Library stdpp.list_misc
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat × A) :=
fix go l :=
match l with
| [] ⇒ None
| x :: l ⇒ if decide (P x) then Some (0,x) else prod_map S id <$> go l
end.
Global Instance: Params (@list_find) 3 := {}.
fix go l :=
match l with
| [] ⇒ None
| x :: l ⇒ if decide (P x) then Some (0,x) else prod_map S id <$> go l
end.
Global Instance: Params (@list_find) 3 := {}.
The function resize n y l takes the first n elements of l in case
length l ≤ n, and otherwise appends elements with value x to l to obtain
a list of length n.
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
match l with
| [] ⇒ replicate n y
| x :: l ⇒ match n with 0 ⇒ [] | S n ⇒ x :: resize n y l end
end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.
match l with
| [] ⇒ replicate n y
| x :: l ⇒ match n with 0 ⇒ [] | S n ⇒ x :: resize n y l end
end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.
The function rotate n l rotates the list l by n, e.g., rotate 1
[x0; x1; ...; xm] becomes x1; ...; xm; x0. Rotating by a multiple of
length l is the identity function.
Definition rotate {A} (n : nat) (l : list A) : list A :=
drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.
drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.
The function rotate_take s e l returns the range between the
indices s (inclusive) and e (exclusive) of l. If e ≤ s, all
elements after s and before e are returned.
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.
take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.
The function reshape k l transforms l into a list of lists whose sizes
are specified by k. In case l is too short, the resulting list will be
padded with empty lists. In case l is too long, it will be truncated.
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
match szs with
| [] ⇒ [] | sz :: szs ⇒ take sz l :: reshape szs (drop sz l)
end.
Global Instance: Params (@reshape) 2 := {}.
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
guard (i + n ≤ length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
(i n : nat) (l : list A) : list A :=
take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
match szs with
| [] ⇒ [] | sz :: szs ⇒ take sz l :: reshape szs (drop sz l)
end.
Global Instance: Params (@reshape) 2 := {}.
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
guard (i + n ≤ length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
(i n : nat) (l : list A) : list A :=
take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
match βs, l with
| β :: βs, x :: l ⇒ (if β then f x else x) :: mask f βs l
| _, _ ⇒ l
end.
match βs, l with
| β :: βs, x :: l ⇒ (if β then f x else x) :: mask f βs l
| _, _ ⇒ l
end.
These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
The main functions are positives_flatten and positives_unflatten.
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
match xs with
| [] ⇒ acc
| x :: xs ⇒ positives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
end.
match xs with
| [] ⇒ acc
| x :: xs ⇒ positives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
end.
Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:
and then separating each element with 10.
- 0 → 00
- 1 → 11
Definition positives_flatten (xs : list positive) : positive :=
positives_flatten_go xs 1.
Fixpoint positives_unflatten_go
(p : positive)
(acc_xs : list positive)
(acc_elm : positive)
: option (list positive) :=
match p with
| 1 ⇒ Some acc_xs
| p'~0~0 ⇒ positives_unflatten_go p' acc_xs (acc_elm~0)
| p'~1~1 ⇒ positives_unflatten_go p' acc_xs (acc_elm~1)
| p'~1~0 ⇒ positives_unflatten_go p' (acc_elm :: acc_xs) 1
| _ ⇒ None
end%positive.
positives_flatten_go xs 1.
Fixpoint positives_unflatten_go
(p : positive)
(acc_xs : list positive)
(acc_elm : positive)
: option (list positive) :=
match p with
| 1 ⇒ Some acc_xs
| p'~0~0 ⇒ positives_unflatten_go p' acc_xs (acc_elm~0)
| p'~1~1 ⇒ positives_unflatten_go p' acc_xs (acc_elm~1)
| p'~1~0 ⇒ positives_unflatten_go p' (acc_elm :: acc_xs) 1
| _ ⇒ None
end%positive.
Unflatten a positive into a list of positives, assuming the encoding
used by positives_flatten.
Definition positives_unflatten (p : positive) : option (list positive) :=
positives_unflatten_go p [] 1.
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
positives_unflatten_go p [] 1.
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Properties of the find function
Section find.
Context (P : A → Prop) `{!∀ x, Decision (P x)}.
Lemma list_find_Some l i x :
list_find P l = Some (i,x) ↔
l !! i = Some x ∧ P x ∧ ∀ j y, l !! j = Some y → j < i → ¬P y.
Proof.
revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
case_decide.
- split; [naive_solver lia|]. intros (Hi&HP&Hlt).
destruct i as [|i]; simplify_eq/=; [done|].
destruct (Hlt 0 y); naive_solver lia.
- split.
+ intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
intros [|j] ?; naive_solver lia.
+ intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
Qed.
Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
Proof.
induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
by destruct IH as [[i x'] ->]; [|∃ (S i, x')].
Qed.
Lemma list_find_None l :
list_find P l = None ↔ Forall (λ x, ¬P x) l.
Proof.
rewrite eq_None_not_Some, Forall_forall. split.
- intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
- intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
Qed.
