Library stdpp.pmap

This files implements an efficient implementation of finite maps whose keys range over Coq's data type of positive binary naturals positive. The data structure is based on the "canonical" binary tries representation by Appel and Leroy, https://hal.inria.fr/hal-03372247. It has various good properties:
  • It guarantees logarithmic-time lookup and partial_alter, and linear-time merge. It has a low constant factor for computation in Coq compared to other versions (see the Appel and Leroy paper for benchmarks).
  • It satisfies extensional equality, i.e., (∀ i, m1 !! i = m2 !! i) m1 = m2.
  • It can be used in nested recursive definitions, e.g., Inductive test := Test : Pmap test test. This is possible because we do not use a Sigma type to ensure canonical representations (a Sigma type would break Coq's strict positivity check).
From stdpp Require Export countable fin_maps fin_map_dom.
From stdpp Require Import mapset.
From stdpp Require Import options.

Local Open Scope positive_scope.

The trie data structure

To obtain canonical representations, we need to make sure that the "empty" trie is represented uniquely. That is, each node should either have a value, a non-empty left subtrie, or a non-empty right subtrie. The Pmap_ne type enumerates all ways of constructing non-empty canonical trie.
Inductive Pmap_ne (A : Type) :=
  | PNode001 : Pmap_ne A Pmap_ne A
  | PNode010 : A Pmap_ne A
  | PNode011 : A Pmap_ne A Pmap_ne A
  | PNode100 : Pmap_ne A Pmap_ne A
  | PNode101 : Pmap_ne A Pmap_ne A Pmap_ne A
  | PNode110 : Pmap_ne A A Pmap_ne A
  | PNode111 : Pmap_ne A A Pmap_ne A Pmap_ne A.
Global Arguments PNode001 {A} _ : assert.
Global Arguments PNode010 {A} _ : assert.
Global Arguments PNode011 {A} _ _ : assert.
Global Arguments PNode100 {A} _ : assert.
Global Arguments PNode101 {A} _ _ : assert.
Global Arguments PNode110 {A} _ _ : assert.
Global Arguments PNode111 {A} _ _ _ : assert.

Using Variant we suppress the generation of the induction scheme. We use the induction scheme Pmap_ind in terms of the smart constructors to reduce the number of cases, similar to Appel and Leroy.
Variant Pmap (A : Type) := PEmpty : Pmap A | PNodes : Pmap_ne A Pmap A.
Global Arguments PEmpty {A}.
Global Arguments PNodes {A} _.

Global Instance Pmap_ne_eq_dec `{EqDecision A} : EqDecision (Pmap_ne A).
Proof. solve_decision. Defined.
Global Instance Pmap_eq_dec `{EqDecision A} : EqDecision (Pmap A).
Proof. solve_decision. Defined.

The smart constructor PNode and eliminator Pmap_ne_case are used to reduce the number of cases, similar to Appel and Leroy.
Local Definition PNode {A} (ml : Pmap A) (mx : option A) (mr : Pmap A) : Pmap A :=
  match ml, mx, mr with
  | PEmpty, None, PEmptyPEmpty
  | PEmpty, None, PNodes rPNodes (PNode001 r)
  | PEmpty, Some x, PEmptyPNodes (PNode010 x)
  | PEmpty, Some x, PNodes rPNodes (PNode011 x r)
  | PNodes l, None, PEmptyPNodes (PNode100 l)
  | PNodes l, None, PNodes rPNodes (PNode101 l r)
  | PNodes l, Some x, PEmptyPNodes (PNode110 l x)
  | PNodes l, Some x, PNodes rPNodes (PNode111 l x r)
  end.

Local Definition Pmap_ne_case {A B} (t : Pmap_ne A)
    (f : Pmap A option A Pmap A B) : B :=
  match t with
  | PNode001 rf PEmpty None (PNodes r)
  | PNode010 xf PEmpty (Some x) PEmpty
  | PNode011 x rf PEmpty (Some x) (PNodes r)
  | PNode100 lf (PNodes l) None PEmpty
  | PNode101 l rf (PNodes l) None (PNodes r)
  | PNode110 l xf (PNodes l) (Some x) PEmpty
  | PNode111 l x rf (PNodes l) (Some x) (PNodes r)
  end.

