Library stdpp.fin_sets

This file collects definitions and theorems on finite sets. Most importantly, it implements a fold and size function and some useful induction principles on finite sets .
From stdpp Require Import relations.
From stdpp Require Export numbers sets.
From stdpp Require Import options.

Set Default Proof Using "Type*".

Operations
Global Instance set_size `{Elements A C} : Size C := length elements.
Global Typeclasses Opaque set_size.

Definition set_fold `{Elements A C} {B}
  (f : A B B) (b : B) : C B := foldr f b elements.
Global Typeclasses Opaque set_fold.

Global Instance set_filter
    `{Elements A C, Empty C, Singleton A C, Union C} : Filter A C := λ P _ X,
  list_to_set (filter P (elements X)).
Global Typeclasses Opaque set_filter.

Definition set_map `{Elements A C, Singleton B D, Empty D, Union D}
    (f : A B) (X : C) : D :=
  list_to_set (f <$> elements X).
Global Typeclasses Opaque set_map.
Global Instance: Params (@set_map) 8 := {}.

Definition set_bind `{Elements A SA, Empty SB, Union SB}
    (f : A SB) (X : SA) : SB :=
   (f <$> elements X).
Global Typeclasses Opaque set_bind.
Global Instance: Params (@set_bind) 6 := {}.

Definition set_omap `{Elements A C, Singleton B D, Empty D, Union D}
    (f : A option B) (X : C) : D :=
  list_to_set (omap f (elements X)).
Global Typeclasses Opaque set_omap.
Global Instance: Params (@set_omap) 8 := {}.

Global Instance set_fresh `{Elements A C, Fresh A (list A)} : Fresh A C :=
  fresh elements.
Global Typeclasses Opaque set_fresh.

We generalize the fresh operation on sets to generate lists of fresh elements w.r.t. a set X.
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 ⇒ []
  | S nlet x := fresh X in x :: fresh_list n ({[ x ]} X)
  end.
Global Instance: Params (@fresh_list) 6 := {}.

The following inductive predicate classifies that a list of elements is in fact fresh w.r.t. a set X.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x xs x X Forall_fresh X xs Forall_fresh X (x :: xs).

Properties
Section fin_set.
Context `{FinSet A C}.
Implicit Types X Y : C.

Lemma fin_set_finite X : set_finite X.
Proof. by (elements X); intros; rewrite elem_of_elements. Qed.

Local Instance elem_of_dec_slow : RelDecision (∈@{C}) | 100.
Proof.
  refine (λ x X, cast_if (decide_rel (∈) x (elements X)));
    by rewrite <-(elem_of_elements _).
Defined.

The elements operation

Global Instance set_unfold_elements X x P :
  SetUnfoldElemOf x X P SetUnfoldElemOf x (elements X) P.
Proof. constructor. by rewrite elem_of_elements, (set_unfold_elem_of x X P). Qed.

Global Instance elements_proper: Proper ((≡) ==> (≡ₚ)) (elements (C:=C)).
Proof.
  intros ?? E. apply NoDup_Permutation.
  - apply NoDup_elements.
  - apply NoDup_elements.
  - intros. by rewrite !elem_of_elements, E.
Qed.

Lemma elements_empty : elements ( : C) = [].
Proof.
  apply elem_of_nil_inv; intros x.
  rewrite elem_of_elements, elem_of_empty; tauto.
Qed.
Lemma elements_empty_iff X : elements X = [] X .
Proof.
  rewrite <-Permutation_nil_r. split; [|intros ->; by rewrite elements_empty].
  intros HX. apply elem_of_equiv_empty; intros x.
  rewrite <-elem_of_elements, HX. apply not_elem_of_nil.
Qed.
Lemma elements_empty_inv X : elements X = [] X .
Proof. apply elements_empty_iff. Qed.

Lemma elements_union_singleton (X : C) x :
  x X elements ({[ x ]} X) ≡ₚ x :: elements X.
Proof.
  intros ?; apply NoDup_Permutation.
  { apply NoDup_elements. }
  { by constructor; rewrite ?elem_of_elements; try apply NoDup_elements. }
  intros y; rewrite elem_of_elements, elem_of_union, elem_of_singleton.
  by rewrite elem_of_cons, elem_of_elements.
Qed.
Lemma elements_singleton x : elements ({[ x ]} : C) = [x].
Proof.
  apply Permutation_singleton_r. by rewrite <-(right_id (∪) {[x]}),
    elements_union_singleton, elements_empty by set_solver.
Qed.
Lemma elements_disj_union (X Y : C) :
  X ## Y elements (X Y) ≡ₚ elements X ++ elements Y.
Proof.
  intros HXY. apply NoDup_Permutation.
  - apply NoDup_elements.
  - apply NoDup_app. set_solver by eauto using NoDup_elements.
  - set_solver.
Qed.
Lemma elements_submseteq X Y : X Y elements X ⊆+ elements Y.
Proof.
  intros; apply NoDup_submseteq; eauto using NoDup_elements.
  intros x. rewrite !elem_of_elements; auto.
Qed.