Lemma list_find_app_None l1 l2 :
list_find P (l1 ++ l2) = None ↔ list_find P l1 = None ∧ list_find P l2 = None.
Proof. by rewrite !list_find_None, Forall_app. Qed.
Lemma list_find_app_Some l1 l2 i x :
list_find P (l1 ++ l2) = Some (i,x) ↔
list_find P l1 = Some (i,x) ∨
length l1 ≤ i ∧ list_find P l1 = None ∧ list_find P l2 = Some (i - length l1,x).
Proof.
split.
- intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
+ left. apply list_find_Some; eauto using lookup_app_l_Some.
+ right. split; [lia|]. split.
{ apply list_find_None, Forall_lookup. intros j z ??.
assert (j < length l1) by eauto using lookup_lt_Some.
naive_solver eauto using lookup_app_l_Some with lia. }
apply list_find_Some. split_and!; [done..|].
intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
by rewrite lookup_app_r, Nat.add_sub' by lia.
- intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
+ apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
assert (i < length l1) by eauto using lookup_lt_Some.
intros j y ?%lookup_app_Some; naive_solver eauto with lia.
+ rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
by eapply (Forall_lookup_1 (not ∘ P) l1); [by apply list_find_None|..].
Qed.
Lemma list_find_app_l l1 l2 i x:
list_find P l1 = Some (i, x) → list_find P (l1 ++ l2) = Some (i, x).
Proof. rewrite list_find_app_Some. auto. Qed.
Lemma list_find_app_r l1 l2:
list_find P l1 = None →
list_find P (l1 ++ l2) = prod_map (λ n, n + length l1) id <$> list_find P l2.
Proof.
intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
- intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
- intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
Qed.
Lemma list_find_insert_Some l i j x y :
list_find P (<[i:=x]> l) = Some (j,y) ↔
(j < i ∧ list_find P l = Some (j,y)) ∨
(i = j ∧ x = y ∧ j < length l ∧ P x ∧ ∀ i' z, l !! i' = Some z → i' < i → ¬P z) ∨
(i < j ∧ ¬P x ∧ list_find P l = Some (j,y) ∧ ∀ z, l !! i = Some z → ¬P z) ∨
(∃ z, i < j ∧ ¬P x ∧ P y ∧ P z ∧ l !! i = Some z ∧ l !! j = Some y ∧
∀ i' z, l !! i' = Some z → i' ≠ i → i' < j → ¬P z).
Proof.
split.
- intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
{ right; left. split_and!; [done..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
assert (j < i ∨ i < j) as [?|?] by lia.
{ left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
right; right. assert (j < length l) by eauto using lookup_lt_Some.
destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
destruct (decide (P z)).
{ right. ∃ z. split_and!; [done| |done..|].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ intros k z' ???.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
left. split_and!; [done|..|naive_solver].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
destruct (decide (k = i)) as [->|]; [naive_solver|].
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
- intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
apply list_find_Some.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert by done. split_and!; [by auto..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
Qed.
Lemma list_find_ext (Q : A → Prop) `{∀ x, Decision (Q x)} l :
(∀ x, P x ↔ Q x) →
list_find P l = list_find Q l.
Proof.
intros HPQ. induction l as [|x l IH]; simpl; [done|].
by rewrite (decide_ext (P x) (Q x)), IH by done.
Qed.
End find.
Lemma list_find_fmap {B} (f : A → B) (P : B → Prop)
`{!∀ y : B, Decision (P y)} (l : list A) :
list_find P (f <$> l) = prod_map id f <$> list_find (P ∘ f) l.
Proof.
induction l as [|x l IH]; [done|]; csimpl. case_decide; [done|].
rewrite IH. by destruct (list_find (P ∘ f) l).
Qed.
Context (P : A → Prop) `{!∀ x, Decision (P x)}.
Lemma list_find_Some l i x :
list_find P l = Some (i,x) ↔
l !! i = Some x ∧ P x ∧ ∀ j y, l !! j = Some y → j < i → ¬P y.
Proof.
revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
case_decide.
- split; [naive_solver lia|]. intros (Hi&HP&Hlt).
destruct i as [|i]; simplify_eq/=; [done|].
destruct (Hlt 0 y); naive_solver lia.
- split.
+ intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
intros [|j] ?; naive_solver lia.
+ intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
Qed.
Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
Proof.
induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
by destruct IH as [[i x'] ->]; [|∃ (S i, x')].
Qed.
Lemma list_find_None l :
list_find P l = None ↔ Forall (λ x, ¬P x) l.
Proof.
rewrite eq_None_not_Some, Forall_forall. split.
- intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
- intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
Qed.
Lemma list_find_app_None l1 l2 :
list_find P (l1 ++ l2) = None ↔ list_find P l1 = None ∧ list_find P l2 = None.
Proof. by rewrite !list_find_None, Forall_app. Qed.
Lemma list_find_app_Some l1 l2 i x :
list_find P (l1 ++ l2) = Some (i,x) ↔
list_find P l1 = Some (i,x) ∨
length l1 ≤ i ∧ list_find P l1 = None ∧ list_find P l2 = Some (i - length l1,x).
