Library stdpp.option

This file collects general purpose definitions and theorems on the option data type that are not in the Coq standard library.
From stdpp Require Export tactics.
From stdpp Require Import options.

Inductive option_reflect {A} (P : A Prop) (Q : Prop) : option A Type :=
  | ReflectSome x : P x option_reflect P Q (Some x)
  | ReflectNone : Q option_reflect P Q None.

General definitions and theorems

Basic properties about equality.
Lemma None_ne_Some {A} (x : A) : None Some x.
Proof. congruence. Qed.
Lemma Some_ne_None {A} (x : A) : Some x None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some {A} (mx : option A) : ( x, mx Some x) mx = None.
Proof. destruct mx; split; congruence. Qed.
Lemma eq_None_ne_Some_1 {A} (mx : option A) x : mx = None mx Some x.
Proof. intros ?. by apply eq_None_ne_Some. Qed.
Lemma eq_None_ne_Some_2 {A} (mx : option A) : ( x, mx Some x) mx = None.
Proof. intros ?. by apply eq_None_ne_Some. Qed.
Global Instance Some_inj {A} : Inj (=) (=) (@Some A).
Proof. congruence. Qed.

The from_option is the eliminator for option.
Definition from_option {A B} (f : A B) (y : B) (mx : option A) : B :=
  match mx with Noney | Some xf x end.
Global Instance: Params (@from_option) 2 := {}.
Global Arguments from_option {_ _} _ _ !_ / : assert.

The eliminator with the identity function.
Notation default := (from_option id).

An alternative, but equivalent, definition of equality on the option data type. This theorem is useful to prove that two options are the same.
Lemma option_eq {A} (mx my: option A): mx = my x, mx = Some x my = Some x.
Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed.
Lemma option_eq_1 {A} (mx my: option A) x : mx = my mx = Some x my = Some x.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (mx my : option A) x :
  mx = my my = Some x mx = Some x.
Proof. congruence. Qed.

Definition is_Some {A} (mx : option A) := x, mx = Some x.
Global Instance: Params (@is_Some) 1 := {}.

We avoid calling done recursively as that can lead to an unresolved evar.
Global Hint Extern 0 (is_Some _) ⇒ eexists; fast_done : core.

Lemma is_Some_alt {A} (mx : option A) :
  is_Some mx match mx with Some _True | NoneFalse end.
Proof. unfold is_Some. destruct mx; naive_solver. Qed.

Lemma mk_is_Some {A} (mx : option A) x : mx = Some x is_Some mx.
Proof. by intros →. Qed.
Global Hint Resolve mk_is_Some : core.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Global Hint Resolve is_Some_None : core.

Lemma eq_None_not_Some {A} (mx : option A) : mx = None ¬is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx None is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.

Global Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Proof.
  set (P (mx : option A) := match mx with Some _True | _False end).
  set (f mx := match mx return P mx is_Some mx with
    Some _λ _, ex_intro _ _ eq_refl | NoneFalse_rect _ end).
  set (g mx (H : is_Some mx) :=
    match H return P mx with ex_intro _ _ peq_rect _ _ I _ (eq_sym p) end).
  assert ( mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
Qed.

Global Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
  match mx with
  | Some xleft (ex_intro _ x eq_refl)
  | Noneright is_Some_None
  end.

Definition is_Some_proj {A} {mx : option A} : is_Some mx A :=
  match mx with Some xλ _, x | NoneFalse_rect _ is_Some_None end.

Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } :=
  match mx return { x | mx = Some x } + { mx = None } with
  | Some xinleft (x eq_refl _)
  | Noneinright eq_refl
  end.

Lifting a relation point-wise to option
Inductive option_Forall2 {A B} (R: A B Prop) : option A option B Prop :=
  | Some_Forall2 x y : R x y option_Forall2 R (Some x) (Some y)
  | None_Forall2 : option_Forall2 R None None.
Definition option_relation {A B} (R: A B Prop) (P: A Prop) (Q: B Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some yR x y
  | Some x, NoneP x
  | None, Some yQ y
  | None, NoneTrue
  end.

Section Forall2.
  Context {A} (R : relation A).