Lemma list_to_set_elements X : list_to_set (elements X) X.
Proof. intros ?. rewrite elem_of_list_to_set. apply elem_of_elements. Qed.
Lemma list_to_set_elements_L `{!LeibnizEquiv C} X : list_to_set (elements X) = X.
Proof. unfold_leibniz. apply list_to_set_elements. Qed.

Lemma elements_list_to_set l :
  NoDup l elements (list_to_set (C:=C) l) ≡ₚ l.
Proof.
  intros Hl. induction Hl.
  { rewrite list_to_set_nil. rewrite elements_empty. done. }
  rewrite list_to_set_cons, elements_disj_union by set_solver.
  rewrite elements_singleton. apply Permutation_skip. done.
Qed.

The size operation

Global Instance set_size_proper: Proper ((≡) ==> (=)) (@size C _).
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.

Lemma size_empty : size ( : C) = 0.
Proof. unfold size, set_size. simpl. by rewrite elements_empty. Qed.
Lemma size_empty_iff (X : C) : size X = 0 X .
Proof.
  split; [|intros ->; by rewrite size_empty].
  intros; apply equiv_empty; intros x; rewrite <-elem_of_elements.
  by rewrite (nil_length_inv (elements X)), ?elem_of_nil.
Qed.
Lemma size_empty_inv (X : C) : size X = 0 X .
Proof. apply size_empty_iff. Qed.
Lemma size_non_empty_iff (X : C) : size X 0 X .
Proof. by rewrite size_empty_iff. Qed.

Lemma set_choose_or_empty X : ( x, x X) X .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - apply equiv_empty; intros x. by rewrite <-elem_of_elements, HX, elem_of_nil.
  - x. rewrite <-elem_of_elements, HX. by left.
Qed.
Lemma set_choose X : X x, x X.
Proof. intros. by destruct (set_choose_or_empty X). Qed.
Lemma set_choose_L `{!LeibnizEquiv C} X : X x, x X.
Proof. unfold_leibniz. apply set_choose. Qed.
Lemma size_pos_elem_of X : 0 < size X x, x X.
Proof.
  intros Hsz. destruct (set_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, size_empty; lia.
Qed.

Lemma size_singleton (x : A) : size ({[ x ]} : C) = 1.
Proof. unfold size, set_size. simpl. by rewrite elements_singleton. Qed.
Lemma size_singleton_inv X x y : size X = 1 x X y X x = y.
Proof.
  unfold size, set_size. simpl. rewrite <-!elem_of_elements.
  generalize (elements X). intros [|? l]; intro; simplify_eq/=.
  rewrite (nil_length_inv l), !elem_of_list_singleton by done; congruence.
Qed.
Lemma size_1_elem_of X : size X = 1 x, X {[ x ]}.
Proof.
  intros E. destruct (size_pos_elem_of X) as [x ?]; auto with lia.
   x. apply set_equiv. split.
  - rewrite elem_of_singleton. eauto using size_singleton_inv.
  - set_solver.
Qed.

Lemma size_union X Y : X ## Y size (X Y) = size X + size Y.
Proof.
  intros. unfold size, set_size. simpl. rewrite <-length_app.
  apply Permutation_length, NoDup_Permutation.
  - apply NoDup_elements.
  - apply NoDup_app; repeat split; try apply NoDup_elements.
    intros x; rewrite !elem_of_elements; set_solver.
  - intros. by rewrite elem_of_app, !elem_of_elements, elem_of_union.
Qed.
Lemma size_union_alt X Y : size (X Y) = size X + size (Y X).
Proof.
  rewrite <-size_union by set_solver.
  setoid_replace (Y X) with ((Y X) X) by set_solver.
  rewrite <-union_difference, (comm (∪)); set_solver.
Qed.

Lemma size_difference X Y : Y X size (X Y) = size X - size Y.
Proof.
  intros. rewrite (union_difference Y X) at 2 by done.
  rewrite size_union by set_solver. lia.
Qed.
Lemma size_difference_alt X Y : size (X Y) = size X - size (X Y).
Proof.
  intros. rewrite <-size_difference by set_solver.
  apply set_size_proper. set_solver.
Qed.

Lemma set_subseteq_size_equiv X1 X2 : X1 X2 size X2 size X1 X1 X2.
Proof.
  intros. apply (anti_symm _); [done|].
  apply empty_difference_subseteq, size_empty_iff.
  rewrite size_difference by done. lia.
Qed.
Lemma set_subseteq_size_eq `{!LeibnizEquiv C} X1 X2 :
  X1 X2 size X2 size X1 X1 = X2.
Proof. unfold_leibniz. apply set_subseteq_size_equiv. Qed.