Proof.
split.
- intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
+ left. apply list_find_Some; eauto using lookup_app_l_Some.
+ right. split; [lia|]. split.
{ apply list_find_None, Forall_lookup. intros j z ??.
assert (j < length l1) by eauto using lookup_lt_Some.
naive_solver eauto using lookup_app_l_Some with lia. }
apply list_find_Some. split_and!; [done..|].
intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
by rewrite lookup_app_r, Nat.add_sub' by lia.
- intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
+ apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
assert (i < length l1) by eauto using lookup_lt_Some.
intros j y ?%lookup_app_Some; naive_solver eauto with lia.
+ rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
by eapply (Forall_lookup_1 (not ∘ P) l1); [by apply list_find_None|..].
Qed.
Lemma list_find_app_l l1 l2 i x:
list_find P l1 = Some (i, x) → list_find P (l1 ++ l2) = Some (i, x).
Proof. rewrite list_find_app_Some. auto. Qed.
Lemma list_find_app_r l1 l2:
list_find P l1 = None →
list_find P (l1 ++ l2) = prod_map (λ n, n + length l1) id <$> list_find P l2.
Proof.
intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
- intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
- intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
Qed.
Lemma list_find_insert_Some l i j x y :
list_find P (<[i:=x]> l) = Some (j,y) ↔
(j < i ∧ list_find P l = Some (j,y)) ∨
(i = j ∧ x = y ∧ j < length l ∧ P x ∧ ∀ i' z, l !! i' = Some z → i' < i → ¬P z) ∨
(i < j ∧ ¬P x ∧ list_find P l = Some (j,y) ∧ ∀ z, l !! i = Some z → ¬P z) ∨
(∃ z, i < j ∧ ¬P x ∧ P y ∧ P z ∧ l !! i = Some z ∧ l !! j = Some y ∧
∀ i' z, l !! i' = Some z → i' ≠ i → i' < j → ¬P z).
Proof.
split.
- intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
{ right; left. split_and!; [done..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
assert (j < i ∨ i < j) as [?|?] by lia.
{ left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
right; right. assert (j < length l) by eauto using lookup_lt_Some.
destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
destruct (decide (P z)).
{ right. ∃ z. split_and!; [done| |done..|].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ intros k z' ???.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
left. split_and!; [done|..|naive_solver].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
destruct (decide (k = i)) as [->|]; [naive_solver|].
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
- intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
apply list_find_Some.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert by done. split_and!; [by auto..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
Qed.
Lemma list_find_ext (Q : A → Prop) `{∀ x, Decision (Q x)} l :
(∀ x, P x ↔ Q x) →
list_find P l = list_find Q l.
Proof.
intros HPQ. induction l as [|x l IH]; simpl; [done|].
by rewrite (decide_ext (P x) (Q x)), IH by done.
Qed.
End find.
Lemma list_find_fmap {B} (f : A → B) (P : B → Prop)
`{!∀ y : B, Decision (P y)} (l : list A) :
list_find P (f <$> l) = prod_map id f <$> list_find (P ∘ f) l.
Proof.
induction l as [|x l IH]; [done|]; csimpl. case_decide; [done|].
rewrite IH. by destruct (list_find (P ∘ f) l).
Qed.
Properties of the resize function
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros →. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
- by rewrite Nat.add_0_r, (right_id_L [] (++)).
- by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
intros. by rewrite !resize_le, take_app_le by (rewrite ?length_app; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros →. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
do 2 f_equal. rewrite length_app. lia.
Qed.
Lemma length_resize l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, length_app, length_replicate, length_take. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
revert n m. induction l; simpl.
- intros. by rewrite !resize_nil, resize_replicate.
- intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
revert n m. induction l; simpl.
- intros. by rewrite drop_nil, !resize_nil, drop_replicate.
- intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
intros ??. destruct (decide (n < length l)).
- by rewrite resize_le, lookup_take by lia.
- by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
i < n → i < length l → resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
intros ??. rewrite resize_ge by lia.
replace i with (length l + (i - length l)) by lia.
by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
length l ≤ i → i < n → resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite length_resize. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
n ≤ i → resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.
Lemma Forall_resize P n x l : P x → Forall P l → Forall P (resize n x l).
Proof.
intros ? Hl. revert n.
induction Hl; intros [|?]; simpl; auto using Forall_replicate.
Qed.
Lemma fmap_resize {B} (f : A → B) n x l : f <$> resize n x l = resize n (f x) (f <$> l).
Proof.
revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
Qed.
Lemma Forall_resize_inv P n x l :
length l ≤ n → Forall P (resize n x l) → Forall P l.
Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros →. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
- by rewrite Nat.add_0_r, (right_id_L [] (++)).
- by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
intros. by rewrite !resize_le, take_app_le by (rewrite ?length_app; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros →. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
do 2 f_equal. rewrite length_app. lia.
Qed.
Lemma length_resize l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, length_app, length_replicate, length_take. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
revert n m. induction l; simpl.
- intros. by rewrite !resize_nil, resize_replicate.
- intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
revert n m. induction l; simpl.