  Global Instance option_Forall2_refl : Reflexive R Reflexive (option_Forall2 R).
  Proof. intros ? [?|]; by constructor. Qed.
  Global Instance option_Forall2_sym : Symmetric R Symmetric (option_Forall2 R).
  Proof. destruct 2; by constructor. Qed.
  Global Instance option_Forall2_trans : Transitive R Transitive (option_Forall2 R).
  Proof. destruct 2; inv 1; constructor; etrans; eauto. Qed.
  Global Instance option_Forall2_equiv : Equivalence R Equivalence (option_Forall2 R).
  Proof. destruct 1; split; apply _. Qed.

  Lemma option_eq_Forall2 (mx my : option A) :
    mx = my option_Forall2 eq mx my.
  Proof.
    split.
    - intros →. destruct my; constructor; done.
    - intros [|]; naive_solver.
  Qed.
End Forall2.

Setoids
Global Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 (≡).

Section setoids.
  Context `{Equiv A}.
  Implicit Types mx my : option A.

  Lemma option_equiv_Forall2 mx my : mx my option_Forall2 (≡) mx my.
  Proof. done. Qed.

  Global Instance option_equivalence :
    Equivalence (≡@{A}) Equivalence (≡@{option A}).
  Proof. apply _. Qed.
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
  Proof. intros x y; destruct 1; f_equal; by apply leibniz_equiv. Qed.

  Global Instance Some_proper : Proper ((≡) ==> (≡@{option A})) Some.
  Proof. by constructor. Qed.
  Global Instance Some_equiv_inj : Inj (≡) (≡@{option A}) Some.
  Proof. by inv 1. Qed.

  Lemma None_equiv_eq mx : mx None mx = None.
  Proof. split; [by inv 1|intros ->; constructor]. Qed.
  Lemma Some_equiv_eq mx y : mx Some y y', mx = Some y' y' y.
  Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.

  Global Instance is_Some_proper : Proper ((≡@{option A}) ==> iff) is_Some.
  Proof. by inv 1. Qed.
  Global Instance from_option_proper {B} (R : relation B) :
    Proper (((≡@{A}) ==> R) ==> R ==> (≡) ==> R) from_option.
  Proof. destruct 3; simpl; auto. Qed.
End setoids.

Global Typeclasses Opaque option_equiv.

Equality on option is decidable.
Global Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
  match mx with Some _right (Some_ne_None _) | Noneleft eq_refl end.
Global Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
  match mx with Some _right (None_ne_Some _) | Noneleft eq_refl end.
Global Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A).
Proof.
 refine (λ mx my,
  match mx, my with
  | Some x, Some ycast_if (decide (x = y))
  | None, Noneleft _ | _, _right _
  end); clear dec; abstract congruence.
Defined.

Monadic operations

Global Instance option_ret: MRet option := @Some.
Global Instance option_bind: MBind option := λ A B f mx,
  match mx with Some xf x | NoneNone end.
Global Instance option_join: MJoin option := λ A mmx,
  match mmx with Some mxmx | NoneNone end.
Global Instance option_fmap: FMap option := @option_map.
Global Instance option_mfail: MFail option := λ _ _, None.

Lemma option_fmap_inj {A B} (R1 : A A Prop) (R2 : B B Prop) (f : A B) :
  Inj R1 R2 f Inj (option_Forall2 R1) (option_Forall2 R2) (fmap f).
Proof. intros ? [?|] [?|]; inv 1; constructor; auto. Qed.
Global Instance option_fmap_eq_inj {A B} (f : A B) :
  Inj (=) (=) f Inj (=@{option A}) (=@{option B}) (fmap f).
Proof.
  intros ?%option_fmap_inj ?? ?%option_eq_Forall2%(inj _).
  by apply option_eq_Forall2.
Qed.
Global Instance option_fmap_equiv_inj `{Equiv A, Equiv B} (f : A B) :
  Inj (≡) (≡) f Inj (≡@{option A}) (≡@{option B}) (fmap f).
Proof. apply option_fmap_inj. Qed.

