Library stdpp.list_tactics
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
Reflection over lists
We define a simple data structure rlist to capture a syntactic representation of lists consisting of constants, applications and the nil list. Note that we represent (x ::.) as rapp (rnode [x]). For now, we abstract over the type of constants, but later we use nats and a list representing a corresponding environment.
Inductive rlist (A : Type) :=
rnil : rlist A | rnode : A → rlist A | rapp : rlist A → rlist A → rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.
Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
match t with
| rnil ⇒ [] | rnode l ⇒ [l] | rapp t1 t2 ⇒ to_list t1 ++ to_list t2
end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat → list A :=
fix go t :=
match t with
| rnil ⇒ []
| rnode i ⇒ default [] (E !! i)
| rapp t1 t2 ⇒ go t1 ++ go t2
end.
rnil : rlist A | rnode : A → rlist A | rapp : rlist A → rlist A → rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.
Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
match t with
| rnil ⇒ [] | rnode l ⇒ [l] | rapp t1 t2 ⇒ to_list t1 ++ to_list t2
end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat → list A :=
fix go t :=
match t with
| rnil ⇒ []
| rnode i ⇒ default [] (E !! i)
| rapp t1 t2 ⇒ go t1 ++ go t2
end.
A simple quoting mechanism using type classes. QuoteLookup E1 E2 x i
means: starting in environment E1, look up the index i corresponding to the
constant x. In case x has a corresponding index i in E1, the original
environment is given back as E2. Otherwise, the environment E2 is extended
with a binding i for x.
Section quote_lookup.
Context {A : Type}.
Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
Global Instance quote_lookup_further E1 E2 x i y :
QuoteLookup E1 E2 x i → QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.
Section quote.
Context {A : Type}.
Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
Global Instance quote_node E1 E2 l i:
QuoteLookup E1 E2 l i → Quote E1 E2 l (rnode i) | 1000 := {}.
Global Instance quote_cons E1 E2 E3 x l i t :
QuoteLookup E1 E2 [x] i →
Quote E2 E3 l t → Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
Quote E1 E2 l1 t1 → Quote E2 E3 l2 t2 → Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.
Section eval.
Context {A} (E : env A).
Lemma eval_alt t : eval E t = to_list t ≫= default [] ∘ (E !!.).
Proof.
induction t; csimpl.
- done.
- by rewrite (right_id_L [] (++)).
- rewrite bind_app. by f_equal.
Qed.
Lemma eval_eq t1 t2 : to_list t1 = to_list t2 → eval E t1 = eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_Permutation t1 t2 :
to_list t1 ≡ₚ to_list t2 → eval E t1 ≡ₚ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_submseteq t1 t2 :
to_list t1 ⊆+ to_list t2 → eval E t1 ⊆+ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.
Context {A : Type}.
Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
Global Instance quote_lookup_further E1 E2 x i y :
QuoteLookup E1 E2 x i → QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.
Section quote.
Context {A : Type}.
Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
Global Instance quote_node E1 E2 l i:
QuoteLookup E1 E2 l i → Quote E1 E2 l (rnode i) | 1000 := {}.
Global Instance quote_cons E1 E2 E3 x l i t :
QuoteLookup E1 E2 [x] i →
Quote E2 E3 l t → Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
Quote E1 E2 l1 t1 → Quote E2 E3 l2 t2 → Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.
Section eval.
Context {A} (E : env A).
Lemma eval_alt t : eval E t = to_list t ≫= default [] ∘ (E !!.).
Proof.
induction t; csimpl.
- done.
- by rewrite (right_id_L [] (++)).
- rewrite bind_app. by f_equal.
Qed.
Lemma eval_eq t1 t2 : to_list t1 = to_list t2 → eval E t1 = eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_Permutation t1 t2 :
to_list t1 ≡ₚ to_list t2 → eval E t1 ≡ₚ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_submseteq t1 t2 :
to_list t1 ⊆+ to_list t2 → eval E t1 ⊆+ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.
Ltac quote_Permutation :=
match goal with
| |- ?l1 ≡ₚ ?l2 ⇒
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 ⇒
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 ⇒
change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
end end
end.