Operations
Global Instance Pmap_ne_lookup {A} : Lookup positive A (Pmap_ne A) :=
  fix go i t {struct t} :=
    let _ : Lookup _ _ _ := @go in
    match t, i with
    | (PNode010 x | PNode011 x _ | PNode110 _ x | PNode111 _ x _), 1 ⇒ Some x
    | (PNode100 l | PNode110 l _ | PNode101 l _ | PNode111 l _ _), i~0l !! i
    | (PNode001 r | PNode011 _ r | PNode101 _ r | PNode111 _ _ r), i~1r !! i
    | _, _None
    end.
Global Instance Pmap_lookup {A} : Lookup positive A (Pmap A) := λ i mt,
  match mt with PEmptyNone | PNodes tt !! i end.
Local Arguments lookup _ _ _ _ _ !_ / : simpl nomatch, assert.

Global Instance Pmap_empty {A} : Empty (Pmap A) := PEmpty.

Block reduction, even on concrete Pmaps. Marking Pmap_empty as simpl never would not be enough, because of https://github.com/coq/coq/issues/2972 and https://github.com/coq/coq/issues/2986. And marking Pmap consumers as simpl never does not work either, see: https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/171note_53216
Global Opaque Pmap_empty.

Local Fixpoint Pmap_ne_singleton {A} (i : positive) (x : A) : Pmap_ne A :=
  match i with
  | 1 ⇒ PNode010 x
  | i~0PNode100 (Pmap_ne_singleton i x)
  | i~1PNode001 (Pmap_ne_singleton i x)
  end.

Local Definition Pmap_partial_alter_aux {A} (go : positive Pmap_ne A Pmap A)
    (f : option A option A) (i : positive) (mt : Pmap A) : Pmap A :=
  match mt with
  | PEmpty
     match f None with
     | NonePEmpty | Some xPNodes (Pmap_ne_singleton i x)
     end
  | PNodes tgo i t
  end.
Local Definition Pmap_ne_partial_alter {A} (f : option A option A) :
    positive Pmap_ne A Pmap A :=
  fix go i t {struct t} :=
    Pmap_ne_case t $ λ ml mx mr,
      match i with
      | 1 ⇒ PNode ml (f mx) mr
      | i~0PNode (Pmap_partial_alter_aux go f i ml) mx mr
      | i~1PNode ml mx (Pmap_partial_alter_aux go f i mr)
      end.
Global Instance Pmap_partial_alter {A} : PartialAlter positive A (Pmap A) := λ f,
  Pmap_partial_alter_aux (Pmap_ne_partial_alter f) f.

Local Definition Pmap_ne_fmap {A B} (f : A B) : Pmap_ne A Pmap_ne B :=
  fix go t :=
    match t with
    | PNode001 rPNode001 (go r)
    | PNode010 xPNode010 (f x)
    | PNode011 x rPNode011 (f x) (go r)
    | PNode100 lPNode100 (go l)
    | PNode101 l rPNode101 (go l) (go r)
    | PNode110 l xPNode110 (go l) (f x)
    | PNode111 l x rPNode111 (go l) (f x) (go r)
    end.
Global Instance Pmap_fmap : FMap Pmap := λ {A B} f mt,
  match mt with PEmptyPEmpty | PNodes tPNodes (Pmap_ne_fmap f t) end.

Local Definition Pmap_omap_aux {A B} (go : Pmap_ne A Pmap B) (tm : Pmap A) : Pmap B :=
  match tm with PEmptyPEmpty | PNodes t'go t' end.
Local Definition Pmap_ne_omap {A B} (f : A option B) : Pmap_ne A Pmap B :=
  fix go t :=
    Pmap_ne_case t $ λ ml mx mr,
      PNode (Pmap_omap_aux go ml) (mx ≫= f) (Pmap_omap_aux go mr).
Global Instance Pmap_omap : OMap Pmap := λ {A B} f,
  Pmap_omap_aux (Pmap_ne_omap f).

Local Definition Pmap_merge_aux {A B C} (go : Pmap_ne A Pmap_ne B Pmap C)
    (f : option A option B option C) (mt1 : Pmap A) (mt2 : Pmap B) : Pmap C :=
  match mt1, mt2 with
  | PEmpty, PEmptyPEmpty
  | PNodes t1', PEmptyPmap_ne_omap (λ x, f (Some x) None) t1'
  | PEmpty, PNodes t2'Pmap_ne_omap (λ x, f None (Some x)) t2'
  | PNodes t1', PNodes t2'go t1' t2'
  end.
Local Definition Pmap_ne_merge {A B C} (f : option A option B option C) :
    Pmap_ne A Pmap_ne B Pmap C :=
  fix go t1 t2 {struct t1} :=
    Pmap_ne_case t1 $ λ ml1 mx1 mr1,
      Pmap_ne_case t2 $ λ ml2 mx2 mr2,
        PNode (Pmap_merge_aux go f ml1 ml2) (diag_None f mx1 mx2)
              (Pmap_merge_aux go f mr1 mr2).
Global Instance Pmap_merge : Merge Pmap := λ {A B C} f,
  Pmap_merge_aux (Pmap_ne_merge f) f.