Lemma subseteq_size X Y : X Y size X size Y.
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Lemma subset_size X Y : X Y size X < size Y.
Proof.
  intros. rewrite (union_difference X Y) by set_solver.
  rewrite size_union_alt, difference_twice.
  cut (size (Y X) 0); [lia |].
  by apply size_non_empty_iff, non_empty_difference.
Qed.

Lemma size_list_to_set l :
  NoDup l size (list_to_set (C:=C) l) = length l.
Proof.
  intros Hl. unfold size, set_size. simpl.
  rewrite elements_list_to_set; done.
Qed.

Induction principles

Lemma set_wf : well_founded (⊂@{C}).
Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed.
Lemma set_ind (P : C Prop) :
  Proper ((≡) ==> impl) P
  P ( x X, x X P X P ({[ x ]} X)) X, P X.
Proof.
  intros ? Hemp Hadd. apply well_founded_induction with (⊂).
  { apply set_wf. }
  intros X IH. destruct (set_choose_or_empty X) as [[x ?]|HX].
  - rewrite (union_difference {[ x ]} X) by set_solver.
    apply Hadd; [set_solver|]. apply IH; set_solver.
  - by rewrite HX.
Qed.
Lemma set_ind_L `{!LeibnizEquiv C} (P : C Prop) :
  P ( x X, x X P X P ({[ x ]} X)) X, P X.
Proof. apply set_ind. by intros ?? ->%leibniz_equiv_iff. Qed.

The set_fold operation

Lemma set_fold_ind {B} (P : B C Prop) (f : A B B) (b : B) :
  ( x, Proper ((≡) ==> impl) (P x))
  P b ( x X r, x X P r X P (f x r) ({[ x ]} X))
   X, P (set_fold f b X) X.
Proof.
  intros ? Hemp Hadd.
  cut ( l, NoDup l X, ( x, x X x l) P (foldr f b l) X).
  { intros help ?. apply help; [apply NoDup_elements|].
    symmetry. apply elem_of_elements. }
  induction 1 as [|x l ?? IH]; simpl.
  - intros X HX. setoid_rewrite elem_of_nil in HX.
    rewrite equiv_empty; [done|]. set_solver.
  - intros X HX. setoid_rewrite elem_of_cons in HX.
    rewrite (union_difference {[ x ]} X) by set_solver.
    apply Hadd; [set_solver|]. apply IH; set_solver.
Qed.
Lemma set_fold_ind_L `{!LeibnizEquiv C}
    {B} (P : B C Prop) (f : A B B) (b : B) :
  P b ( x X r, x X P r X P (f x r) ({[ x ]} X))
   X, P (set_fold f b X) X.
Proof. apply set_fold_ind. solve_proper. Qed.
Lemma set_fold_proper {B} (R : relation B) `{!PreOrder R}
    (f : A B B) (b : B) `{!∀ a, Proper (R ==> R) (f a)}
    (Hf : a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
  Proper ((≡) ==> R) (set_fold f b : C B).
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.

Lemma set_fold_empty {B} (f : A B B) (b : B) :
  set_fold f b ( : C) = b.
Proof. by unfold set_fold; simpl; rewrite elements_empty. Qed.
Lemma set_fold_singleton {B} (f : A B B) (b : B) (a : A) :
  set_fold f b ({[a]} : C) = f a b.
Proof. by unfold set_fold; simpl; rewrite elements_singleton. Qed.

The following lemma shows that folding over two sets separately (using the result of the first fold as input for the second fold) is equivalent to folding over the union, *if* the function is idempotent for the elements that will be processed twice (X Y) and does not care about the order in which elements are processed.
This is a generalization of set_fold_union (below) with a.) a relation R instead of equality b.) a function f : A B B instead of f : A A A, and c.) premises that ensure the elements are in X Y.
Lemma set_fold_union_strong {B} (R : relation B) `{!PreOrder R}
    (f : A B B) (b : B) X Y :
  ( x, Proper (R ==> R) (f x))
  ( x b',
    
This is morally idempotence for elements of X Y
    x X Y
    
We cannot write this in the usual direction of idempotence properties (i.e., R (f x (f x b'))) (f x b')) because R is not symmetric.
    R (f x b') (f x (f x b')))
  ( x1 x2 b',
    