Ltac solve_Permutation :=
quote_Permutation; apply rlist.eval_Permutation;
compute_done.
Ltac quote_submseteq :=
match goal with
| |- ?l1 ⊆+ ?l2 ⇒
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 ⇒
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 ⇒
change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
end end
end.
Ltac solve_submseteq :=
quote_submseteq; apply rlist.eval_submseteq;
compute_done.
Ltac decompose_elem_of_list := repeat
match goal with
| H : ?x ∈ [] |- _ ⇒ by destruct (not_elem_of_nil x)
| H : _ ∈ _ :: _ |- _ ⇒ apply elem_of_cons in H; destruct H
| H : _ ∈ _ ++ _ |- _ ⇒ apply elem_of_app in H; destruct H
end.
Ltac solve_length :=
simplify_eq/=;
repeat (rewrite length_fmap || rewrite length_app);
repeat match goal with
| H : _ =@{list _} _ |- _ ⇒ apply (f_equal length) in H
| H : Forall2 _ _ _ |- _ ⇒ apply Forall2_length in H
| H : context[length (_ <$> _)] |- _ ⇒ rewrite length_fmap in H
end; done || congruence.
Ltac simplify_list_eq ::= repeat
match goal with
| _ ⇒ progress simplify_eq/=
| H : [?x] !! ?i = Some ?y |- _ ⇒
destruct i; [change (Some x = Some y) in H | discriminate]
| H : _ <$> _ = [] |- _ ⇒ apply fmap_nil_inv in H
| H : [] = _ <$> _ |- _ ⇒ symmetry in H; apply fmap_nil_inv in H
| H : zip_with _ _ _ = [] |- _ ⇒ apply zip_with_nil_inv in H; destruct H
| H : [] = zip_with _ _ _ |- _ ⇒ symmetry in H
| |- context [(_ ++ _) ++ _] ⇒ rewrite <-(assoc_L (++))
| H : context [(_ ++ _) ++ _] |- _ ⇒ rewrite <-(assoc_L (++)) in H
| H : context [_ <$> (_ ++ _)] |- _ ⇒ rewrite fmap_app in H
| |- context [_ <$> (_ ++ _)] ⇒ rewrite fmap_app
| |- context [_ ++ []] ⇒ rewrite (right_id_L [] (++))
| H : context [_ ++ []] |- _ ⇒ rewrite (right_id_L [] (++)) in H
| |- context [take _ (_ <$> _)] ⇒ rewrite <-fmap_take
| H : context [take _ (_ <$> _)] |- _ ⇒ rewrite <-fmap_take in H
| |- context [drop _ (_ <$> _)] ⇒ rewrite <-fmap_drop
| H : context [drop _ (_ <$> _)] |- _ ⇒ rewrite <-fmap_drop in H
| H : _ ++ _ = _ ++ _ |- _ ⇒
repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
apply app_inj_1 in H; [destruct H|solve_length]
| H : _ ++ _ = _ ++ _ |- _ ⇒
repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
apply app_inj_2 in H; [destruct H|solve_length]
| |- context [zip_with _ (_ ++ _) (_ ++ _)] ⇒
rewrite zip_with_app by solve_length
| |- context [take _ (_ ++ _)] ⇒ rewrite take_app_length' by solve_length
| |- context [drop _ (_ ++ _)] ⇒ rewrite drop_app_length' by solve_length
| H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ ⇒
rewrite zip_with_app in H by solve_length
| H : context [take _ (_ ++ _)] |- _ ⇒
rewrite take_app_length' in H by solve_length
| H : context [drop _ (_ ++ _)] |- _ ⇒
rewrite drop_app_length' in H by solve_length
| H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ ⇒
rewrite list_lookup_fmap, H in H2
end.
