Library stdpp.fin_map_dom

This file provides an axiomatization of the domain function of finite maps. We provide such an axiomatization, instead of implementing the domain function in a generic way, to allow more efficient implementations.
From stdpp Require Export sets fin_maps.
From stdpp Require Import options.

Set Default Proof Using "Type*".

Class FinMapDom K M D `{ A, Dom (M A) D, FMap M,
     A, Lookup K A (M A), A, Empty (M A), A, PartialAlter K A (M A),
    OMap M, Merge M, A, MapFold K A (M A), EqDecision K,
    ElemOf K D, Empty D, Singleton K D,
    Union D, Intersection D, Difference D} := {
  finmap_dom_map :: FinMap K M;
  finmap_dom_set :: Set_ K D;
  elem_of_dom {A} (m : M A) i : i dom m is_Some (m !! i)
}.

Section fin_map_dom.
Context `{FinMapDom K M D}.

Lemma lookup_lookup_total_dom `{!Inhabited A} (m : M A) i :
  i dom m m !! i = Some (m !!! i).
Proof. rewrite elem_of_dom. apply lookup_lookup_total. Qed.

Lemma dom_imap_subseteq {A B} (f: K A option B) (m: M A) :
  dom (map_imap f m) dom m.
Proof.
  intros k. rewrite 2!elem_of_dom, map_lookup_imap.
  destruct 1 as [?[?[Eq _]]%bind_Some]. by eexists.
Qed.
Lemma dom_imap {A B} (f : K A option B) (m : M A) (X : D) :
  ( i, i X x, m !! i = Some x is_Some (f i x))
  dom (map_imap f m) X.
Proof.
  intros HX k. rewrite elem_of_dom, HX, map_lookup_imap.
  unfold is_Some. setoid_rewrite bind_Some. naive_solver.
Qed.

Lemma elem_of_dom_2 {A} (m : M A) i x : m !! i = Some x i dom m.
Proof. rewrite elem_of_dom; eauto. Qed.
Lemma not_elem_of_dom {A} (m : M A) i : i dom m m !! i = None.
Proof. by rewrite elem_of_dom, eq_None_not_Some. Qed.
Lemma not_elem_of_dom_1 {A} (m : M A) i : i dom m m !! i = None.
Proof. apply not_elem_of_dom. Qed.
Lemma not_elem_of_dom_2 {A} (m : M A) i : m !! i = None i dom m.
Proof. apply not_elem_of_dom. Qed.
Lemma subseteq_dom {A} (m1 m2 : M A) : m1 m2 dom m1 dom m2.
Proof.
  rewrite map_subseteq_spec.
  intros ??. rewrite !elem_of_dom. inv 1; eauto.
Qed.
Lemma subset_dom {A} (m1 m2 : M A) : m1 m2 dom m1 dom m2.
Proof.
  intros [Hss1 Hss2]; split; [by apply subseteq_dom |].
  contradict Hss2. rewrite map_subseteq_spec. intros i x Hi.
  specialize (Hss2 i). rewrite !elem_of_dom in Hss2.
  destruct Hss2; eauto. by simplify_map_eq.
Qed.

Lemma dom_filter {A} (P : K × A Prop) `{!∀ x, Decision (P x)} (m : M A) (X : D) :
  ( i, i X x, m !! i = Some x P (i, x))
  dom (filter P m) X.
Proof.
  intros HX i. rewrite elem_of_dom, HX.
  unfold is_Some. by setoid_rewrite map_lookup_filter_Some.
Qed.
Lemma dom_filter_subseteq {A} (P : K × A Prop) `{!∀ x, Decision (P x)} (m : M A):
  dom (filter P m) dom m.
Proof. apply subseteq_dom, map_filter_subseteq. Qed.

Lemma filter_dom {A} `{!Elements K D, !FinSet K D}
    (P : K Prop) `{!∀ x, Decision (P x)} (m : M A) :
  filter P (dom m) dom (filter (λ kv, P kv.1) m).
Proof.
  intros i. rewrite elem_of_filter, !elem_of_dom. unfold is_Some.
  setoid_rewrite map_lookup_filter_Some. naive_solver.
Qed.