- intros. by rewrite drop_nil, !resize_nil, drop_replicate.
- intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
intros ??. destruct (decide (n < length l)).
- by rewrite resize_le, lookup_take by lia.
- by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
i < n → i < length l → resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
intros ??. rewrite resize_ge by lia.
replace i with (length l + (i - length l)) by lia.
by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
length l ≤ i → i < n → resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite length_resize. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
n ≤ i → resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.
Lemma Forall_resize P n x l : P x → Forall P l → Forall P (resize n x l).
Proof.
intros ? Hl. revert n.
induction Hl; intros [|?]; simpl; auto using Forall_replicate.
Qed.
Lemma fmap_resize {B} (f : A → B) n x l : f <$> resize n x l = resize n (f x) (f <$> l).
Proof.
revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
Qed.
Lemma Forall_resize_inv P n x l :
length l ≤ n → Forall P (resize n x l) → Forall P l.
Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
Properties of the rotate function
Lemma rotate_replicate n1 n2 x:
rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
f_equal. lia.
Qed.
Lemma length_rotate l n:
length (rotate n l) = length l.
Proof. unfold rotate. rewrite length_app, length_drop, length_take. lia. Qed.
Lemma lookup_rotate_r l n i:
i < length l →
rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- by rewrite lookup_app_l, lookup_drop by (rewrite length_drop; lia).
- rewrite lookup_app_r, lookup_take, length_drop by (rewrite length_drop; lia).
f_equal. lia.
Qed.
Lemma lookup_rotate_r_Some l n i x:
rotate n l !! i = Some x ↔
l !! rotate_nat_add n i (length l) = Some x ∧ i < length l.
Proof.
split.
- intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
rewrite length_rotate in Hlen. by rewrite <-lookup_rotate_r.
- intros [??]. by rewrite lookup_rotate_r.
Qed.
Lemma lookup_rotate_l l n i:
i < length l → rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
Lemma elem_of_rotate l n x:
x ∈ rotate n l ↔ x ∈ l.
Proof.
unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
rewrite !elem_of_app. naive_solver.
Qed.
Lemma rotate_insert_l l n i x:
i < length l →
rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
rewrite length_insert, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- rewrite take_insert, drop_insert_le, insert_app_l
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
- rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, length_drop
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
Qed.
Lemma rotate_insert_r l n i x:
i < length l →
rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
f_equal. lia.
Qed.
Lemma length_rotate l n:
length (rotate n l) = length l.
Proof. unfold rotate. rewrite length_app, length_drop, length_take. lia. Qed.
Lemma lookup_rotate_r l n i:
i < length l →
rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- by rewrite lookup_app_l, lookup_drop by (rewrite length_drop; lia).
- rewrite lookup_app_r, lookup_take, length_drop by (rewrite length_drop; lia).
f_equal. lia.
Qed.
Lemma lookup_rotate_r_Some l n i x:
rotate n l !! i = Some x ↔
l !! rotate_nat_add n i (length l) = Some x ∧ i < length l.
Proof.
split.
- intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
rewrite length_rotate in Hlen. by rewrite <-lookup_rotate_r.
- intros [??]. by rewrite lookup_rotate_r.
Qed.
Lemma lookup_rotate_l l n i:
i < length l → rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
Lemma elem_of_rotate l n x:
x ∈ rotate n l ↔ x ∈ l.
Proof.
unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
rewrite !elem_of_app. naive_solver.
Qed.
Lemma rotate_insert_l l n i x:
i < length l →
rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
rewrite length_insert, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- rewrite take_insert, drop_insert_le, insert_app_l
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
- rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, length_drop
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
Qed.
Lemma rotate_insert_r l n i x:
i < length l →
rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
Properties of the rotate_take function
Lemma rotate_take_insert l s e i x:
i < length l →
rotate_take s e (<[i:=x]>l) =
if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
<[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
intros ?. unfold rotate_take. rewrite rotate_insert_r, length_insert by done.
case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.
Lemma rotate_take_add l b i :
i < length l →
rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.
i < length l →
rotate_take s e (<[i:=x]>l) =
if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
<[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
intros ?. unfold rotate_take. rewrite rotate_insert_r, length_insert by done.
case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.
Lemma rotate_take_add l b i :
i < length l →
rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.
Properties of the reshape function
Lemma length_reshape szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
Lemma Forall_reshape P l szs : Forall P l → Forall (Forall P) (reshape szs l).
Proof.
revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
Qed.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
Lemma Forall_reshape P l szs : Forall P l → Forall (Forall P) (reshape szs l).
Proof.
revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
Qed.
Properties of sublist_lookup and sublist_alter
Lemma sublist_lookup_length l i n k :
sublist_lookup i n l = Some k → length k = n.
Proof.
unfold sublist_lookup; intros; simplify_option_eq.
rewrite length_take, length_drop; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
intros. unfold sublist_lookup; case_guard; [|lia].
by rewrite take_ge by (rewrite length_drop; lia).
Qed.