Ltac decompose_Forall_hyps :=
repeat match goal with
| H : Forall _ [] |- _ ⇒ clear H
| H : Forall _ (_ :: _) |- _ ⇒ rewrite Forall_cons in H; destruct H
| H : Forall _ (_ ++ _) |- _ ⇒ rewrite Forall_app in H; destruct H
| H : Forall2 _ [] [] |- _ ⇒ clear H
| H : Forall2 _ (_ :: _) [] |- _ ⇒ destruct (Forall2_cons_nil_inv _ _ _ H)
| H : Forall2 _ [] (_ :: _) |- _ ⇒ destruct (Forall2_nil_cons_inv _ _ _ H)
| H : Forall2 _ [] ?k |- _ ⇒ apply Forall2_nil_inv_l in H
| H : Forall2 _ ?l [] |- _ ⇒ apply Forall2_nil_inv_r in H
| H : Forall2 _ (_ :: _) (_ :: _) |- _ ⇒
apply Forall2_cons_1 in H; destruct H
| H : Forall2 _ (_ :: _) ?k |- _ ⇒
let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
rename k_tl into k
| H : Forall2 _ ?l (_ :: _) |- _ ⇒
let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
rename l_tl into l
| H : Forall2 _ (_ ++ _) ?k |- _ ⇒
let k1 := fresh k "_1" in let k2 := fresh k "_2" in
apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
| H : Forall2 _ ?l (_ ++ _) |- _ ⇒
let l1 := fresh l "_1" in let l2 := fresh l "_2" in
apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
| _ ⇒ progress simplify_eq/=
| H : Forall3 _ _ (_ :: _) _ |- _ ⇒
apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall2 _ (_ :: _) ?k |- _ ⇒
apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ ?l (_ :: _) |- _ ⇒
apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) (_ ++ _) |- _ ⇒
apply Forall2_app_inv in H; [destruct H|solve_length]
| H : Forall2 _ ?l (_ ++ _) |- _ ⇒
apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) ?k |- _ ⇒
apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall3 _ _ (_ ++ _) _ |- _ ⇒
apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ ⇒
unless (P x) by auto using Forall_app_2, Forall_nil_2;
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ ⇒
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ ⇒
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! ?i = Some ?x |- _ ⇒
try (match goal with _ : k !! i = Some _ |- _ ⇒ fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! ?i = Some ?y |- _ ⇒
try (match goal with _ : l !! i = Some _ |- _ ⇒ fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ ⇒
lazymatch goal with
| H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ ⇒
unless (P x y z) by done; let E := fresh in
assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ ⇒
destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
| H2 : l' !! _ = Some ?y |- _ ⇒
destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
| H3 : k !! _ = Some ?z |- _ ⇒
destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
end
end.
Ltac list_simplifier :=
simplify_eq/=;
repeat match goal with
| _ ⇒ progress decompose_Forall_hyps
| _ ⇒ progress simplify_list_eq
| H : _ <$> _ = _ :: _ |- _ ⇒
apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
| H : _ :: _ = _ <$> _ |- _ ⇒ symmetry in H
| H : _ <$> _ = _ ++ _ |- _ ⇒
apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
| H : _ ++ _ = _ <$> _ |- _ ⇒ symmetry in H
| H : zip_with _ _ _ = _ :: _ |- _ ⇒
apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
| H : _ :: _ = zip_with _ _ _ |- _ ⇒ symmetry in H
| H : zip_with _ _ _ = _ ++ _ |- _ ⇒
apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
| H : _ ++ _ = zip_with _ _ _ |- _ ⇒ symmetry in H
end.
Ltac decompose_Forall := repeat
match goal with
| |- Forall _ _ ⇒ by apply Forall_true
| |- Forall _ [] ⇒ constructor
| |- Forall _ (_ :: _) ⇒ constructor
| |- Forall _ (_ ++ _) ⇒ apply Forall_app_2
| |- Forall _ (_ <$> _) ⇒ apply Forall_fmap
| |- Forall _ (_ ≫= _) ⇒ apply Forall_bind
| |- Forall2 _ _ _ ⇒ apply Forall_Forall2_diag
| |- Forall2 _ [] [] ⇒ constructor
| |- Forall2 _ (_ :: _) (_ :: _) ⇒ constructor
| |- Forall2 _ (_ ++ _) (_ ++ _) ⇒ first
[ apply Forall2_app; [by decompose_Forall |]
| apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _ ⇒ apply Forall2_fmap_l
| |- Forall2 _ _ (_ <$> _) ⇒ apply Forall2_fmap_r
| _ ⇒ progress decompose_Forall_hyps
| H : Forall _ (_ <$> _) |- _ ⇒ rewrite Forall_fmap in H
| H : Forall _ (_ ≫= _) |- _ ⇒ rewrite Forall_bind in H
| |- Forall _ _ ⇒
apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
| |- Forall2 _ _ _ ⇒
apply Forall2_same_length_lookup_2; [solve_length|];
intros ?????; progress decompose_Forall_hyps
end.