Lemma dom_empty {A} : dom (@empty (M A) _) .
Proof.
  intros x. rewrite elem_of_dom, lookup_empty, <-not_eq_None_Some. set_solver.
Qed.
Lemma dom_empty_iff {A} (m : M A) : dom m m = .
Proof.
  split; [|intros ->; by rewrite dom_empty].
  intros E. apply map_empty. intros. apply not_elem_of_dom.
  rewrite E. set_solver.
Qed.
Lemma dom_empty_inv {A} (m : M A) : dom m m = .
Proof. apply dom_empty_iff. Qed.
Lemma dom_alter {A} f (m : M A) i : dom (alter f i m) dom m.
Proof.
  apply set_equiv; intros j; rewrite !elem_of_dom; unfold is_Some.
  destruct (decide (i = j)); simplify_map_eq/=; eauto.
  destruct (m !! j); naive_solver.
Qed.
Lemma dom_insert {A} (m : M A) i x : dom (<[i:=x]>m) {[ i ]} dom m.
Proof.
  apply set_equiv. intros j. rewrite elem_of_union, !elem_of_dom.
  unfold is_Some. setoid_rewrite lookup_insert_Some.
  destruct (decide (i = j)); set_solver.
Qed.
Lemma dom_insert_lookup {A} (m : M A) i x :
  is_Some (m !! i) dom (<[i:=x]>m) dom m.
Proof.
  intros Hindom. assert (i dom m) by by apply elem_of_dom.
  rewrite dom_insert. set_solver.
Qed.
Lemma dom_insert_subseteq {A} (m : M A) i x : dom m dom (<[i:=x]>m).
Proof. rewrite (dom_insert _). set_solver. Qed.
Lemma dom_insert_subseteq_compat_l {A} (m : M A) i x X :
  X dom m X dom (<[i:=x]>m).
Proof. intros. trans (dom m); eauto using dom_insert_subseteq. Qed.
Lemma dom_singleton {A} (i : K) (x : A) : dom ({[i := x]} : M A) {[ i ]}.
Proof. rewrite <-insert_empty, dom_insert, dom_empty; set_solver. Qed.
Lemma dom_delete {A} (m : M A) i : dom (delete i m) dom m {[ i ]}.
Proof.
  apply set_equiv. intros j. rewrite elem_of_difference, !elem_of_dom.
  unfold is_Some. setoid_rewrite lookup_delete_Some. set_solver.
Qed.
Lemma delete_partial_alter_dom {A} (m : M A) i f :
  i dom m delete i (partial_alter f i m) = m.
Proof. rewrite not_elem_of_dom. apply delete_partial_alter. Qed.
Lemma delete_insert_dom {A} (m : M A) i x :
  i dom m delete i (<[i:=x]>m) = m.
Proof. rewrite not_elem_of_dom. apply delete_insert. Qed.
Lemma map_disjoint_dom {A} (m1 m2 : M A) : m1 ##ₘ m2 dom m1 ## dom m2.
Proof.
  rewrite map_disjoint_spec, elem_of_disjoint.
  setoid_rewrite elem_of_dom. unfold is_Some. naive_solver.
Qed.
Lemma map_disjoint_dom_1 {A} (m1 m2 : M A) : m1 ##ₘ m2 dom m1 ## dom m2.
Proof. apply map_disjoint_dom. Qed.
Lemma map_disjoint_dom_2 {A} (m1 m2 : M A) : dom m1 ## dom m2 m1 ##ₘ m2.
Proof. apply map_disjoint_dom. Qed.
Lemma dom_union {A} (m1 m2 : M A) : dom (m1 m2) dom m1 dom m2.
Proof.
  apply set_equiv. intros i. rewrite elem_of_union, !elem_of_dom.
  unfold is_Some. setoid_rewrite lookup_union_Some_raw.
  destruct (m1 !! i); naive_solver.
Qed.
Lemma dom_intersection {A} (m1 m2: M A) : dom (m1 m2) dom m1 dom m2.
Proof.
  apply set_equiv. intros i. rewrite elem_of_intersection, !elem_of_dom.
  unfold is_Some. setoid_rewrite lookup_intersection_Some. naive_solver.
Qed.
Lemma dom_difference {A} (m1 m2 : M A) : dom (m1 m2) dom m1 dom m2.
Proof.
  apply set_equiv. intros i. rewrite elem_of_difference, !elem_of_dom.
  unfold is_Some. setoid_rewrite lookup_difference_Some.
  destruct (m2 !! i); naive_solver.
Qed.
Lemma dom_fmap {A B} (f : A B) (m : M A) : dom (f <$> m) dom m.
Proof.
  apply set_equiv. intros i.
  rewrite !elem_of_dom, lookup_fmap, <-!not_eq_None_Some.
  destruct (m !! i); naive_solver.
Qed.
Lemma dom_finite {A} (m : M A) : set_finite (dom m).
Proof.
  induction m using map_ind; rewrite ?dom_empty, ?dom_insert.
  - by apply empty_finite.
  - apply union_finite; [apply singleton_finite|done].
Qed.
Global Instance dom_proper `{!Equiv A} : Proper ((≡@{M A}) ==> (≡)) dom.
Proof.
  intros m1 m2 EQm. apply set_equiv. intros i.
  rewrite !elem_of_dom, EQm. done.
Qed.
Lemma dom_list_to_map {A} (l : list (K × A)) :
  dom (list_to_map l : M A) list_to_set l.*1.
Proof.
  induction l as [|?? IH].
  - by rewrite dom_empty.
  - simpl. by rewrite dom_insert, IH.
Qed.