Lemma sublist_lookup_Some l i n :
i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
sublist_lookup i n l = Some l' ↔ l' = take n (drop i l) ∧ i + n ≤ length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
(n | length l) → (n | length k) →
(∀ i, sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) → l = k.
Proof.
revert l k. assert (∀ l i,
n ≠ 0 → (n | length l) → ¬n × i `div` n + n ≤ length l → length l ≤ i).
{ intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l),
(nil_length_inv k) by eauto using Nat.divide_0_l. }
apply list_eq; intros i. specialize (Hlookup (i `div` n)).
rewrite (Nat.mul_comm _ n) in Hlookup.
unfold sublist_lookup in *; simplify_option_eq;
[|by rewrite !lookup_ge_None_2 by auto].
apply (f_equal (.!! i `mod` n)) in Hlookup.
by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
length l = j × n → length k = j × n →
(∀ i,i < j → sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) → l = k.
Proof.
intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
apply sublist_eq with n; [by ∃ j|by ∃ j|].
intros i. destruct (decide (i < j)); [by auto|].
assert (∀ m, m = j × n → m < i × n + n).
{ intros ? →. replace (i × n + n) with (S i × n) by lia.
apply Nat.mul_lt_mono_pos_r; lia. }
by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
0 < n → length l = m × n →
reshape (replicate m n) l !! i = sublist_lookup (i × n) n l.
Proof.
intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
- intros Hx. case_guard as Hi; simplify_eq/=.
{ f_equal. clear Hi. revert i l Hl Hx.
induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
rewrite <-drop_drop. apply IH; rewrite ?length_drop; auto with lia. }
destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
by rewrite length_reshape, length_replicate in Hx.
- intros Hx. case_guard as Hi; simplify_eq/=.
revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
rewrite IH; rewrite ?length_drop; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
sublist_lookup (i + j) m l1 = Some l3.
Proof.
unfold sublist_lookup; intros; simplify_option_eq;
repeat match goal with
| H : _ ≤ length _ |- _ ⇒ rewrite length_take, length_drop in H
end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma length_sublist_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
length (sublist_alter f i n l) = length l.
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
rewrite !length_app, Hk, !length_take, !length_drop; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq.
by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?length_take; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk Hi ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
apply list_eq; intros ii.
destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
{ by rewrite lookup_app_l, lookup_take by (rewrite ?length_take; lia). }
rewrite lookup_app_r by (rewrite length_take; lia).
rewrite length_take_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
intros <-. unfold sublist_alter; simpl.
by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
take_app_length' by (rewrite ?length_app, ?length_take, ?Hk; lia).
Qed.
Lemma Forall_sublist_lookup P l i n k :
sublist_lookup i n l = Some k → Forall P l → Forall P k.
Proof.
unfold sublist_lookup. intros; simplify_option_eq.
auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_sublist_alter P f l i n k :
Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
Forall P (sublist_alter f i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
auto using Forall_app_2, Forall_drop, Forall_take.
Qed.
Lemma Forall_sublist_alter_inv P f l i n k :
sublist_lookup i n l = Some k →
Forall P (sublist_alter f i n l) → Forall P (f k).
Proof.
unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
rewrite !Forall_app; tauto.
Qed.
End general_properties.
Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
length l = length k →
sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
intros ?? Hl' Hk'. simplify_option_eq.
by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
!length_take_le, Hk' by (rewrite ?length_drop; auto with lia).
Qed.
sublist_lookup i n l = Some k → length k = n.
Proof.
unfold sublist_lookup; intros; simplify_option_eq.
rewrite length_take, length_drop; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
intros. unfold sublist_lookup; case_guard; [|lia].
by rewrite take_ge by (rewrite length_drop; lia).
Qed.
Lemma sublist_lookup_Some l i n :
i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
sublist_lookup i n l = Some l' ↔ l' = take n (drop i l) ∧ i + n ≤ length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
(n | length l) → (n | length k) →
(∀ i, sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) → l = k.
Proof.
revert l k. assert (∀ l i,
n ≠ 0 → (n | length l) → ¬n × i `div` n + n ≤ length l → length l ≤ i).
{ intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l),
(nil_length_inv k) by eauto using Nat.divide_0_l. }
apply list_eq; intros i. specialize (Hlookup (i `div` n)).
rewrite (Nat.mul_comm _ n) in Hlookup.
unfold sublist_lookup in *; simplify_option_eq;
[|by rewrite !lookup_ge_None_2 by auto].
apply (f_equal (.!! i `mod` n)) in Hlookup.
by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
length l = j × n → length k = j × n →
(∀ i,i < j → sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) → l = k.
Proof.
intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
apply sublist_eq with n; [by ∃ j|by ∃ j|].
intros i. destruct (decide (i < j)); [by auto|].
assert (∀ m, m = j × n → m < i × n + n).
{ intros ? →. replace (i × n + n) with (S i × n) by lia.
apply Nat.mul_lt_mono_pos_r; lia. }
by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
0 < n → length l = m × n →
reshape (replicate m n) l !! i = sublist_lookup (i × n) n l.
Proof.
intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
- intros Hx. case_guard as Hi; simplify_eq/=.