match goal with
| |- ?l1 ≡ₚ ?l2 ⇒
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 ⇒
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 ⇒
change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
end end
end.
Ltac solve_Permutation :=
quote_Permutation; apply rlist.eval_Permutation;
compute_done.
Ltac quote_submseteq :=
match goal with
| |- ?l1 ⊆+ ?l2 ⇒
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 ⇒
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 ⇒
change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
end end
end.
Ltac solve_submseteq :=
quote_submseteq; apply rlist.eval_submseteq;
compute_done.
Ltac decompose_elem_of_list := repeat
match goal with
| H : ?x ∈ [] |- _ ⇒ by destruct (not_elem_of_nil x)
| H : _ ∈ _ :: _ |- _ ⇒ apply elem_of_cons in H; destruct H
| H : _ ∈ _ ++ _ |- _ ⇒ apply elem_of_app in H; destruct H
end.
Ltac solve_length :=
simplify_eq/=;
repeat (rewrite length_fmap || rewrite length_app);
repeat match goal with
| H : _ =@{list _} _ |- _ ⇒ apply (f_equal length) in H
| H : Forall2 _ _ _ |- _ ⇒ apply Forall2_length in H
| H : context[length (_ <$> _)] |- _ ⇒ rewrite length_fmap in H
end; done || congruence.
Ltac simplify_list_eq ::= repeat
match goal with
| _ ⇒ progress simplify_eq/=
| H : [?x] !! ?i = Some ?y |- _ ⇒
destruct i; [change (Some x = Some y) in H | discriminate]
| H : _ <$> _ = [] |- _ ⇒ apply fmap_nil_inv in H
| H : [] = _ <$> _ |- _ ⇒ symmetry in H; apply fmap_nil_inv in H
| H : zip_with _ _ _ = [] |- _ ⇒ apply zip_with_nil_inv in H; destruct H
| H : [] = zip_with _ _ _ |- _ ⇒ symmetry in H
| |- context [(_ ++ _) ++ _] ⇒ rewrite <-(assoc_L (++))
| H : context [(_ ++ _) ++ _] |- _ ⇒ rewrite <-(assoc_L (++)) in H
| H : context [_ <$> (_ ++ _)] |- _ ⇒ rewrite fmap_app in H
| |- context [_ <$> (_ ++ _)] ⇒ rewrite fmap_app
| |- context [_ ++ []] ⇒ rewrite (right_id_L [] (++))
| H : context [_ ++ []] |- _ ⇒ rewrite (right_id_L [] (++)) in H
| |- context [take _ (_ <$> _)] ⇒ rewrite <-fmap_take
| H : context [take _ (_ <$> _)] |- _ ⇒ rewrite <-fmap_take in H
| |- context [drop _ (_ <$> _)] ⇒ rewrite <-fmap_drop
| H : context [drop _ (_ <$> _)] |- _ ⇒ rewrite <-fmap_drop in H
| H : _ ++ _ = _ ++ _ |- _ ⇒
repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
apply app_inj_1 in H; [destruct H|solve_length]
| H : _ ++ _ = _ ++ _ |- _ ⇒
repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
apply app_inj_2 in H; [destruct H|solve_length]
| |- context [zip_with _ (_ ++ _) (_ ++ _)] ⇒
rewrite zip_with_app by solve_length
| |- context [take _ (_ ++ _)] ⇒ rewrite take_app_length' by solve_length
| |- context [drop _ (_ ++ _)] ⇒ rewrite drop_app_length' by solve_length
| H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ ⇒
rewrite zip_with_app in H by solve_length
| H : context [take _ (_ ++ _)] |- _ ⇒
rewrite take_app_length' in H by solve_length
| H : context [drop _ (_ ++ _)] |- _ ⇒
rewrite drop_app_length' in H by solve_length
| H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ ⇒
rewrite list_lookup_fmap, H in H2
end.