Alternative definition of dom in terms of map_to_list.
Lemma dom_alt {A} (m : M A) :
  dom m list_to_set (map_to_list m).*1.
Proof.
  rewrite <-(list_to_map_to_list m) at 1.
  rewrite dom_list_to_map.
  done.
Qed.

Lemma size_dom `{!Elements K D, !FinSet K D} {A} (m : M A) :
  size (dom m) = size m.
Proof.
  induction m as [|i x m ? IH] using map_ind.
  { by rewrite dom_empty, map_size_empty, size_empty. }
  assert ({[i]} ## dom m).
  { intros j. rewrite elem_of_dom. unfold is_Some. set_solver. }
  by rewrite dom_insert, size_union, size_singleton, map_size_insert_None, IH.
Qed.

Lemma dom_subseteq_size {A} (m1 m2 : M A) : dom m2 dom m1 size m2 size m1.
Proof.
  revert m1. induction m2 as [|i x m2 ? IH] using map_ind; intros m1 Hdom.
  { rewrite map_size_empty. lia. }
  rewrite dom_insert in Hdom.
  assert (i dom m2) by (by apply not_elem_of_dom).
  assert (i dom m1) as [x' Hx']%elem_of_dom by set_solver.
  rewrite <-(insert_delete m1 i x') by done.
  rewrite !map_size_insert_None, <-Nat.succ_le_mono by (by rewrite ?lookup_delete).
  apply IH. rewrite dom_delete. set_solver.
Qed.
Lemma dom_subset_size {A} (m1 m2 : M A) : dom m2 dom m1 size m2 < size m1.
Proof.
  revert m1. induction m2 as [|i x m2 ? IH] using map_ind; intros m1 Hdom.
  { destruct m1 as [|i x m1 ? _] using map_ind.
    - rewrite !dom_empty in Hdom. set_solver.
    - rewrite map_size_empty, map_size_insert_None by done. lia. }
  rewrite dom_insert in Hdom.
  assert (i dom m2) by (by apply not_elem_of_dom).
  assert (i dom m1) as [x' Hx']%elem_of_dom by set_solver.
  rewrite <-(insert_delete m1 i x') by done.
  rewrite !map_size_insert_None, <-Nat.succ_lt_mono by (by rewrite ?lookup_delete).
  apply IH. rewrite dom_delete. split; [set_solver|].
  intros ?. destruct Hdom as [? []].
  intros j. destruct (decide (i = j)); set_solver.
Qed.

Lemma subseteq_dom_eq {A} (m1 m2 : M A) :
  m1 m2 dom m2 dom m1 m1 = m2.
Proof. intros. apply map_subseteq_size_eq; auto using dom_subseteq_size. Qed.

Lemma dom_singleton_inv {A} (m : M A) i :
  dom m {[i]} x, m = {[i := x]}.
Proof.
  intros Hdom. assert (is_Some (m !! i)) as [x ?].
  { apply (elem_of_dom (D:=D)); set_solver. }
   x. apply map_eq; intros j.
  destruct (decide (i = j)); simplify_map_eq; [done|].
  apply not_elem_of_dom. set_solver.
Qed.