{ f_equal. clear Hi. revert i l Hl Hx.
induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
rewrite <-drop_drop. apply IH; rewrite ?length_drop; auto with lia. }
destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
by rewrite length_reshape, length_replicate in Hx.
- intros Hx. case_guard as Hi; simplify_eq/=.
revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
rewrite IH; rewrite ?length_drop; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
sublist_lookup (i + j) m l1 = Some l3.
Proof.
unfold sublist_lookup; intros; simplify_option_eq;
repeat match goal with
| H : _ ≤ length _ |- _ ⇒ rewrite length_take, length_drop in H
end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma length_sublist_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
length (sublist_alter f i n l) = length l.
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
rewrite !length_app, Hk, !length_take, !length_drop; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq.
by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?length_take; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk Hi ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
apply list_eq; intros ii.
destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
{ by rewrite lookup_app_l, lookup_take by (rewrite ?length_take; lia). }
rewrite lookup_app_r by (rewrite length_take; lia).
rewrite length_take_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
intros <-. unfold sublist_alter; simpl.
by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
take_app_length' by (rewrite ?length_app, ?length_take, ?Hk; lia).
Qed.
Lemma Forall_sublist_lookup P l i n k :
sublist_lookup i n l = Some k → Forall P l → Forall P k.
Proof.
unfold sublist_lookup. intros; simplify_option_eq.
auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_sublist_alter P f l i n k :
Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
Forall P (sublist_alter f i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
auto using Forall_app_2, Forall_drop, Forall_take.
Qed.
Lemma Forall_sublist_alter_inv P f l i n k :
sublist_lookup i n l = Some k →
Forall P (sublist_alter f i n l) → Forall P (f k).
Proof.
unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
rewrite !Forall_app; tauto.
Qed.
End general_properties.
Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
length l = length k →
sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
intros ?? Hl' Hk'. simplify_option_eq.
by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
!length_take_le, Hk' by (rewrite ?length_drop; auto with lia).
Qed.
Interaction of Forall2 with the above operations (needs to be outside the
section since the operations are used at different types).
Section Forall2.
Context {A B} (P : A → B → Prop).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_resize l (k : list B) x (y : B) n :
P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
Proof.
intros. rewrite !resize_spec, (Forall2_length P l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_l l k x y n m :
P x y → Forall (flip P y) l →
Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
intros. assert (n = length k); subst.
{ by rewrite <-(Forall2_length P (resize n x l) k), length_resize. }
rewrite (Nat.le_add_sub (length k) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r l k x y n m :
P x y → Forall (P x) k →
Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
assert (n = length l); subst.
{ by rewrite (Forall2_length P l (resize n y k)), length_resize. }
rewrite (Nat.le_add_sub (length l) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r_flip l k x y n m :
P x y → Forall (P x) k →
length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
Proof.
intros ?? <- ?. rewrite <-(resize_all k y) at 2.
apply Forall2_resize_r with n; auto using Forall_true.
Qed.
Lemma Forall2_rotate n l k :
Forall2 P l k → Forall2 P (rotate n l) (rotate n k).
Proof.
intros HAll. unfold rotate. rewrite (Forall2_length _ _ _ HAll).
eauto using Forall2_app, Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_rotate_take s e l k :
Forall2 P l k → Forall2 P (rotate_take s e l) (rotate_take s e k).
Proof.
intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ _ HAll).
eauto using Forall2_take, Forall2_rotate.
Qed.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k → sublist_lookup n i l = Some l' →
∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
Proof.
unfold sublist_lookup. intros Hlk Hl.
∃ (take i (drop n k)); simplify_option_eq.
- auto using Forall2_take, Forall2_drop.
- apply Forall2_length in Hlk; lia.
Qed.
Lemma Forall2_sublist_lookup_r l k n i k' :
Forall2 P l k → sublist_lookup n i k = Some k' →
∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
Proof.
intro. unfold sublist_lookup.
erewrite (Forall2_length P) by eauto; intros; simplify_option_eq.
eauto using Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_sublist_alter f g l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
Proof.
intro. unfold sublist_alter, sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_eq.
auto using Forall2_app, Forall2_drop, Forall2_take.
Qed.
Lemma Forall2_sublist_alter_l f l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
Forall2 P (sublist_alter f i n l) k.
Proof.
intro. unfold sublist_lookup, sublist_alter.
erewrite <-(Forall2_length P) by eauto; intros; simplify_option_eq.
apply Forall2_app_l;
rewrite ?length_take_le by lia; auto using Forall2_take.
apply Forall2_app_l; erewrite Forall2_length, length_take,
length_drop, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
rewrite drop_drop; auto using Forall2_drop.
Qed.
End Forall2.
Section Forall2_proper.
Context {A} (R : relation A).
Global Instance: ∀ n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
Proof. repeat intro. eauto using Forall2_resize. Qed.
Global Instance resize_proper `{!Equiv A} n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
Proof.
induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
Qed.
Global Instance : ∀ n, Proper (Forall2 R ==> Forall2 R) (rotate n).
Proof. repeat intro. eauto using Forall2_rotate. Qed.
Global Instance rotate_proper `{!Equiv A} n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.