This is morally commutativity + associativity for elements of X Y
    x1 X Y x2 X Y x1 x2
    R (f x1 (f x2 b')) (f x2 (f x1 b')))
  R (set_fold f b (X Y)) (set_fold f (set_fold f b X) Y).
Proof.
This lengthy proof involves various steps by transitivity of R. Roughly, we show that the LHS is related to folding over:
elements (Y ∖ X) ++ elements (X ∩ Y) ++ elements (X ∖ Y)
and the RHS is related to folding over:
elements (Y ∖ X) ++ elements (X ∩ Y) ++ elements (X ∩ Y) ++ elements (Y ∖ X)
These steps are justified by lemma foldr_permutation. In the middle we remove the repeated folding over elements (X Y) using foldr_idemp_strong. Most of the proof work concerns the side conditions of foldr_permutation and foldr_idemp_strong, which require relating results about lists and sets.
  intros ?.
  assert ( b1 b2 l, R b1 b2 R (foldr f b1 l) (foldr f b2 l)) as Hff.
  { intros b1 b2 l Hb. induction l as [|x l]; simpl; [done|]. by f_equiv. }
  intros Hfidemp Hfcomm. unfold set_fold; simpl.
  trans (foldr f b (elements (Y X) ++ elements (X Y) ++ elements (X Y))).
  { apply (foldr_permutation R f b).
    - intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
      + apply elem_of_list_lookup_2 in Hj1. set_solver.
      + apply elem_of_list_lookup_2 in Hj2. set_solver.
      + intros →. pose proof (NoDup_elements (X Y)).
        by eapply Hj, NoDup_lookup.
    - rewrite <-!elements_disj_union by set_solver. f_equiv; intros x.
      destruct (decide (x X)), (decide (x Y)); set_solver. }
  trans (foldr f (foldr f b (elements (X Y) ++ elements (X Y)))
    (elements (Y X) ++ elements (X Y))).
  { rewrite !foldr_app. apply Hff. apply (foldr_idemp_strong (flip R)).
    - solve_proper.
    - intros j a b' ?%elem_of_list_lookup_2. apply Hfidemp. set_solver.
    - intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
      + apply elem_of_list_lookup_2 in Hj2. set_solver.
      + apply elem_of_list_lookup_2 in Hj1. set_solver.
      + intros →. pose proof (NoDup_elements (X Y)).
        by eapply Hj, NoDup_lookup. }
  trans (foldr f (foldr f b (elements (X Y) ++ elements (X Y))) (elements Y)).
  { apply (foldr_permutation R f _).
    - intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
      + apply elem_of_list_lookup_2 in Hj1. set_solver.
      + apply elem_of_list_lookup_2 in Hj2. set_solver.
      + intros →. assert (NoDup (elements (Y X) ++ elements (X Y))).
        { rewrite <-elements_disj_union by set_solver. apply NoDup_elements. }
        by eapply Hj, NoDup_lookup.
    - rewrite <-!elements_disj_union by set_solver. f_equiv; intros x.
      destruct (decide (x X)); set_solver. }
  apply Hff. apply (foldr_permutation R f _).
  - intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
    + apply elem_of_list_lookup_2 in Hj1. set_solver.
    + apply elem_of_list_lookup_2 in Hj2. set_solver.
    + intros →. assert (NoDup (elements (X Y) ++ elements (X Y))).
      { rewrite <-elements_disj_union by set_solver. apply NoDup_elements. }
      by eapply Hj, NoDup_lookup.
  - rewrite <-!elements_disj_union by set_solver. f_equiv; intros x.
    destruct (decide (x Y)); set_solver.
Qed.
Lemma set_fold_union (f : A A A) (b : A) X Y :
  IdemP (=) f
  Comm (=) f
  Assoc (=) f
  set_fold f b (X Y) = set_fold f (set_fold f b X) Y.
Proof.
  intros. apply (set_fold_union_strong _ _ _ _ _ _).
  - intros x b' _. by rewrite (assoc_L f), (idemp f).
  - intros x1 x2 b' _ _ _. by rewrite !(assoc_L f), (comm_L f x1).
Qed.

Generalization of set_fold_disj_union (below) with a.) a relation R instead of equality b.) a function f : A B B instead of f : A A A, and c.) premises that ensure the elements are in X Y.
Lemma set_fold_disj_union_strong {B} (R : relation B) `{!PreOrder R}
    (f : A B B) (b : B) X Y :
  ( x, Proper (R ==> R) (f x))
  ( x1 x2 b',
    
This is morally commutativity + associativity for elements of X Y
    x1 X Y x2 X Y x1 x2
    R (f x1 (f x2 b')) (f x2 (f x1 b')))
  X ## Y
  R (set_fold f b (X Y)) (set_fold f (set_fold f b X) Y).
Proof. intros. apply set_fold_union_strong; set_solver. Qed.
Lemma set_fold_disj_union (f : A A A) (b : A) X Y :
  Comm (=) f
  Assoc (=) f
  X ## Y
  set_fold f b (X Y) = set_fold f (set_fold f b X) Y.
Proof.
  intros. apply (set_fold_disj_union_strong _ _ _ _ _ _); [|done].
  intros x1 x2 b' _ _ _. by rewrite !(assoc_L f), (comm_L f x1).
Qed.