Ltac decompose_Forall_hyps :=
repeat match goal with
| H : Forall _ [] |- _ ⇒ clear H
| H : Forall _ (_ :: _) |- _ ⇒ rewrite Forall_cons in H; destruct H
| H : Forall _ (_ ++ _) |- _ ⇒ rewrite Forall_app in H; destruct H
| H : Forall2 _ [] [] |- _ ⇒ clear H
| H : Forall2 _ (_ :: _) [] |- _ ⇒ destruct (Forall2_cons_nil_inv _ _ _ H)
| H : Forall2 _ [] (_ :: _) |- _ ⇒ destruct (Forall2_nil_cons_inv _ _ _ H)
| H : Forall2 _ [] ?k |- _ ⇒ apply Forall2_nil_inv_l in H
| H : Forall2 _ ?l [] |- _ ⇒ apply Forall2_nil_inv_r in H
| H : Forall2 _ (_ :: _) (_ :: _) |- _ ⇒
apply Forall2_cons_1 in H; destruct H
| H : Forall2 _ (_ :: _) ?k |- _ ⇒
let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
rename k_tl into k
| H : Forall2 _ ?l (_ :: _) |- _ ⇒
let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
rename l_tl into l
| H : Forall2 _ (_ ++ _) ?k |- _ ⇒
let k1 := fresh k "_1" in let k2 := fresh k "_2" in
apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
| H : Forall2 _ ?l (_ ++ _) |- _ ⇒
let l1 := fresh l "_1" in let l2 := fresh l "_2" in
apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
| _ ⇒ progress simplify_eq/=
| H : Forall3 _ _ (_ :: _) _ |- _ ⇒
apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall2 _ (_ :: _) ?k |- _ ⇒
apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ ?l (_ :: _) |- _ ⇒
apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) (_ ++ _) |- _ ⇒
apply Forall2_app_inv in H; [destruct H|solve_length]
| H : Forall2 _ ?l (_ ++ _) |- _ ⇒
apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) ?k |- _ ⇒
apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall3 _ _ (_ ++ _) _ |- _ ⇒
apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ ⇒
unless (P x) by auto using Forall_app_2, Forall_nil_2;
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ ⇒
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ ⇒
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! ?i = Some ?x |- _ ⇒
try (match goal with _ : k !! i = Some _ |- _ ⇒ fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! ?i = Some ?y |- _ ⇒
try (match goal with _ : l !! i = Some _ |- _ ⇒ fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ ⇒
lazymatch goal with
| H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ ⇒
unless (P x y z) by done; let E := fresh in
assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ ⇒
destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
| H2 : l' !! _ = Some ?y |- _ ⇒
destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
| H3 : k !! _ = Some ?z |- _ ⇒
destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
end
end.
Ltac list_simplifier :=
simplify_eq/=;
repeat match goal with
| _ ⇒ progress decompose_Forall_hyps
| _ ⇒ progress simplify_list_eq
| H : _ <$> _ = _ :: _ |- _ ⇒
apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
| H : _ :: _ = _ <$> _ |- _ ⇒ symmetry in H
| H : _ <$> _ = _ ++ _ |- _ ⇒
apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
| H : _ ++ _ = _ <$> _ |- _ ⇒ symmetry in H
| H : zip_with _ _ _ = _ :: _ |- _ ⇒
apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
| H : _ :: _ = zip_with _ _ _ |- _ ⇒ symmetry in H
| H : zip_with _ _ _ = _ ++ _ |- _ ⇒
apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
| H : _ ++ _ = zip_with _ _ _ |- _ ⇒ symmetry in H
end.