Global Instance: ∀ s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
Global Instance rotate_take_proper `{!Equiv A} s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
End Forall2_proper.
Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Context {A B} (P : A → B → Prop).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_resize l (k : list B) x (y : B) n :
P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
Proof.
intros. rewrite !resize_spec, (Forall2_length P l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_l l k x y n m :
P x y → Forall (flip P y) l →
Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
intros. assert (n = length k); subst.
{ by rewrite <-(Forall2_length P (resize n x l) k), length_resize. }
rewrite (Nat.le_add_sub (length k) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r l k x y n m :
P x y → Forall (P x) k →
Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
assert (n = length l); subst.
{ by rewrite (Forall2_length P l (resize n y k)), length_resize. }
rewrite (Nat.le_add_sub (length l) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r_flip l k x y n m :
P x y → Forall (P x) k →
length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
Proof.
intros ?? <- ?. rewrite <-(resize_all k y) at 2.
apply Forall2_resize_r with n; auto using Forall_true.
Qed.
Lemma Forall2_rotate n l k :
Forall2 P l k → Forall2 P (rotate n l) (rotate n k).
Proof.
intros HAll. unfold rotate. rewrite (Forall2_length _ _ _ HAll).
eauto using Forall2_app, Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_rotate_take s e l k :
Forall2 P l k → Forall2 P (rotate_take s e l) (rotate_take s e k).
Proof.
intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ _ HAll).
eauto using Forall2_take, Forall2_rotate.
Qed.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k → sublist_lookup n i l = Some l' →
∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
Proof.
unfold sublist_lookup. intros Hlk Hl.
∃ (take i (drop n k)); simplify_option_eq.
- auto using Forall2_take, Forall2_drop.
- apply Forall2_length in Hlk; lia.
Qed.
Lemma Forall2_sublist_lookup_r l k n i k' :
Forall2 P l k → sublist_lookup n i k = Some k' →
∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
Proof.
intro. unfold sublist_lookup.
erewrite (Forall2_length P) by eauto; intros; simplify_option_eq.
eauto using Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_sublist_alter f g l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
Proof.
intro. unfold sublist_alter, sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_eq.
auto using Forall2_app, Forall2_drop, Forall2_take.
Qed.
Lemma Forall2_sublist_alter_l f l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
Forall2 P (sublist_alter f i n l) k.
Proof.
intro. unfold sublist_lookup, sublist_alter.
erewrite <-(Forall2_length P) by eauto; intros; simplify_option_eq.
apply Forall2_app_l;
rewrite ?length_take_le by lia; auto using Forall2_take.
apply Forall2_app_l; erewrite Forall2_length, length_take,
length_drop, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
rewrite drop_drop; auto using Forall2_drop.
Qed.
End Forall2.
Section Forall2_proper.
Context {A} (R : relation A).
Global Instance: ∀ n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
Proof. repeat intro. eauto using Forall2_resize. Qed.
Global Instance resize_proper `{!Equiv A} n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
Proof.
induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
Qed.
Global Instance : ∀ n, Proper (Forall2 R ==> Forall2 R) (rotate n).
Proof. repeat intro. eauto using Forall2_rotate. Qed.
Global Instance rotate_proper `{!Equiv A} n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.
Global Instance: ∀ s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
Global Instance rotate_take_proper `{!Equiv A} s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
End Forall2_proper.
Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Properties of the mask function
Lemma mask_nil f βs : mask f βs [] =@{list A} [].
Proof. by destruct βs. Qed.
Lemma length_mask f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
mask f (βs1 ++ βs2) l
= mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
mask f βs (l1 ++ l2)
= mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
sublist_lookup i n (mask f βs l)
= mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup; rewrite length_mask; simplify_option_eq; auto.
by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
(∀ x, f (g x) = f x) → βs1 =.>* βs2 →
mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.
End more_general_properties.
Proof. by destruct βs. Qed.
Lemma length_mask f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
mask f (βs1 ++ βs2) l
= mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
mask f βs (l1 ++ l2)
= mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
sublist_lookup i n (mask f βs l)
= mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup; rewrite length_mask; simplify_option_eq; auto.
by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
(∀ x, f (g x) = f x) → βs1 =.>* βs2 →
mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.
End more_general_properties.
Lemmas about positives_flatten and positives_unflatten.
Section positives_flatten_unflatten.
Local Open Scope positive_scope.
Lemma positives_flatten_go_app xs acc :
positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
Proof.
revert acc.
induction xs as [|x xs IH]; intros acc; simpl.
- reflexivity.
- rewrite IH.
rewrite (IH (6 ++ _)).
rewrite 2!(assoc_L (++)).
reflexivity.
Qed.
Lemma positives_unflatten_go_app p suffix xs acc :
positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
positives_unflatten_go suffix xs (acc ++ p).
Proof.
revert suffix acc.
induction p as [p IH|p IH|]; intros acc suffix; simpl.
- rewrite 2!Pos.reverse_xI.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- rewrite 2!Pos.reverse_xO.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- reflexivity.
Qed.