Lemma set_fold_comm_acc_strong {B} (R : relation B) `{!PreOrder R}
    (f : A B B) (g : B B) (b : B) X :
  ( x, Proper (R ==> R) (f x))
  ( x y, x X R (f x (g y)) (g (f x y)))
  R (set_fold f (g b) X) (g (set_fold f b X)).
Proof.
  intros. unfold set_fold; simpl.
  apply foldr_comm_acc_strong; [done|solve_proper|set_solver].
Qed.
Lemma set_fold_comm_acc {B} (f : A B B) (g : B B) (b : B) X :
  ( x y, f x (g y) = g (f x y))
  set_fold f (g b) X = g (set_fold f b X).
Proof. intros. apply (set_fold_comm_acc_strong _); [solve_proper|auto]. Qed.

Minimal elements

Lemma minimal_exists_elem_of R `{!Transitive R, x y, Decision (R x y)} (X : C) :
  X x, x X minimal R x X.
Proof.
  pattern X; apply set_ind; clear X.
  { by intros X X' HX; setoid_rewrite HX. }
  { done. }
  intros x X ? IH Hemp. destruct (set_choose_or_empty X) as [[z ?]|HX].
  { destruct IH as (x' & Hx' & Hmin); [set_solver|].
    destruct (decide (R x x')).
    - x; split; [set_solver|].
      eapply union_minimal; [eapply singleton_minimal|by eapply minimal_weaken].
    - x'; split; [set_solver|].
      by eapply union_minimal; [apply singleton_minimal_not_above|]. }
   x; split; [set_solver|].
  rewrite HX, (right_id _ (∪)). apply singleton_minimal.
Qed.
Lemma minimal_exists_elem_of_L R `{!LeibnizEquiv C, !Transitive R,
     x y, Decision (R x y)} (X : C) :
  X x, x X minimal R x X.
Proof. unfold_leibniz. apply (minimal_exists_elem_of R). Qed.

Lemma minimal_exists R `{!Transitive R,
     x y, Decision (R x y)} `{!Inhabited A} (X : C) :
   x, minimal R x X.
Proof.
  destruct (set_choose_or_empty X) as [ (y & Ha) | Hne].
  - edestruct (minimal_exists_elem_of R X) as (x & Hel & Hmin); first set_solver.
     x. done.
  - inhabitant. intros y Hel. set_solver.
Qed.

Filter

Lemma elem_of_filter (P : A Prop) `{!∀ x, Decision (P x)} X x :
  x filter P X P x x X.
Proof.
  unfold filter, set_filter.
  by rewrite elem_of_list_to_set, elem_of_list_filter, elem_of_elements.
Qed.
Global Instance set_unfold_filter (P : A Prop) `{!∀ x, Decision (P x)} X Q x :
  SetUnfoldElemOf x X Q SetUnfoldElemOf x (filter P X) (P x Q).
Proof.
  intros ?; constructor. by rewrite elem_of_filter, (set_unfold_elem_of x X Q).
Qed.

Section filter.
  Context (P : A Prop) `{! x, Decision (P x)}.

  Lemma filter_empty : filter P (:C) .
  Proof. set_solver. Qed.
  Lemma filter_singleton x : P x filter P ({[ x ]} : C) {[ x ]}.
  Proof. set_solver. Qed.
  Lemma filter_singleton_not x : ¬P x filter P ({[ x ]} : C) .
  Proof. set_solver. Qed.

  Lemma filter_empty_not_elem_of X x : filter P X P x x X.
  Proof. set_solver. Qed.

  Lemma disjoint_filter X Y : X ## Y filter P X ## filter P Y.
  Proof. set_solver. Qed.
  Lemma filter_union X Y : filter P (X Y) filter P X filter P Y.
  Proof. set_solver. Qed.
  Lemma disjoint_filter_complement X : filter P X ## filter (λ x, ¬P x) X.
  Proof. set_solver. Qed.
  Lemma filter_union_complement X : filter P X filter (λ x, ¬P x) X X.
  Proof. intros x. destruct (decide (P x)); set_solver. Qed.

  Section leibniz_equiv.
    Context `{!LeibnizEquiv C}.
    Lemma filter_empty_L : filter P (:C) = .
    Proof. unfold_leibniz. apply filter_empty. Qed.
    Lemma filter_singleton_L x : P x filter P ({[ x ]} : C) = {[ x ]}.
    Proof. unfold_leibniz. apply filter_singleton. Qed.
    Lemma filter_singleton_not_L x : ¬P x filter P ({[ x ]} : C) = .
    Proof. unfold_leibniz. apply filter_singleton_not. Qed.

