dom (gset_to_gmap x X) = X.
  Proof.
    induction X as [| y X not_in IH] using set_ind_L.
    - rewrite gset_to_gmap_empty, dom_empty_L; done.
    - rewrite gset_to_gmap_union_singleton, dom_insert_L, IH; done.
  Qed.

  Lemma gset_to_gmap_set_to_map {A} (X : gset K) (x : A) :
    gset_to_gmap x X = set_to_map (.,x) X.
  Proof.
    apply map_eq; intros k. apply option_eq; intros y.
    rewrite lookup_gset_to_gmap_Some, lookup_set_to_map; naive_solver.
  Qed.

  Lemma map_to_list_gset_to_gmap {A} (X : gset K) (x : A) :
    map_to_list (gset_to_gmap x X) ≡ₚ (., x) <$> elements X.
  Proof.
    induction X as [| y X not_in IH] using set_ind_L.
    - rewrite gset_to_gmap_empty, elements_empty, map_to_list_empty. done.
    - rewrite gset_to_gmap_union_singleton, elements_union_singleton by done.
      rewrite map_to_list_insert.
      2:{ rewrite lookup_gset_to_gmap_None. done. }
      rewrite IH. done.
  Qed.
End gset.

Global Typeclasses Opaque gset.