Library stdpp.list_numbers

This file collects general purpose definitions and theorems on lists of numbers that are not in the Coq standard library.
From stdpp Require Export list.
From stdpp Require Import options.

Definitions

seqZ m n generates the sequence m, m + 1, ..., m + n - 1 over integers, provided 0 n. If n < 0, then the range is empty.
Definition seqZ (m len: Z) : list Z :=
  (λ i: nat, Z.add (Z.of_nat i) m) <$> (seq 0 (Z.to_nat len)).
Global Arguments seqZ : simpl never.

Definition sum_list_with {A} (f : A nat) : list A nat :=
  fix go l :=
  match l with
  | [] ⇒ 0
  | x :: lf x + go l
  end.
Notation sum_list := (sum_list_with id).

Definition max_list_with {A} (f : A nat) : list A nat :=
  fix go l :=
  match l with
  | [] ⇒ 0
  | x :: lf x `max` go l
  end.
Notation max_list := (max_list_with id).

Conversion of integers to and from little endian

Z_to_little_endian m n z converts z into a list of m n-bit integers in the little endian format. A negative z is encoded using two's-complement. If z uses more than m × n bits, these additional bits are discarded (see Z_to_little_endian_to_Z). m and n should be non-negative.
Definition Z_to_little_endian (m n : Z) : Z list Z :=
  Z.iter m (λ rec z, Z.land z (Z.ones n) :: rec (z n)%Z) (λ _, []).
Global Arguments Z_to_little_endian : simpl never.

little_endian_to_Z n bs converts the list bs of n-bit integers into a number by interpreting bs as the little endian encoding. The integers b in bs should be in the range 0 b < 2 ^ n.
Fixpoint little_endian_to_Z (n : Z) (bs : list Z) : Z :=
  match bs with
  | [] ⇒ 0
  | b :: bsZ.lor b (little_endian_to_Z n bs n)
  end.

Properties

Properties of the seq function

Section seq.
  Implicit Types m n i j : nat.

  Lemma fmap_add_seq j j' n : Nat.add j <$> seq j' n = seq (j + j') n.
  Proof.
    revert j'. induction n as [|n IH]; intros j'; csimpl; [reflexivity|].
    by rewrite IH, Nat.add_succ_r.
  Qed.
  Lemma fmap_S_seq j n : S <$> seq j n = seq (S j) n.
  Proof. apply (fmap_add_seq 1). Qed.
  Lemma imap_seq {A B} (l : list A) (g : nat B) i :
    imap (λ j _, g (i + j)) l = g <$> seq i (length l).
  Proof.
    revert i. induction l as [|x l IH]; [done|].
    csimpl. intros n. rewrite <-IH, <-plus_n_O. f_equal.
    apply imap_ext; simpl; auto with lia.
  Qed.
  Lemma imap_seq_0 {A B} (l : list A) (g : nat B) :
    imap (λ j _, g j) l = g <$> seq 0 (length l).
  Proof. rewrite (imap_ext _ (λ i o, g (0 + i))); [|done]. apply imap_seq. Qed.
  Lemma lookup_seq_lt j n i : i < n seq j n !! i = Some (j + i).
  Proof.
    revert j i. induction n as [|n IH]; intros j [|i] ?; simpl; auto with lia.
    rewrite IH; auto with lia.
  Qed.
  Lemma lookup_total_seq_lt j n i : i < n seq j n !!! i = j + i.
  Proof. intros. by rewrite !list_lookup_total_alt, lookup_seq_lt. Qed.
  Lemma lookup_seq_ge j n i : n i seq j n !! i = None.
  Proof. revert j i. induction n; intros j [|i] ?; simpl; auto with lia. Qed.
  Lemma lookup_total_seq_ge j n i : n i seq j n !!! i = inhabitant.
  Proof. intros. by rewrite !list_lookup_total_alt, lookup_seq_ge. Qed.
  Lemma lookup_seq j n i j' : seq j n !! i = Some j' j' = j + i i < n.
  Proof.
    destruct (le_lt_dec n i).
    - rewrite lookup_seq_ge by done. naive_solver lia.
    - rewrite lookup_seq_lt by done. naive_solver lia.
  Qed.
  Lemma NoDup_seq j n : NoDup (seq j n).
  Proof. apply NoDup_ListNoDup, seq_NoDup. Qed.