Local Definition Pmap_fold_aux {A B} (go : positive B Pmap_ne A B)
    (i : positive) (y : B) (mt : Pmap A) : B :=
  match mt with PEmptyy | PNodes tgo i y t end.
Local Definition Pmap_ne_fold {A B} (f : positive A B B) :
    positive B Pmap_ne A B :=
  fix go i y t :=
    Pmap_ne_case t $ λ ml mx mr,
      Pmap_fold_aux go i~1
        (Pmap_fold_aux go i~0
          match mx with Noney | Some xf (Pos.reverse i) x y end ml) mr.
Global Instance Pmap_fold {A} : MapFold positive A (Pmap A) := λ {B} f,
  Pmap_fold_aux (Pmap_ne_fold f) 1.

Proofs
Local Definition PNode_valid {A} (ml : Pmap A) (mx : option A) (mr : Pmap A) :=
  match ml, mx, mr with PEmpty, None, PEmptyFalse | _, _, _True end.
Local Lemma Pmap_ind {A} (P : Pmap A Prop) :
  P PEmpty
  ( ml mx mr, PNode_valid ml mx mr P ml P mr P (PNode ml mx mr))
   mt, P mt.
Proof.
  intros Hemp Hnode [|t]; [done|]. induction t.
  - by apply (Hnode PEmpty None (PNodes _)).
  - by apply (Hnode PEmpty (Some _) PEmpty).
  - by apply (Hnode PEmpty (Some _) (PNodes _)).
  - by apply (Hnode (PNodes _) None PEmpty).
  - by apply (Hnode (PNodes _) None (PNodes _)).
  - by apply (Hnode (PNodes _) (Some _) PEmpty).
  - by apply (Hnode (PNodes _) (Some _) (PNodes _)).
Qed.

Local Lemma Pmap_lookup_PNode {A} (ml mr : Pmap A) mx i :
  PNode ml mx mr !! i = match i with 1 ⇒ mx | i~0ml !! i | i~1mr !! i end.
Proof. by destruct ml, mx, mr, i. Qed.

Local Lemma Pmap_ne_lookup_not_None {A} (t : Pmap_ne A) : i, t !! i None.
Proof.
  induction t; repeat select ( _, _) (fun Hdestruct H);
    try first [by eexists 1|by eexists _~0|by eexists _~1].
Qed.
Local Lemma Pmap_eq_empty {A} (mt : Pmap A) : ( i, mt !! i = None) mt = .
Proof.
  intros Hlookup. destruct mt as [|t]; [done|].
  destruct (Pmap_ne_lookup_not_None t); naive_solver.
Qed.
Local Lemma Pmap_eq {A} (mt1 mt2 : Pmap A) : ( i, mt1 !! i = mt2 !! i) mt1 = mt2.
Proof.
  revert mt2. induction mt1 as [|ml1 mx1 mr1 _ IHl IHr] using Pmap_ind;
    intros mt2 Hlookup; destruct mt2 as [|ml2 mx2 mr2 _ _ _] using Pmap_ind.
  - done.
  - symmetry. apply Pmap_eq_empty. naive_solver.
  - apply Pmap_eq_empty. naive_solver.
  - f_equal.
    + apply IHl. intros i. generalize (Hlookup (i~0)).
      by rewrite !Pmap_lookup_PNode.
    + generalize (Hlookup 1). by rewrite !Pmap_lookup_PNode.
    + apply IHr. intros i. generalize (Hlookup (i~1)).
      by rewrite !Pmap_lookup_PNode.
Qed.

Local Lemma Pmap_ne_lookup_singleton {A} i (x : A) :
  Pmap_ne_singleton i x !! i = Some x.
Proof. by induction i. Qed.
Local Lemma Pmap_ne_lookup_singleton_ne {A} i j (x : A) :
  i j Pmap_ne_singleton i x !! j = None.
Proof. revert j. induction i; intros [?|?|]; naive_solver. Qed.