Lemma dom_map_zip_with {A B C} (f : A B C) (ma : M A) (mb : M B) :
  dom (map_zip_with f ma mb) dom ma dom mb.
Proof.
  rewrite set_equiv. intros x.
  rewrite elem_of_intersection, !elem_of_dom, map_lookup_zip_with.
  destruct (ma !! x), (mb !! x); rewrite !is_Some_alt; naive_solver.
Qed.

Lemma dom_union_inv `{!RelDecision (∈@{D})} {A} (m : M A) (X1 X2 : D) :
  X1 ## X2
  dom m X1 X2
   m1 m2, m = m1 m2 m1 ##ₘ m2 dom m1 X1 dom m2 X2.
Proof.
  intros.
   (filter (λ '(k,x), k X1) m), (filter (λ '(k,x), k X1) m).
  assert (filter (λ '(k, _), k X1) m ##ₘ filter (λ '(k, _), k X1) m).
  { apply map_disjoint_filter_complement. }
  split_and!; [|done| |].
  - apply map_eq; intros i. apply option_eq; intros x.
    rewrite lookup_union_Some, !map_lookup_filter_Some by done.
    destruct (decide (i X1)); naive_solver.
  - apply dom_filter; intros i; split; [|naive_solver].
    intros. assert (is_Some (m !! i)) as [x ?] by (apply elem_of_dom; set_solver).
    naive_solver.
  - apply dom_filter; intros i; split.
    + intros. assert (is_Some (m !! i)) as [x ?] by (apply elem_of_dom; set_solver).
      naive_solver.
    + intros (x&?&?). apply dec_stable; intros ?.
      assert (m !! i = None) by (apply not_elem_of_dom; set_solver).
      naive_solver.
Qed.

Lemma dom_kmap `{!Elements K D, !FinSet K D, FinMapDom K2 M2 D2}
    {A} (f : K K2) `{!Inj (=) (=) f} (m : M A) :
  dom (kmap (M2:=M2) f m) ≡@{D2} set_map f (dom m).
Proof.
  apply set_equiv. intros i.
  rewrite !elem_of_dom, (lookup_kmap_is_Some _), elem_of_map.
  by setoid_rewrite elem_of_dom.
Qed.

Lemma dom_omap_subseteq {A B} (f : A option B) (m : M A) :
  dom (omap f m) dom m.
Proof.
  intros a. rewrite !elem_of_dom. intros [c Hm].
  apply lookup_omap_Some in Hm. naive_solver.
Qed.

Lemma map_compose_dom_subseteq {C} `{FinMap K' M'} (m: M' C) (n : M K') :
  dom (m ∘ₘ n : M C) ⊆@{D} dom n.
Proof. apply dom_omap_subseteq. Qed.
Lemma map_compose_min_r_dom {C} `{FinMap K' M', !RelDecision (∈@{D})}
    (m : M C) (n : M' K) :
  m ∘ₘ n = m ∘ₘ filter (λ '(_,b), b dom m) n.
Proof.
  rewrite map_compose_min_r. f_equal.
  apply map_filter_ext. intros. by rewrite elem_of_dom.
Qed.

Lemma map_compose_empty_iff_dom_img {C} `{FinMap K' M', !RelDecision (∈@{D})}
    (m : M C) (n : M' K) :
  m ∘ₘ n = dom m ## map_img n.
Proof.
  rewrite map_compose_empty_iff, elem_of_disjoint.
  setoid_rewrite elem_of_dom. setoid_rewrite eq_None_not_Some.
  setoid_rewrite elem_of_map_img. naive_solver.
Qed.

If D has Leibniz equality, we can show an even stronger result. This is a common case e.g. when having a gmap K A where the key K has Leibniz equality (and thus also gset K, the usual domain) but the value type A does not.
Global Instance dom_proper_L `{!Equiv A, !LeibnizEquiv D} :
  Proper ((≡@{M A}) ==> (=)) (dom) | 0.
Proof. intros ???. unfold_leibniz. by apply dom_proper. Qed.