  Lemma elem_of_seq j n k :
    k seq j n j k < j + n.
  Proof. rewrite elem_of_list_In, in_seq. done. Qed.

  Lemma Forall_seq (P : nat Prop) i n :
    Forall P (seq i n) j, i j < i + n P j.
  Proof. rewrite Forall_forall. setoid_rewrite elem_of_seq. auto with lia. Qed.

  Lemma drop_seq j n m :
    drop m (seq j n) = seq (j + m) (n - m).
  Proof.
    revert j m. induction n as [|n IH]; simpl; intros j m.
    - rewrite drop_nil. done.
    - destruct m; simpl.
      + rewrite Nat.add_0_r. done.
      + rewrite IH. f_equal; lia.
  Qed.
  Lemma take_seq j n m :
    take m (seq j n) = seq j (m `min` n).
  Proof.
    revert j m. induction n as [|n IH]; simpl; intros j m.
    - rewrite take_nil. replace (m `min` 0) with 0 by lia. done.
    - destruct m; simpl; auto with f_equal.
  Qed.
End seq.

Properties of the seqZ function

Section seqZ.
  Implicit Types (m n : Z) (i j : nat).
  Local Open Scope Z_scope.

  Lemma seqZ_nil m n : n 0 seqZ m n = [].
  Proof. by destruct n. Qed.
  Lemma seqZ_cons m n : 0 < n seqZ m n = m :: seqZ (Z.succ m) (Z.pred n).
  Proof.
    intros H. unfold seqZ. replace n with (Z.succ (Z.pred n)) at 1 by lia.
    rewrite Z2Nat.inj_succ by lia. f_equal/=.
    rewrite <-fmap_S_seq, <-list_fmap_compose.
    apply map_ext; naive_solver lia.
  Qed.
  Lemma seqZ_length m n : length (seqZ m n) = Z.to_nat n.
  Proof. unfold seqZ; by rewrite fmap_length, seq_length. Qed.
  Lemma fmap_add_seqZ m m' n : Z.add m <$> seqZ m' n = seqZ (m + m') n.
  Proof.
    revert m'. induction n as [|n ? IH|] using (Z.succ_pred_induction 0); intros m'.
    - by rewrite seqZ_nil.
    - rewrite (seqZ_cons m') by lia. rewrite (seqZ_cons (m + m')) by lia.
      f_equal/=. rewrite Z.pred_succ, IH; simpl. f_equal; lia.
    - by rewrite !seqZ_nil by lia.
  Qed.
  Lemma lookup_seqZ_lt m n i : Z.of_nat i < n seqZ m n !! i = Some (m + Z.of_nat i).
  Proof.
    revert m i. induction n as [|n ? IH|] using (Z.succ_pred_induction 0);
      intros m i Hi; [lia| |lia].
    rewrite seqZ_cons by lia. destruct i as [|i]; simpl.
    - f_equal; lia.
    - rewrite Z.pred_succ, IH by lia. f_equal; lia.
  Qed.
  Lemma lookup_total_seqZ_lt m n i : Z.of_nat i < n seqZ m n !!! i = m + Z.of_nat i.
  Proof. intros. by rewrite !list_lookup_total_alt, lookup_seqZ_lt. Qed.
  Lemma lookup_seqZ_ge m n i : n Z.of_nat i seqZ m n !! i = None.
  Proof.
    revert m i.
    induction n as [|n ? IH|] using (Z.succ_pred_induction 0); intros m i Hi; try lia.
    - by rewrite seqZ_nil.
    - rewrite seqZ_cons by lia.
      destruct i as [|i]; simpl; [lia|]. by rewrite Z.pred_succ, IH by lia.
    - by rewrite seqZ_nil by lia.
  Qed.
  Lemma lookup_total_seqZ_ge m n i : n Z.of_nat i seqZ m n !!! i = inhabitant.
  Proof. intros. by rewrite !list_lookup_total_alt, lookup_seqZ_ge. Qed.
  Lemma lookup_seqZ m n i m' : seqZ m n !! i = Some m' m' = m + Z.of_nat i Z.of_nat i < n.
  Proof.
    destruct (Z_le_gt_dec n (Z.of_nat i)).
    - rewrite lookup_seqZ_ge by lia. naive_solver lia.
    - rewrite lookup_seqZ_lt by lia. naive_solver lia.
  Qed.
  Lemma NoDup_seqZ m n : NoDup (seqZ m n).
  Proof. apply NoDup_fmap_2, NoDup_seq. intros ???; lia. Qed.