Local Lemma Pmap_partial_alter_PNode {A} (f : option A option A) i ml mx mr :
  PNode_valid ml mx mr
  partial_alter f i (PNode ml mx mr) =
    match i with
    | 1 ⇒ PNode ml (f mx) mr
    | i~0PNode (partial_alter f i ml) mx mr
    | i~1PNode ml mx (partial_alter f i mr)
    end.
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_lookup_partial_alter {A} (f : option A option A)
    (mt : Pmap A) i :
  partial_alter f i mt !! i = f (mt !! i).
Proof.
  revert i. induction mt using Pmap_ind.
  { intros i. unfold partial_alter; simpl. destruct (f None); simpl; [|done].
    by rewrite Pmap_ne_lookup_singleton. }
  intros []; by rewrite Pmap_partial_alter_PNode, !Pmap_lookup_PNode by done.
Qed.
Local Lemma Pmap_lookup_partial_alter_ne {A} (f : option A option A)
    (mt : Pmap A) i j :
  i j partial_alter f i mt !! j = mt !! j.
Proof.
  revert i j; induction mt using Pmap_ind.
  { intros i j ?; unfold partial_alter; simpl. destruct (f None); simpl; [|done].
    by rewrite Pmap_ne_lookup_singleton_ne. }
  intros [] [] ?;
    rewrite Pmap_partial_alter_PNode, !Pmap_lookup_PNode by done; auto with lia.
Qed.

Local Lemma Pmap_lookup_fmap {A B} (f : A B) (mt : Pmap A) i :
  (f <$> mt) !! i = f <$> mt !! i.
Proof.
  destruct mt as [|t]; simpl; [done|].
  revert i. induction t; intros []; by simpl.
Qed.

Local Lemma Pmap_omap_PNode {A B} (f : A option B) ml mx mr :
  PNode_valid ml mx mr
  omap f (PNode ml mx mr) = PNode (omap f ml) (mx ≫= f) (omap f mr).
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_lookup_omap {A B} (f : A option B) (mt : Pmap A) i :
  omap f mt !! i = mt !! i ≫= f.
Proof.
  revert i. induction mt using Pmap_ind; [done|].
  intros []; by rewrite Pmap_omap_PNode, !Pmap_lookup_PNode by done.
Qed.

Section Pmap_merge.
  Context {A B C} (f : option A option B option C).

  Local Lemma Pmap_merge_PNode_PEmpty ml mx mr :
    PNode_valid ml mx mr
    merge f (PNode ml mx mr) =
      PNode (omap (λ x, f (Some x) None) ml) (diag_None f mx None)
            (omap (λ x, f (Some x) None) mr).
  Proof. by destruct ml, mx, mr. Qed.
  Local Lemma Pmap_merge_PEmpty_PNode ml mx mr :
    PNode_valid ml mx mr
    merge f (PNode ml mx mr) =
      PNode (omap (λ x, f None (Some x)) ml) (diag_None f None mx)
            (omap (λ x, f None (Some x)) mr).
  Proof. by destruct ml, mx, mr. Qed.
  Local Lemma Pmap_merge_PNode_PNode ml1 ml2 mx1 mx2 mr1 mr2 :
    PNode_valid ml1 mx1 mr1 PNode_valid ml2 mx2 mr2
    merge f (PNode ml1 mx1 mr1) (PNode ml2 mx2 mr2) =
      PNode (merge f ml1 ml2) (diag_None f mx1 mx2) (merge f mr1 mr2).
  Proof. by destruct ml1, mx1, mr1, ml2, mx2, mr2. Qed.

  Local Lemma Pmap_lookup_merge (mt1 : Pmap A) (mt2 : Pmap B) i :
    merge f mt1 mt2 !! i = diag_None f (mt1 !! i) (mt2 !! i).
  Proof.
    revert mt2 i; induction mt1 using Pmap_ind; intros mt2 i.
    { induction mt2 using Pmap_ind; [done|].
      rewrite Pmap_merge_PEmpty_PNode, Pmap_lookup_PNode by done.
      destruct i; rewrite ?Pmap_lookup_omap, Pmap_lookup_PNode; simpl;
        by repeat destruct (_ !! _). }
    destruct mt2 using Pmap_ind.
    { rewrite Pmap_merge_PNode_PEmpty, Pmap_lookup_PNode by done.
      destruct i; rewrite ?Pmap_lookup_omap, Pmap_lookup_PNode; simpl;
        by repeat destruct (_ !! _). }
    rewrite Pmap_merge_PNode_PNode by done.
    destruct i; by rewrite ?Pmap_lookup_PNode.
  Qed.
End Pmap_merge.