Lemma fmap_is_Some {A B} (f : A B) mx : is_Some (f <$> mx) is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A B) mx y :
  f <$> mx = Some y x, mx = Some x y = f x.
Proof. destruct mx; naive_solver. Qed.
Lemma fmap_Some_1 {A B} (f : A B) mx y :
  f <$> mx = Some y x, mx = Some x y = f x.
Proof. apply fmap_Some. Qed.
Lemma fmap_Some_2 {A B} (f : A B) mx x : mx = Some x f <$> mx = Some (f x).
Proof. intros. apply fmap_Some; eauto. Qed.
Lemma fmap_Some_equiv {A B} `{Equiv B} `{!Equivalence (≡@{B})} (f : A B) mx y :
  f <$> mx Some y x, mx = Some x y f x.
Proof.
  destruct mx; simpl; split.
  - intros ?%(inj Some). eauto.
  - intros (? & ->%(inj Some) & ?). constructor. done.
  - intros [=]%symmetry%None_equiv_eq.
  - intros (? & [=] & ?).
Qed.
Lemma fmap_Some_equiv_1 {A B} `{Equiv B} `{!Equivalence (≡@{B})} (f : A B) mx y :
  f <$> mx Some y x, mx = Some x y f x.
Proof. by rewrite fmap_Some_equiv. Qed.
Lemma fmap_None {A B} (f : A B) mx : f <$> mx = None mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A B) {C} (g : B C) (mx : option A) :
  g f <$> mx = g <$> (f <$> mx).
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A B) (mx : option A) :
  ( x, f x = g x) f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
Lemma option_fmap_equiv_ext {A} `{Equiv B} (f g : A B) (mx : option A) :
  ( x, f x g x) f <$> mx g <$> mx.
Proof. destruct mx; constructor; auto. Qed.

Lemma option_fmap_bind {A B C} (f : A B) (g : B option C) mx :
  (f <$> mx) ≫= g = mx ≫= g f.
Proof. by destruct mx. Qed.
Lemma option_bind_assoc {A B C} (f : A option B)
  (g : B option C) (mx : option A) : (mx ≫= f) ≫= g = mx ≫= (mbind g f).
Proof. by destruct mx; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A option B) mx my :
  ( x, f x = g x) mx = my mx ≫= f = my ≫= g.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_bind_ext_fun {A B} (f g : A option B) mx :
  ( x, f x = g x) mx ≫= f = mx ≫= g.
Proof. intros. by apply option_bind_ext. Qed.
Lemma bind_Some {A B} (f : A option B) (mx : option A) y :
  mx ≫= f = Some y x, mx = Some x f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_Some_equiv {A} `{Equiv B} (f : A option B) (mx : option A) y :
  mx ≫= f Some y x, mx = Some x f x Some y.
Proof. destruct mx; split; first [by inv 1|naive_solver]. Qed.
Lemma bind_None {A B} (f : A option B) (mx : option A) :
  mx ≫= f = None mx = None x, mx = Some x f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx ≫= Some = mx.
Proof. by destruct mx. Qed.

Global Instance option_fmap_proper `{Equiv A, Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{option A}) ==> (≡@{option B})) fmap.
Proof. destruct 2; constructor; auto. Qed.
Global Instance option_bind_proper `{Equiv A, Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{option A}) ==> (≡@{option B})) mbind.
Proof. destruct 2; simpl; try constructor; auto. Qed.
Global Instance option_join_proper `{Equiv A} :
  Proper ((≡) ==> (≡@{option (option A)})) mjoin.
Proof. destruct 1 as [?? []|]; simpl; by constructor. Qed.

Inverses of constructors

We can do this in a fancy way using dependent types, but rewrite does not particularly like type level reductions.
Class Maybe {A B : Type} (c : A B) :=
  maybe : B option A.
Global Arguments maybe {_ _} _ {_} !_ / : assert.
Class Maybe2 {A1 A2 B : Type} (c : A1 A2 B) :=
  maybe2 : B option (A1 × A2).
Global Arguments maybe2 {_ _ _} _ {_} !_ / : assert.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1 A2 A3 B) :=
  maybe3 : B option (A1 × A2 × A3).
Global Arguments maybe3 {_ _ _ _} _ {_} !_ / : assert.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1 A2 A3 A4 B) :=
  maybe4 : B option (A1 × A2 × A3 × A4).
Global Arguments maybe4 {_ _ _ _ _} _ {_} !_ / : assert.