  Lemma seqZ_app m n1 n2 :
    0 n1
    0 n2
    seqZ m (n1 + n2) = seqZ m n1 ++ seqZ (m + n1) n2.
  Proof.
    intros. unfold seqZ. rewrite Z2Nat.inj_add, seq_app, fmap_app by done.
    f_equal. rewrite Nat.add_comm, <-!fmap_add_seq, <-list_fmap_compose.
    apply list_fmap_ext; intros j n; simpl.
    rewrite Nat2Z.inj_add, Z2Nat.id by done. lia.
  Qed.

  Lemma seqZ_S m i : seqZ m (Z.of_nat (S i)) = seqZ m (Z.of_nat i) ++ [m + Z.of_nat i].
  Proof.
    unfold seqZ. rewrite !Nat2Z.id, seq_S, fmap_app.
    simpl. by rewrite Z.add_comm.
  Qed.

  Lemma elem_of_seqZ m n k :
    k seqZ m n m k < m + n.
  Proof.
    rewrite elem_of_list_lookup.
    setoid_rewrite lookup_seqZ. split; [naive_solver lia|].
     (Z.to_nat (k - m)). rewrite Z2Nat.id by lia. lia.
  Qed.

  Lemma Forall_seqZ (P : Z Prop) m n :
    Forall P (seqZ m n) m', m m' < m + n P m'.
  Proof. rewrite Forall_forall. setoid_rewrite elem_of_seqZ. auto with lia. Qed.
End seqZ.

Properties of the sum_list function

Section sum_list.
  Context {A : Type}.
  Implicit Types x y z : A.
  Implicit Types l k : list A.
  Lemma sum_list_with_app (f : A nat) l k :
    sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
  Proof. induction l; simpl; lia. Qed.
  Lemma sum_list_with_reverse (f : A nat) l :
    sum_list_with f (reverse l) = sum_list_with f l.
  Proof.
    induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
  Qed.
  Lemma sum_list_with_in x (f : A nat) ls : x ls f x sum_list_with f ls.
  Proof. induction 1; simpl; lia. Qed.
  Lemma join_reshape szs l :
    sum_list szs = length l mjoin (reshape szs l) = l.
  Proof.
    revert l. induction szs as [|sz szs IH]; simpl; intros l Hl; [by destruct l|].
    by rewrite IH, take_drop by (rewrite drop_length; lia).
  Qed.
  Lemma sum_list_replicate n m : sum_list (replicate m n) = m × n.
  Proof. induction m; simpl; auto. Qed.
  Lemma sum_list_fmap_same n l f :
    Forall (λ x, f x = n) l
    sum_list (f <$> l) = length l × n.
  Proof. induction 1; csimpl; lia. Qed.
  Lemma sum_list_fmap_const l n :
    sum_list ((λ _, n) <$> l) = length l × n.
  Proof. by apply sum_list_fmap_same, Forall_true. Qed.
End sum_list.

Properties of the mjoin function that rely on sum_list

Section mjoin.
  Context {A : Type}.
  Implicit Types x y z : A.
  Implicit Types l k : list A.
  Implicit Types ls : list (list A).

  Lemma join_length ls:
    length (mjoin ls) = sum_list (length <$> ls).
  Proof. induction ls; [done|]; csimpl. rewrite app_length. lia. Qed.

  Lemma join_lookup_Some ls i x :
    mjoin ls !! i = Some x j l i', ls !! j = Some l l !! i' = Some x
                                      i = sum_list (length <$> take j ls) + i'.
  Proof.
    revert i. induction ls as [|l ls IH]; csimpl; intros i.
    { setoid_rewrite lookup_nil. naive_solver. }
    rewrite lookup_app_Some, IH. split.
    - destruct 1 as [?|(?&?&?&?&?&?&?)].
      + eexists 0. naive_solver.
      + eexists (S _); naive_solver lia.
    - destruct 1 as [[|?] ?]; naive_solver lia.
  Qed.

  Lemma join_lookup_Some_same_length n ls i x :
    Forall (λ l, length l = n) ls
    mjoin ls !! i = Some x j l i', ls !! j = Some l l !! i' = Some x
                                      i = j × n + i'.
  Proof.
    intros Hl. rewrite join_lookup_Some.
    f_equiv; intros j. f_equiv; intros l. f_equiv; intros i'.
    assert (ls !! j = Some l j < length ls) by eauto using lookup_lt_Some.
    rewrite (sum_list_fmap_same n), take_length by auto using Forall_take.
    naive_solver lia.
  Qed.