Section leibniz.
  Context `{!LeibnizEquiv D}.
  Lemma dom_filter_L {A} (P : K × A Prop) `{!∀ x, Decision (P x)} (m : M A) X :
    ( i, i X x, m !! i = Some x P (i, x))
    dom (filter P m) = X.
  Proof. unfold_leibniz. apply dom_filter. Qed.
  Lemma filter_dom_L {A} `{!Elements K D, !FinSet K D}
      (P : K Prop) `{!∀ x, Decision (P x)} (m : M A) :
    filter P (dom m) = dom (filter (λ kv, P kv.1) m).
  Proof. unfold_leibniz. apply filter_dom. Qed.
  Lemma dom_empty_L {A} : dom (@empty (M A) _) = .
  Proof. unfold_leibniz; apply dom_empty. Qed.
  Lemma dom_empty_iff_L {A} (m : M A) : dom m = m = .
  Proof. unfold_leibniz. apply dom_empty_iff. Qed.
  Lemma dom_empty_inv_L {A} (m : M A) : dom m = m = .
  Proof. by intros; apply dom_empty_inv; unfold_leibniz. Qed.
  Lemma dom_alter_L {A} f (m : M A) i : dom (alter f i m) = dom m.
  Proof. unfold_leibniz; apply dom_alter. Qed.
  Lemma dom_insert_L {A} (m : M A) i x : dom (<[i:=x]>m) = {[ i ]} dom m.
  Proof. unfold_leibniz; apply dom_insert. Qed.
  Lemma dom_insert_lookup_L {A} (m : M A) i x :
    is_Some (m !! i) dom (<[i:=x]>m) = dom m.
  Proof. unfold_leibniz; apply dom_insert_lookup. Qed.
  Lemma dom_singleton_L {A} (i : K) (x : A) : dom ({[i := x]} : M A) = {[ i ]}.
  Proof. unfold_leibniz; apply dom_singleton. Qed.
  Lemma dom_delete_L {A} (m : M A) i : dom (delete i m) = dom m {[ i ]}.
  Proof. unfold_leibniz; apply dom_delete. Qed.
  Lemma dom_union_L {A} (m1 m2 : M A) : dom (m1 m2) = dom m1 dom m2.
  Proof. unfold_leibniz; apply dom_union. Qed.
  Lemma dom_intersection_L {A} (m1 m2 : M A) :
    dom (m1 m2) = dom m1 dom m2.
  Proof. unfold_leibniz; apply dom_intersection. Qed.
  Lemma dom_difference_L {A} (m1 m2 : M A) : dom (m1 m2) = dom m1 dom m2.
  Proof. unfold_leibniz; apply dom_difference. Qed.
  Lemma dom_fmap_L {A B} (f : A B) (m : M A) : dom (f <$> m) = dom m.
  Proof. unfold_leibniz; apply dom_fmap. Qed.
  Lemma dom_imap_L {A B} (f: K A option B) (m: M A) X :
    ( i, i X x, m !! i = Some x is_Some (f i x))
    dom (map_imap f m) = X.
  Proof. unfold_leibniz; apply dom_imap. Qed.
  Lemma dom_list_to_map_L {A} (l : list (K × A)) :
    dom (list_to_map l : M A) = list_to_set l.*1.
  Proof. unfold_leibniz. apply dom_list_to_map. Qed.
  Lemma dom_singleton_inv_L {A} (m : M A) i :
    dom m = {[i]} x, m = {[i := x]}.
  Proof. unfold_leibniz. apply dom_singleton_inv. Qed.
  Lemma dom_map_zip_with_L {A B C} (f : A B C) (ma : M A) (mb : M B) :
    dom (map_zip_with f ma mb) = dom ma dom mb.
  Proof. unfold_leibniz. apply dom_map_zip_with. Qed.
  Lemma dom_union_inv_L `{!RelDecision (∈@{D})} {A} (m : M A) (X1 X2 : D) :
    X1 ## X2
    dom m = X1 X2
     m1 m2, m = m1 m2 m1 ##ₘ m2 dom m1 = X1 dom m2 = X2.
  Proof. unfold_leibniz. apply dom_union_inv. Qed.
End leibniz.

Lemma dom_kmap_L `{!Elements K D, !FinSet K D, FinMapDom K2 M2 D2}
    `{!LeibnizEquiv D2} {A} (f : K K2) `{!Inj (=) (=) f} (m : M A) :
  dom (kmap (M2:=M2) f m) = set_map f (dom m).
Proof. unfold_leibniz. by apply dom_kmap. Qed.