Global Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1 c2) := λ x,
  maybe c1 x ≫= maybe c2.
Global Arguments maybe_comp _ _ _ _ _ _ _ !_ / : assert.

Global Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl xSome x | _None end.
Global Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr ySome y | _None end.
Global Instance maybe_Some {A} : Maybe (@Some A) := id.
Global Arguments maybe_Some _ !_ / : assert.

Union, intersection and difference

Global Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some yf x y
  | Some x, NoneSome x
  | None, Some ySome y
  | None, NoneNone
  end.
Global Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f mx my, match mx, my with Some x, Some yf x y | _, _None end.
Global Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some yf x y
  | Some x, NoneSome x
  | None, _None
  end.
Global Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).

Lemma union_Some {A} (mx my : option A) z :
  mx my = Some z mx = Some z (mx = None my = Some z).
Proof. destruct mx, my; naive_solver. Qed.
Lemma union_Some_l {A} x (my : option A) :
  Some x my = Some x.
Proof. destruct my; done. Qed.
Lemma union_Some_r {A} (mx : option A) y :
  mx Some y = Some (default y mx).
Proof. destruct mx; done. Qed.
Lemma union_None {A} (mx my : option A) :
  mx my = None mx = None my = None.
Proof. destruct mx, my; naive_solver. Qed.
Lemma union_is_Some {A} (mx my : option A) :
  is_Some (mx my) is_Some mx is_Some my.
Proof. destruct mx, my; naive_solver. Qed.

Global Instance option_union_left_id {A} : LeftId (=@{option A}) None union.
Proof. by intros [?|]. Qed.
Global Instance option_union_right_id {A} : RightId (=@{option A}) None union.
Proof. by intros [?|]. Qed.

Global Instance option_intersection {A} : Intersection (option A) :=
  intersection_with (λ x _, Some x).

Lemma intersection_Some {A} (mx my : option A) x :
  mx my = Some x mx = Some x is_Some my.
Proof. destruct mx, my; unfold is_Some; naive_solver. Qed.
Lemma intersection_is_Some {A} (mx my : option A) :
  is_Some (mx my) is_Some mx is_Some my.
Proof. destruct mx, my; unfold is_Some; naive_solver. Qed.
Lemma intersection_Some_r {A} (mx : option A) (y : A) :
  mx Some y = mx.
Proof. by destruct mx. Qed.
Lemma intersection_None {A} (mx my : option A) :
  mx my = None mx = None my = None.
Proof. destruct mx, my; naive_solver. Qed.
Lemma intersection_None_l {A} (my : option A) :
  None my = None.
Proof. destruct my; done. Qed.
Lemma intersection_None_r {A} (mx : option A) :
  mx None = None.
Proof. destruct mx; done. Qed.

Global Instance option_intersection_right_absorb {A} :
  RightAbsorb (=@{option A}) None intersection.
Proof. by intros [?|]. Qed.

Global Instance option_intersection_left_absorb {A} :
  LeftAbsorb (=@{option A}) None intersection.
Proof. by intros [?|]. Qed.

Section union_intersection_difference.
  Context {A} (f : A A option A).

  Global Instance union_with_left_id : LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance union_with_right_id : RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance union_with_comm :
    Comm (=) f Comm (=@{option A}) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
These are duplicates of the above LeftId/RightId instances, but easier to find with SearchAbout.
  Lemma union_with_None_l my : union_with f None my = my.
  Proof. destruct my; done. Qed.
  Lemma union_with_None_r mx : union_with f mx None = mx.
  Proof. destruct mx; done. Qed.

  Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance intersection_with_comm :
    Comm (=) f Comm (=@{option A}) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
These are duplicates of the above LeftAbsorb/RightAbsorb instances, but easier to find with SearchAbout.
  Lemma intersection_with_None_l my : intersection_with f None my = None.
  Proof. destruct my; done. Qed.
  Lemma intersection_with_None_r mx : intersection_with f mx None = None.
  Proof. destruct mx; done. Qed.

  Global Instance difference_with_comm :
    Comm (=) f Comm (=@{option A}) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
  Global Instance difference_with_right_id : RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.