Lemma positives_unflatten_flatten_go suffix xs acc :
positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
positives_unflatten_go suffix (xs ++ acc) 1.
Proof.
revert suffix acc.
induction xs as [|x xs IH]; intros suffix acc; simpl.
- reflexivity.
- rewrite positives_flatten_go_app.
rewrite (assoc_L (++)).
rewrite IH.
rewrite (assoc_L (++)).
rewrite positives_unflatten_go_app.
simpl.
rewrite (left_id_L 1 (++)).
reflexivity.
Qed.
Lemma positives_unflatten_flatten xs :
positives_unflatten (positives_flatten xs) = Some xs.
Proof.
unfold positives_flatten, positives_unflatten.
replace (positives_flatten_go xs 1)
with (1 ++ positives_flatten_go xs 1)
by apply (left_id_L 1 (++)).
rewrite positives_unflatten_flatten_go.
simpl.
rewrite (right_id_L [] (++)%list).
reflexivity.
Qed.
Lemma positives_flatten_app xs ys :
positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
Proof.
unfold positives_flatten.
revert ys.
induction xs as [|x xs IH]; intros ys; simpl.
- rewrite (left_id_L 1 (++)).
reflexivity.
- rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
rewrite IH.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_cons x xs :
positives_flatten (x :: xs)
= 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
Proof.
change (x :: xs) with ([x] ++ xs)%list.
rewrite positives_flatten_app.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_suffix (l k : list positive) :
l `suffix_of` k → ∃ q, positives_flatten k = q ++ positives_flatten l.
Proof.
intros [l' ->].
∃ (positives_flatten l').
apply positives_flatten_app.
Qed.
Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
length xs = length ys →
p1 ++ positives_flatten xs = p2 ++ positives_flatten ys →
xs = ys.
Proof.
revert p1 p2 ys; induction xs as [|x xs IH];
intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
rewrite !positives_flatten_cons, !(assoc _); intros Hl.
assert (xs = ys) as <- by eauto; clear IH; f_equal.
apply (inj (.++ positives_flatten xs)) in Hl.
rewrite 2!Pos.reverse_dup in Hl.
apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
by apply (inj Pos.reverse).
Qed.
End positives_flatten_unflatten.
Local Open Scope positive_scope.
Lemma positives_flatten_go_app xs acc :
positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
Proof.
revert acc.
induction xs as [|x xs IH]; intros acc; simpl.
- reflexivity.
- rewrite IH.
rewrite (IH (6 ++ _)).
rewrite 2!(assoc_L (++)).
reflexivity.
Qed.
Lemma positives_unflatten_go_app p suffix xs acc :
positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
positives_unflatten_go suffix xs (acc ++ p).
Proof.
revert suffix acc.
induction p as [p IH|p IH|]; intros acc suffix; simpl.
- rewrite 2!Pos.reverse_xI.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- rewrite 2!Pos.reverse_xO.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- reflexivity.
Qed.
Lemma positives_unflatten_flatten_go suffix xs acc :
positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
positives_unflatten_go suffix (xs ++ acc) 1.
Proof.
revert suffix acc.
induction xs as [|x xs IH]; intros suffix acc; simpl.
- reflexivity.
- rewrite positives_flatten_go_app.
rewrite (assoc_L (++)).
rewrite IH.
rewrite (assoc_L (++)).
rewrite positives_unflatten_go_app.
simpl.
rewrite (left_id_L 1 (++)).
reflexivity.
Qed.
Lemma positives_unflatten_flatten xs :
positives_unflatten (positives_flatten xs) = Some xs.
Proof.
unfold positives_flatten, positives_unflatten.
replace (positives_flatten_go xs 1)
with (1 ++ positives_flatten_go xs 1)
by apply (left_id_L 1 (++)).
rewrite positives_unflatten_flatten_go.
simpl.
rewrite (right_id_L [] (++)%list).
reflexivity.
Qed.
Lemma positives_flatten_app xs ys :
positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
Proof.
unfold positives_flatten.
revert ys.
induction xs as [|x xs IH]; intros ys; simpl.
- rewrite (left_id_L 1 (++)).
reflexivity.
- rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
rewrite IH.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_cons x xs :
positives_flatten (x :: xs)
= 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
Proof.
change (x :: xs) with ([x] ++ xs)%list.
rewrite positives_flatten_app.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_suffix (l k : list positive) :
l `suffix_of` k → ∃ q, positives_flatten k = q ++ positives_flatten l.
Proof.
intros [l' ->].
∃ (positives_flatten l').
apply positives_flatten_app.
Qed.
Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
length xs = length ys →
p1 ++ positives_flatten xs = p2 ++ positives_flatten ys →
xs = ys.
Proof.
revert p1 p2 ys; induction xs as [|x xs IH];
intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
rewrite !positives_flatten_cons, !(assoc _); intros Hl.
assert (xs = ys) as <- by eauto; clear IH; f_equal.
apply (inj (.++ positives_flatten xs)) in Hl.
rewrite 2!Pos.reverse_dup in Hl.
apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
by apply (inj Pos.reverse).
Qed.
End positives_flatten_unflatten.