Set solver instances

Global Instance set_unfold_dom_empty {A} i : SetUnfoldElemOf i (dom (:M A)) False.
Proof. constructor. by rewrite dom_empty, elem_of_empty. Qed.
Global Instance set_unfold_dom_alter {A} f i j (m : M A) Q :
  SetUnfoldElemOf i (dom m) Q
  SetUnfoldElemOf i (dom (alter f j m)) Q.
Proof. constructor. by rewrite dom_alter, (set_unfold_elem_of _ (dom _) _). Qed.
Global Instance set_unfold_dom_insert {A} i j x (m : M A) Q :
  SetUnfoldElemOf i (dom m) Q
  SetUnfoldElemOf i (dom (<[j:=x]> m)) (i = j Q).
Proof.
  constructor. by rewrite dom_insert, elem_of_union,
    (set_unfold_elem_of _ (dom _) _), elem_of_singleton.
Qed.
Global Instance set_unfold_dom_delete {A} i j (m : M A) Q :
  SetUnfoldElemOf i (dom m) Q
  SetUnfoldElemOf i (dom (delete j m)) (Q i j).
Proof.
  constructor. by rewrite dom_delete, elem_of_difference,
    (set_unfold_elem_of _ (dom _) _), elem_of_singleton.
Qed.
Global Instance set_unfold_dom_singleton {A} i j x :
  SetUnfoldElemOf i (dom ({[ j := x ]} : M A)) (i = j).
Proof. constructor. by rewrite dom_singleton, elem_of_singleton. Qed.
Global Instance set_unfold_dom_union {A} i (m1 m2 : M A) Q1 Q2 :
  SetUnfoldElemOf i (dom m1) Q1 SetUnfoldElemOf i (dom m2) Q2
  SetUnfoldElemOf i (dom (m1 m2)) (Q1 Q2).
Proof.
  constructor. by rewrite dom_union, elem_of_union,
    !(set_unfold_elem_of _ (dom _) _).
Qed.
Global Instance set_unfold_dom_intersection {A} i (m1 m2 : M A) Q1 Q2 :
  SetUnfoldElemOf i (dom m1) Q1 SetUnfoldElemOf i (dom m2) Q2
  SetUnfoldElemOf i (dom (m1 m2)) (Q1 Q2).
Proof.
  constructor. by rewrite dom_intersection, elem_of_intersection,
    !(set_unfold_elem_of _ (dom _) _).
Qed.
Global Instance set_unfold_dom_difference {A} i (m1 m2 : M A) Q1 Q2 :
  SetUnfoldElemOf i (dom m1) Q1 SetUnfoldElemOf i (dom m2) Q2
  SetUnfoldElemOf i (dom (m1 m2)) (Q1 ¬Q2).
Proof.
  constructor. by rewrite dom_difference, elem_of_difference,
    !(set_unfold_elem_of _ (dom _) _).
Qed.
Global Instance set_unfold_dom_fmap {A B} (f : A B) i (m : M A) Q :
  SetUnfoldElemOf i (dom m) Q
  SetUnfoldElemOf i (dom (f <$> m)) Q.
Proof. constructor. by rewrite dom_fmap, (set_unfold_elem_of _ (dom _) _). Qed.
End fin_map_dom.

Lemma dom_seq `{FinMapDom nat M D} {A} start (xs : list A) :
  dom (map_seq start (M:=M A) xs) set_seq start (length xs).
Proof.
  revert start. induction xs as [|x xs IH]; intros start; simpl.
  - by rewrite dom_empty.
  - by rewrite dom_insert, IH.
Qed.
Lemma dom_seq_L `{FinMapDom nat M D, !LeibnizEquiv D} {A} start (xs : list A) :
  dom (map_seq (M:=M A) start xs) = set_seq start (length xs).
Proof. unfold_leibniz. apply dom_seq. Qed.

Global Instance set_unfold_dom_seq `{FinMapDom nat M D} {A} start (xs : list A) i :
  SetUnfoldElemOf i (dom (map_seq start (M:=M A) xs)) (start i < start + length xs).
Proof. constructor. by rewrite dom_seq, elem_of_set_seq. Qed.