Section Pmap_fold.
  Local Notation Pmap_fold f := (Pmap_fold_aux (Pmap_ne_fold f)).

  Local Lemma Pmap_fold_PNode {A B} (f : positive A B B) i y ml mx mr :
    Pmap_fold f i y (PNode ml mx mr) = Pmap_fold f i~1
      (Pmap_fold f i~0
        match mx with Noney | Some xf (Pos.reverse i) x y end ml) mr.
  Proof. by destruct ml, mx, mr. Qed.

  Local Lemma Pmap_fold_ind {A} (P : Pmap A Prop) :
    P PEmpty
    ( i x mt,
      mt !! i = None
      ( j A' B (f : positive A' B B) (g : A A') b x',
        Pmap_fold f j b (<[i:=x']> (g <$> mt))
        = f (Pos.reverse_go i j) x' (Pmap_fold f j b (g <$> mt)))
      P mt P (<[i:=x]> mt))
     mt, P mt.
  Proof.
    intros Hemp Hinsert mt. revert P Hemp Hinsert.
    induction mt as [|ml mx mr ? IHl IHr] using Pmap_ind;
      intros P Hemp Hinsert; [done|].
    apply (IHr (λ mt, P (PNode ml mx mt))).
    { apply (IHl (λ mt, P (PNode mt mx PEmpty))).
      { destruct mx as [x|]; [|done].
        replace (PNode PEmpty (Some x) PEmpty)
          with (<[1:=x]> PEmpty : Pmap A) by done.
        by apply Hinsert. }
      intros i x mt ? Hfold ?.
      replace (PNode (<[i:=x]> mt) mx PEmpty)
        with (<[i~0:=x]> (PNode mt mx PEmpty)) by (by destruct mt, mx).
      apply Hinsert.
      - by rewrite Pmap_lookup_PNode.
      - intros j A' B f g b x'.
        replace (<[i~0:=x']> (g <$> PNode mt mx PEmpty))
          with (PNode (<[i:=x']> (g <$> mt)) (g <$> mx) PEmpty)
          by (by destruct mt, mx).
        replace (g <$> PNode mt mx PEmpty)
          with (PNode (g <$> mt) (g <$> mx) PEmpty) by (by destruct mt, mx).
        rewrite !Pmap_fold_PNode; simpl; auto.
      - done. }
    intros i x mt r ? Hfold.
    replace (PNode ml mx (<[i:=x]> mt))
      with (<[i~1:=x]> (PNode ml mx mt)) by (by destruct ml, mx, mt).
    apply Hinsert.
    - by rewrite Pmap_lookup_PNode.
    - intros j A' B f g b x'.
      replace (<[i~1:=x']> (g <$> PNode ml mx mt))
        with (PNode (g <$> ml) (g <$> mx) (<[i:=x']> (g <$> mt)))
        by (by destruct ml, mx, mt).
      replace (g <$> PNode ml mx mt)
        with (PNode (g <$> ml) (g <$> mx) (g <$> mt)) by (by destruct ml, mx, mt).
      rewrite !Pmap_fold_PNode; simpl; auto.
    - done.
  Qed.
End Pmap_fold.

Instance of the finite map type class
Global Instance Pmap_finmap : FinMap positive Pmap.
Proof.
  split.
  - intros. by apply Pmap_eq.
  - done.
  - intros. apply Pmap_lookup_partial_alter.
  - intros. by apply Pmap_lookup_partial_alter_ne.
  - intros. apply Pmap_lookup_fmap.
  - intros. apply Pmap_lookup_omap.
  - intros. apply Pmap_lookup_merge.
  - done.
  - intros A P Hemp Hinsert. apply Pmap_fold_ind; [done|].
    intros i x mt ? Hfold. apply Hinsert; [done|]. apply (Hfold 1).
Qed.

Type annotation list (positive × A) seems needed in Coq 8.14, not in more recent versions.
Global Program Instance Pmap_countable `{Countable A} : Countable (Pmap A) := {
  encode m := encode (map_to_list m : list (positive × A));
  decode p := list_to_map <$> decode p
}.
Next Obligation.
  intros A ?? m; simpl. rewrite decode_encode; simpl. by rewrite list_to_map_to_list.
Qed.

Finite sets

We construct sets of positivess satisfying extensional equality.
Notation Pset := (mapset Pmap).
Global Instance Pmap_dom {A} : Dom (Pmap A) Pset := mapset_dom.
Global Instance Pmap_dom_spec : FinMapDom positive Pmap Pset := mapset_dom_spec.