  Lemma join_lookup_Some_same_length' n ls j i x :
    Forall (λ l, length l = n) ls
    i < n
    mjoin ls !! (j × n + i) = Some x l, ls !! j = Some l l !! i = Some x.
  Proof.
    intros. rewrite join_lookup_Some_same_length by done.
    split; [|naive_solver].
    destruct 1 as (j'&l'&i'&?&?&Hj); decompose_Forall.
    assert (i' < length l') by eauto using lookup_lt_Some.
    apply Nat.mul_split_l in Hj; naive_solver.
  Qed.
End mjoin.

Properties of the max_list function

Section max_list.
  Context {A : Type}.

  Lemma max_list_elem_of_le n ns :
    n ns n max_list ns.
  Proof. induction 1; simpl; lia. Qed.

  Lemma max_list_not_elem_of_gt n ns : max_list ns < n n ns.
  Proof. intros ??%max_list_elem_of_le. lia. Qed.

  Lemma max_list_elem_of ns : ns [] max_list ns ns.
  Proof.
    intros. induction ns as [|n ns IHns]; [done|]. simpl.
    destruct (Nat.max_spec n (max_list ns)) as [[? ->]|[? ->]].
    - destruct ns.
      + simpl in ×. lia.
      + by apply elem_of_list_further, IHns.
    - apply elem_of_list_here.
  Qed.
End max_list.

Properties of the Z_to_little_endian and little_endian_to_Z functions

Section Z_little_endian.
  Local Open Scope Z_scope.
  Implicit Types m n z : Z.

  Lemma Z_to_little_endian_0 n z : Z_to_little_endian 0 n z = [].
  Proof. done. Qed.

  Lemma Z_to_little_endian_succ m n z :
    0 m
    Z_to_little_endian (Z.succ m) n z
    = Z.land z (Z.ones n) :: Z_to_little_endian m n (z n).
  Proof.
    unfold Z_to_little_endian. intros.
    by rewrite !iter_nat_of_Z, Zabs2Nat.inj_succ by lia.
  Qed.

  Lemma Z_to_little_endian_to_Z m n bs :
    m = Z.of_nat (length bs) 0 n
    Forall (λ b, 0 b < 2 ^ n) bs
    Z_to_little_endian m n (little_endian_to_Z n bs) = bs.
  Proof.
    intros → ?. induction 1 as [|b bs ? ? IH]; [done|]; simpl.
    rewrite Nat2Z.inj_succ, Z_to_little_endian_succ by lia. f_equal.
    - apply Z.bits_inj_iff'. intros z' ?.
      rewrite !Z.land_spec, Z.lor_spec, Z.ones_spec by lia.
      case_bool_decide.
      + rewrite andb_true_r, Z.shiftl_spec_low, orb_false_r by lia. done.
      + rewrite andb_false_r.
        symmetry. eapply (Z.bounded_iff_bits_nonneg n); lia.
    - rewrite <-IH at 3. f_equal.
      apply Z.bits_inj_iff'. intros z' ?.
      rewrite Z.shiftr_spec, Z.lor_spec, Z.shiftl_spec by lia.
      assert (Z.testbit b (z' + n) = false) as →.
      { apply (Z.bounded_iff_bits_nonneg n); lia. }
      rewrite orb_false_l. f_equal. lia.
  Qed.

  Lemma little_endian_to_Z_to_little_endian m n z :
    0 n 0 m
    little_endian_to_Z n (Z_to_little_endian m n z) = z `mod` 2 ^ (m × n).
  Proof.
    intros ? Hm. rewrite <-Z.land_ones by lia.
    revert z.
    induction m as [|m ? IH|] using (Z.succ_pred_induction 0); intros z; [..|lia].
    { Z.bitwise. by rewrite andb_false_r. }
    rewrite Z_to_little_endian_succ by lia; simpl. rewrite IH by lia.
    apply Z.bits_inj_iff'. intros z' ?.
    rewrite Z.land_spec, Z.lor_spec, Z.shiftl_spec, !Z.land_spec by lia.
    rewrite (Z.ones_spec n z') by lia. case_bool_decide.
    - rewrite andb_true_r, (Z.testbit_neg_r _ (z' - n)), orb_false_r by lia. simpl.
      by rewrite Z.ones_spec, bool_decide_true, andb_true_r by lia.
    - rewrite andb_false_r, orb_false_l.
      rewrite Z.shiftr_spec by lia. f_equal; [f_equal; lia|].
      rewrite !Z.ones_spec by lia. apply bool_decide_ext. lia.
  Qed.