    Lemma filter_empty_not_elem_of_L X x : filter P X = P x x X.
    Proof. unfold_leibniz. apply filter_empty_not_elem_of. Qed.

    Lemma filter_union_L X Y : filter P (X Y) = filter P X filter P Y.
    Proof. unfold_leibniz. apply filter_union. Qed.
    Lemma filter_union_complement_L X Y : filter P X filter (λ x, ¬P x) X = X.
    Proof. unfold_leibniz. apply filter_union_complement. Qed.
  End leibniz_equiv.
End filter.

Map

Section map.
  Context `{SemiSet B D}.

  Lemma elem_of_map (f : A B) (X : C) y :
    y set_map (D:=D) f X x, y = f x x X.
  Proof.
    unfold set_map. rewrite elem_of_list_to_set, elem_of_list_fmap.
    by setoid_rewrite elem_of_elements.
  Qed.
  Global Instance set_unfold_map (f : A B) (X : C) (P : A Prop) y :
    ( x, SetUnfoldElemOf x X (P x))
    SetUnfoldElemOf y (set_map (D:=D) f X) ( x, y = f x P x).
  Proof. constructor. rewrite elem_of_map; naive_solver. Qed.

  Global Instance set_map_proper :
    Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (set_map (C:=C) (D:=D)).
  Proof. intros f g ? X Y. set_unfold; naive_solver. Qed.
  Global Instance set_map_mono :
    Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (set_map (C:=C) (D:=D)).
  Proof. intros f g ? X Y. set_unfold; naive_solver. Qed.

  Lemma elem_of_map_1 (f : A B) (X : C) (y : B) :
    y set_map (D:=D) f X x, y = f x x X.
  Proof. set_solver. Qed.
  Lemma elem_of_map_2 (f : A B) (X : C) (x : A) :
    x X f x set_map (D:=D) f X.
  Proof. set_solver. Qed.
  Lemma elem_of_map_2_alt (f : A B) (X : C) (x : A) (y : B) :
    x X y = f x y set_map (D:=D) f X.
  Proof. set_solver. Qed.

  Lemma set_map_empty (f : A B) :
    set_map (C:=C) (D:=D) f = .
  Proof. unfold set_map. rewrite elements_empty. done. Qed.

  Lemma set_map_union (f : A B) (X Y : C) :
    set_map (D:=D) f (X Y) set_map (D:=D) f X set_map (D:=D) f Y.
  Proof. set_solver. Qed.
This cannot be using = because list_to_set_singleton does not hold for =.
  Lemma set_map_singleton (f : A B) (x : A) :
    set_map (C:=C) (D:=D) f {[x]} {[f x]}.
  Proof. set_solver. Qed.

  Lemma set_map_union_L `{!LeibnizEquiv D} (f : A B) (X Y : C) :
    set_map (D:=D) f (X Y) = set_map (D:=D) f X set_map (D:=D) f Y.
  Proof. unfold_leibniz. apply set_map_union. Qed.
  Lemma set_map_singleton_L `{!LeibnizEquiv D} (f : A B) (x : A) :
    set_map (C:=C) (D:=D) f {[x]} = {[f x]}.
  Proof. unfold_leibniz. apply set_map_singleton. Qed.
End map.

Bind

Section set_bind.
  Context `{SemiSet B SB}.

  Local Notation set_bind := (set_bind (A:=A) (SA:=C) (SB:=SB)).

  Lemma elem_of_set_bind (f : A SB) (X : C) y :
    y set_bind f X x, x X y f x.
  Proof.
    unfold set_bind. rewrite !elem_of_union_list. set_solver.
  Qed.

  Global Instance set_unfold_set_bind (f : A SB) (X : C)
       (y : B) (P : A B Prop) (Q : A Prop) :
    ( x y, SetUnfoldElemOf y (f x) (P x y))
    ( x, SetUnfoldElemOf x X (Q x))
    SetUnfoldElemOf y (set_bind f X) ( x, Q x P x y).
  Proof.
    intros HSU1 HSU2. constructor.
    rewrite elem_of_set_bind. set_solver.
  Qed.

  Global Instance set_bind_proper :
    Proper (pointwise_relation _ (≡) ==> (≡) ==> (≡)) set_bind.
  Proof. unfold pointwise_relation; intros f1 f2 Hf X1 X2 HX. set_solver. Qed.

  Global Instance set_bind_mono :
    Proper (pointwise_relation _ (⊆) ==> (⊆) ==> (⊆)) set_bind.
  Proof. unfold pointwise_relation; intros f1 f2 Hf X1 X2 HX. set_solver. Qed.