  Global Instance union_with_proper `{Equiv A} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{option A}) ==> (≡) ==> (≡)) union_with.
  Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
  Global Instance intersection_with_proper `{Equiv A} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{option A}) ==> (≡) ==> (≡)) intersection_with.
  Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
  Global Instance difference_with_proper `{Equiv A} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{option A}) ==> (≡) ==> (≡)) difference_with.
  Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
  Global Instance union_proper `{Equiv A} :
    Proper ((≡@{option A}) ==> (≡) ==> (≡)) union.
  Proof. apply union_with_proper. by constructor. Qed.
End union_intersection_difference.

This lemma includes a bind, to avoid equalities of proofs. We cannot have guard P = Some p P unless P is proof irrelant. The best (but less usable) self-contained alternative would be guard P = Some p decide P = left p.
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
  P (guard P;; mx) = mx.
Proof. intros. by case_guard. Qed.
Lemma option_guard_True_pi P `{Decision P, ProofIrrel P} (HP : P) :
  guard P = Some HP.
Proof. case_guard; [|done]. f_equal; apply proof_irrel. Qed.
Lemma option_guard_False P `{Decision P} :
  ¬P guard P = None.
Proof. intros. by case_guard. Qed.
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
  (P Q) (guard P;; mx) = (guard Q;; mx).
Proof. intros [??]. repeat case_guard; intuition. Qed.
Lemma option_guard_decide {A} P `{Decision P} (mx : option A) :
  (guard P;; mx) = if decide P then mx else None.
Proof. by case_guard. Qed.
Lemma option_guard_bool_decide {A} P `{Decision P} (mx : option A) :
  (guard P;; mx) = if bool_decide P then mx else None.
Proof. by rewrite option_guard_decide, decide_bool_decide. Qed.

Tactic Notation "simpl_option" "by" tactic3(tac) :=
  let assert_Some_None A mx H := first
    [ let x := mk_evar A in
      assert (mx = Some x) as H by tac
    | assert (mx = None) as H by tac ]
  in repeat match goal with
  | H : context [@mret _ _ ?A] |- _
     change (@mret _ _ A) with (@Some A) in H
  | |- context [@mret _ _ ?A] ⇒ change (@mret _ _ A) with (@Some A)
  | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [from_option (A:=?A) _ _ ?mx] |- _
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?mx with __ end ] |- _
    match type of mx with
    | option ?A
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?mx] ⇒
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?mx] ⇒
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ _ ?mx] ⇒
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [ match ?mx with __ end ] ⇒
    match type of mx with
    | option ?A
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
    end
  | H : context [decide _] |- _rewrite decide_True in H by tac
  | H : context [decide _] |- _rewrite decide_False in H by tac
  | H : context [guard _] |- _rewrite option_guard_False in H by tac
  | H : context [guard _] |- _rewrite option_guard_True in H by tac
  | _rewrite decide_True by tac
  | _rewrite decide_False by tac
  | _rewrite option_guard_True by tac
  | _rewrite option_guard_False by tac
  | H : context [None _] |- _rewrite (left_id_L None (∪)) in H
  | H : context [_ None] |- _rewrite (right_id_L None (∪)) in H
  | |- context [None _] ⇒ rewrite (left_id_L None (∪))
  | |- context [_ None] ⇒ rewrite (right_id_L None (∪))
  end.
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
  repeat match goal with
  | _progress simplify_eq/=
  | _progress simpl_option by tac
  | _ : maybe _ ?x = Some _ |- _is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _is_var x; destruct x
  | H : _ _ = Some _ |- _apply union_Some in H; destruct H
  | H : mbind (M:=option) ?f ?mx = ?my |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (f x = my) in H|change (None = my) in H]
  | H : ?my = mbind (M:=option) ?f ?mx |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = f x) in H|change (my = None) in H]
  | H : fmap (M:=option) ?f ?mx = ?my |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (Some (f x) = my) in H|change (None = my) in H]
  | H : ?my = fmap (M:=option) ?f ?mx |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = Some (f x)) in H|change (my = None) in H]
  | _progress case_decide
  | _progress case_guard
  end.
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.