  Lemma Z_to_little_endian_length m n z :
    0 m
    Z.of_nat (length (Z_to_little_endian m n z)) = m.
  Proof.
    intros. revert z. induction m as [|m ? IH|]
      using (Z.succ_pred_induction 0); intros z; [done| |lia].
    rewrite Z_to_little_endian_succ by lia. simpl. by rewrite Nat2Z.inj_succ, IH.
  Qed.

  Lemma Z_to_little_endian_bound m n z :
    0 n 0 m
    Forall (λ b, 0 b < 2 ^ n) (Z_to_little_endian m n z).
  Proof.
    intros. revert z.
    induction m as [|m ? IH|] using (Z.succ_pred_induction 0); intros z; [..|lia].
    { by constructor. }
    rewrite Z_to_little_endian_succ by lia.
    constructor; [|by apply IH]. rewrite Z.land_ones by lia.
    apply Z.mod_pos_bound, Z.pow_pos_nonneg; lia.
  Qed.

  Lemma little_endian_to_Z_bound n bs :
    0 n
    Forall (λ b, 0 b < 2 ^ n) bs
    0 little_endian_to_Z n bs < 2 ^ (Z.of_nat (length bs) × n).
  Proof.
    intros ?. induction 1 as [|b bs Hb ? IH]; [done|]; simpl.
    apply Z.bounded_iff_bits_nonneg'; [lia|..].
    { apply Z.lor_nonneg. split; [lia|]. apply Z.shiftl_nonneg. lia. }
    intros z' ?. rewrite Z.lor_spec.
    rewrite Z.bounded_iff_bits_nonneg' in Hb by lia.
    rewrite Hb, orb_false_l, Z.shiftl_spec by lia.
    apply (Z.bounded_iff_bits_nonneg' (Z.of_nat (length bs) × n)); lia.
  Qed.

  Lemma Z_to_little_endian_lookup_Some m n z (i : nat) x :
    0 m 0 n
    Z_to_little_endian m n z !! i = Some x
    Z.of_nat i < m x = Z.land (z (Z.of_nat i × n)) (Z.ones n).
  Proof.
    revert z i. induction m as [|m ? IH|] using (Z.succ_pred_induction 0);
      intros z i ??; [..|lia].
    { destruct i; simpl; naive_solver lia. }
    rewrite Z_to_little_endian_succ by lia. destruct i as [|i]; simpl.
    { naive_solver lia. }
    rewrite IH, Z.shiftr_shiftr by lia.
    naive_solver auto with f_equal lia.
  Qed.

  Lemma little_endian_to_Z_spec n bs i b :
    0 i 0 < n
    Forall (λ b, 0 b < 2 ^ n) bs
    bs !! Z.to_nat (i `div` n) = Some b
    Z.testbit (little_endian_to_Z n bs) i = Z.testbit b (i `mod` n).
  Proof.
    intros Hi Hn Hbs. revert i Hi.
    induction Hbs as [|b' bs [??] ? IH]; intros i ? Hlookup; simplify_eq/=.
    destruct (decide (i < n)).
    - rewrite Z.div_small in Hlookup by lia. simplify_eq/=.
      rewrite Z.lor_spec, Z.shiftl_spec, Z.mod_small by lia.
      by rewrite (Z.testbit_neg_r _ (i - n)), orb_false_r by lia.
    - assert (Z.to_nat (i `div` n) = S (Z.to_nat ((i - n) `div` n))) as Hdiv.
      { rewrite <-Z2Nat.inj_succ by (apply Z.div_pos; lia).
        rewrite <-Z.add_1_r, <-Z.div_add by lia.
        do 2 f_equal. lia. }
      rewrite Hdiv in Hlookup; simplify_eq/=.
      rewrite Z.lor_spec, Z.shiftl_spec, IH by auto with lia.
      assert (Z.testbit b' i = false) as →.
      { apply (Z.bounded_iff_bits_nonneg n); lia. }
      by rewrite <-Zminus_mod_idemp_r, Z_mod_same_full, Z.sub_0_r.
  Qed.
End Z_little_endian.