  Lemma set_bind_ext (f g : A SB) (X Y : C) :
    ( x, x X x Y f x g x) X Y set_bind f X set_bind g Y.
  Proof. set_solver. Qed.

  Lemma set_bind_singleton f x : set_bind f {[x]} f x.
  Proof. set_solver. Qed.
  Lemma set_bind_singleton_L `{!LeibnizEquiv SB} f x : set_bind f {[x]} = f x.
  Proof. unfold_leibniz. apply set_bind_singleton. Qed.

  Lemma set_bind_disj_union f (X Y : C) :
    X ## Y set_bind f (X Y) set_bind f X set_bind f Y.
  Proof. set_solver. Qed.
  Lemma set_bind_disj_union_L `{!LeibnizEquiv SB} f (X Y : C) :
    X ## Y set_bind f (X Y) = set_bind f X set_bind f Y.
  Proof. unfold_leibniz. apply set_bind_disj_union. Qed.
End set_bind.

OMap

Section set_omap.
  Context `{SemiSet B D}.
  Implicit Types (f : A option B).
  Implicit Types (x : A) (y : B).
  Notation set_omap := (set_omap (C:=C) (D:=D)).

  Lemma elem_of_set_omap f X y : y set_omap f X x, x X f x = Some y.
  Proof.
    unfold set_omap. rewrite elem_of_list_to_set, elem_of_list_omap.
    by setoid_rewrite elem_of_elements.
  Qed.

  Global Instance set_unfold_omap f X (P : A Prop) y :
    ( x, SetUnfoldElemOf x X (P x))
    SetUnfoldElemOf y (set_omap f X) ( x, Some y = f x P x).
  Proof. constructor. rewrite elem_of_set_omap; naive_solver. Qed.

  Global Instance set_omap_proper :
    Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) set_omap.
  Proof. intros f g Hfg X Y. set_unfold. setoid_rewrite Hfg. naive_solver. Qed.
  Global Instance set_omap_mono :
    Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) set_omap.
  Proof. intros f g Hfg X Y. set_unfold. setoid_rewrite Hfg. naive_solver. Qed.

  Lemma elem_of_set_omap_1 f X y : y set_omap f X x, Some y = f x x X.
  Proof. set_solver. Qed.
  Lemma elem_of_set_omap_2 f X x y : x X f x = Some y y set_omap f X.
  Proof. set_solver. Qed.

  Lemma set_omap_empty f : set_omap f = .
  Proof. unfold set_omap. by rewrite elements_empty. Qed.
  Lemma set_omap_empty_iff f X : set_omap f X set_Forall (λ x, f x = None) X.
  Proof.
    split; set_unfold; unfold set_Forall.
    - intros Hi x Hx. destruct (f x) as [y|] eqn:Hy; naive_solver.
    - intros Hi y (x & Hf & Hx). specialize (Hi x Hx). by rewrite Hi in Hf.
  Qed.

  Lemma set_omap_union f X Y : set_omap f (X Y) set_omap f X set_omap f Y.
  Proof. set_solver. Qed.

  Lemma set_omap_singleton f x :
    set_omap f {[ x ]} match f x with Some y{[ y ]} | None end.
  Proof. set_solver. Qed.
  Lemma set_omap_singleton_Some f x y : f x = Some y set_omap f {[ x ]} {[ y ]}.
  Proof. intros Hx. by rewrite set_omap_singleton, Hx. Qed.
  Lemma set_omap_singleton_None f x : f x = None set_omap f {[ x ]} .
  Proof. intros Hx. by rewrite set_omap_singleton, Hx. Qed.

  Lemma set_omap_alt f X : set_omap f X set_bind (λ x, option_to_set (f x)) X.
  Proof. set_solver. Qed.
  Lemma set_map_alt (f : A B) X : set_map f X = set_omap (λ x, Some (f x)) X.
  Proof. set_solver. Qed.

  Lemma set_omap_filter P `{ x, Decision (P x)} f X :
    ( x, x X is_Some (f x) P x)
    set_omap f (filter P X) set_omap f X.
  Proof. set_solver. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv D}.

    Lemma set_omap_union_L f X Y : set_omap f (X Y) = set_omap f X set_omap f Y.
    Proof. unfold_leibniz. apply set_omap_union. Qed.

    Lemma set_omap_singleton_L f x :
      set_omap f {[ x ]} = match f x with Some y{[ y ]} | None end.
    Proof. unfold_leibniz. apply set_omap_singleton. Qed.
    Lemma set_omap_singleton_Some_L f x y :
      f x = Some y set_omap f {[ x ]} = {[ y ]}.
    Proof. unfold_leibniz. apply set_omap_singleton_Some. Qed.
    Lemma set_omap_singleton_None_L f x : f x = None set_omap f {[ x ]} = .
    Proof. unfold_leibniz. apply set_omap_singleton_None. Qed.