Ltac decompose_Forall := repeat
match goal with
| |- Forall _ _ ⇒ by apply Forall_true
| |- Forall _ [] ⇒ constructor
| |- Forall _ (_ :: _) ⇒ constructor
| |- Forall _ (_ ++ _) ⇒ apply Forall_app_2
| |- Forall _ (_ <$> _) ⇒ apply Forall_fmap
| |- Forall _ (_ ≫= _) ⇒ apply Forall_bind
| |- Forall2 _ _ _ ⇒ apply Forall_Forall2_diag
| |- Forall2 _ [] [] ⇒ constructor
| |- Forall2 _ (_ :: _) (_ :: _) ⇒ constructor
| |- Forall2 _ (_ ++ _) (_ ++ _) ⇒ first
[ apply Forall2_app; [by decompose_Forall |]
| apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _ ⇒ apply Forall2_fmap_l
| |- Forall2 _ _ (_ <$> _) ⇒ apply Forall2_fmap_r
| _ ⇒ progress decompose_Forall_hyps
| H : Forall _ (_ <$> _) |- _ ⇒ rewrite Forall_fmap in H
| H : Forall _ (_ ≫= _) |- _ ⇒ rewrite Forall_bind in H
| |- Forall _ _ ⇒
apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
| |- Forall2 _ _ _ ⇒
apply Forall2_same_length_lookup_2; [solve_length|];
intros ?????; progress decompose_Forall_hyps
end.
The simplify_suffix tactic removes suffix hypotheses that are
tautologies, and simplifies suffix hypotheses involving (::) and
(++).
Ltac simplify_suffix := repeat
match goal with
| H : suffix (_ :: _) _ |- _ ⇒ destruct (suffix_cons_not _ _ H)
| H : suffix (_ :: _) [] |- _ ⇒ apply suffix_nil_inv in H
| H : suffix (_ ++ _) (_ ++ _) |- _ ⇒ apply suffix_app_inv in H
| H : suffix (_ :: _) (_ :: _) |- _ ⇒
destruct (suffix_cons_inv _ _ _ _ H); clear H
| H : suffix ?x ?x |- _ ⇒ clear H
| H : suffix ?x (_ :: ?x) |- _ ⇒ clear H
| H : suffix ?x (_ ++ ?x) |- _ ⇒ clear H
| _ ⇒ progress simplify_eq/=
end.
match goal with
| H : suffix (_ :: _) _ |- _ ⇒ destruct (suffix_cons_not _ _ H)
| H : suffix (_ :: _) [] |- _ ⇒ apply suffix_nil_inv in H
| H : suffix (_ ++ _) (_ ++ _) |- _ ⇒ apply suffix_app_inv in H
| H : suffix (_ :: _) (_ :: _) |- _ ⇒
destruct (suffix_cons_inv _ _ _ _ H); clear H
| H : suffix ?x ?x |- _ ⇒ clear H
| H : suffix ?x (_ :: ?x) |- _ ⇒ clear H
| H : suffix ?x (_ ++ ?x) |- _ ⇒ clear H
| _ ⇒ progress simplify_eq/=
end.
The solve_suffix tactic tries to solve goals involving suffix. It
uses simplify_suffix to simplify hypotheses and tries to solve suffix
conclusions. This tactic either fails or proves the goal.
Ltac solve_suffix := by intuition (repeat
match goal with
| _ ⇒ done
| _ ⇒ progress simplify_suffix
| |- suffix [] _ ⇒ apply suffix_nil
| |- suffix _ _ ⇒ reflexivity
| |- suffix _ (_ :: _) ⇒ apply suffix_cons_r
| |- suffix _ (_ ++ _) ⇒ apply suffix_app_r
| H : suffix _ _ → False |- _ ⇒ destruct H
end).
match goal with
| _ ⇒ done
| _ ⇒ progress simplify_suffix
| |- suffix [] _ ⇒ apply suffix_nil
| |- suffix _ _ ⇒ reflexivity
| |- suffix _ (_ :: _) ⇒ apply suffix_cons_r
| |- suffix _ (_ ++ _) ⇒ apply suffix_app_r
| H : suffix _ _ → False |- _ ⇒ destruct H
end).