    Lemma set_omap_alt_L f X :
      set_omap f X = set_bind (λ x, option_to_set (f x)) X.
    Proof. unfold_leibniz. apply set_omap_alt. Qed.

    Lemma set_omap_filter_L P `{ x, Decision (P x)} f X :
      ( x, x X is_Some (f x) P x)
      set_omap f (filter P X) = set_omap f X.
    Proof. unfold_leibniz. apply set_omap_filter. Qed.
  End leibniz.
End set_omap.

Decision procedures

Lemma set_Forall_elements P X : set_Forall P X Forall P (elements X).
Proof. rewrite Forall_forall. by setoid_rewrite elem_of_elements. Qed.
Lemma set_Exists_elements P X : set_Exists P X Exists P (elements X).
Proof. rewrite Exists_exists. by setoid_rewrite elem_of_elements. Qed.

Lemma set_Forall_Exists_dec (P Q : A Prop) (dec : x, {P x} + {Q x}) X :
  {set_Forall P X} + {set_Exists Q X}.
Proof.
 refine (cast_if (Forall_Exists_dec P Q dec (elements X)));
   [by apply set_Forall_elements|by apply set_Exists_elements].
Defined.

Lemma not_set_Forall_Exists P `{dec : x, Decision (P x)} X :
  ¬set_Forall P X set_Exists (not P) X.
Proof. intro. by destruct (set_Forall_Exists_dec P (not P) dec X). Qed.
Lemma not_set_Exists_Forall P `{dec : x, Decision (P x)} X :
  ¬set_Exists P X set_Forall (not P) X.
Proof.
  by destruct (set_Forall_Exists_dec
    (not P) P (λ x, swap_if (decide (P x))) X).
Qed.

Global Instance set_Forall_dec (P : A Prop) `{ x, Decision (P x)} X :
  Decision (set_Forall P X) | 100.
Proof.
 refine (cast_if (decide (Forall P (elements X))));
   by rewrite set_Forall_elements.
Defined.
Global Instance set_Exists_dec `(P : A Prop) `{ x, Decision (P x)} X :
  Decision (set_Exists P X) | 100.
Proof.
 refine (cast_if (decide (Exists P (elements X))));
   by rewrite set_Exists_elements.
Defined.

Alternative versions of finite and infinite predicates
Lemma pred_finite_set (P : A Prop) :
  pred_finite P ( X : C, x, P x x X).
Proof.
  split.
  - intros [xs Hfin]. (list_to_set xs). set_solver.
  - intros [X Hfin]. (elements X). set_solver.
Qed.

Lemma dec_pred_finite_set_alt (P : A Prop) `{!∀ x : A, Decision (P x)} :
  pred_finite P ( X : C, x, P x x X).
Proof.
  rewrite dec_pred_finite_alt; [|done]. split.
  - intros [xs Hfin]. (list_to_set xs). set_solver.
  - intros [X Hfin]. (elements X). set_solver.
Qed.

Lemma pred_infinite_set (P : A Prop) :
  pred_infinite P ( X : C, x, P x x X).
Proof.
  split.
  - intros Hinf X. destruct (Hinf (elements X)). set_solver.
  - intros Hinf xs. destruct (Hinf (list_to_set xs)). set_solver.
Qed.

Section infinite.
  Context `{Infinite A}.

Properties about the fresh operation on finite sets
  Global Instance fresh_proper: Proper ((≡@{C}) ==> (=)) fresh.
  Proof. unfold fresh, set_fresh. by intros X1 X2 →. Qed.

  Lemma is_fresh X : fresh X X.
  Proof.
    unfold fresh, set_fresh. rewrite <-elem_of_elements. apply infinite_is_fresh.
  Qed.
  Lemma exist_fresh X : x, x X.
  Proof. (fresh X). apply is_fresh. Qed.

Properties about the fresh_list operation on finite sets
  Global Instance fresh_list_proper n : Proper ((≡@{C}) ==> (=)) (fresh_list n).
  Proof. induction n as [|n IH]; intros ?? E; by setoid_subst. Qed.

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs x xs x X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs NoDup xs x, x xs x X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs Y X Forall_fresh Y xs.
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.

  Lemma length_fresh_list n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
  Lemma fresh_list_is_fresh n X x : x fresh_list n X x X.
  Proof.
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; set_solver.
  Qed.
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
  Proof.
    revert X. induction n; simpl; constructor; auto.
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
  Qed.
End infinite.
End fin_set.

Lemma size_set_seq `{FinSet nat C} start len :
  size (set_seq (C:=C) start len) = len.
Proof.
  rewrite <-list_to_set_seq, size_list_to_set.
  2:{ apply NoDup_seq. }
  rewrite length_seq. done.
Qed.