Library stdpp.mapset

This files gives an implementation of finite sets using finite maps with elements of the unit type. Since maps enjoy extensional equality, the constructed finite sets do so as well.
From stdpp Require Export countable fin_map_dom.
From stdpp Require Import options.

Unset Default Proof Using.

Given a type of maps M : Type Type, we construct sets as M (), i.e., maps with unit values. To avoid unnecessary universe constraints, we first define mapset' Munit with Munit : Type as a record, and then mapset M with M : Type Type as a notation. See tests/universes.v for a test case that fails otherwise.
Record mapset' (Munit : Type) : Type :=
  Mapset { mapset_car: Munit }.
Notation mapset M := (mapset' (M unit)).
Global Arguments Mapset {_} _ : assert.
Global Arguments mapset_car {_} _ : assert.

Section mapset.
Context `{FinMap K M}.

Global Instance mapset_elem_of: ElemOf K (mapset M) := λ x X,
  mapset_car X !! x = Some ().
Global Instance mapset_empty: Empty (mapset M) := Mapset .
Global Instance mapset_singleton: Singleton K (mapset M) := λ x,
  Mapset {[ x := () ]}.
Global Instance mapset_union: Union (mapset M) := λ X1 X2,
  let (m1) := X1 in let (m2) := X2 in Mapset (m1 m2).
Global Instance mapset_intersection: Intersection (mapset M) := λ X1 X2,
  let (m1) := X1 in let (m2) := X2 in Mapset (m1 m2).
Global Instance mapset_difference: Difference (mapset M) := λ X1 X2,
  let (m1) := X1 in let (m2) := X2 in Mapset (m1 m2).
Global Instance mapset_elements: Elements K (mapset M) := λ X,
  let (m) := X in (map_to_list m).*1.

Lemma mapset_eq (X1 X2 : mapset M) : X1 = X2 x, x X1 x X2.
Proof.
  split; [by intros ->|].
  destruct X1 as [m1], X2 as [m2]. simpl. intros E.
  f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
Qed.

Local Instance mapset_set: Set_ K (mapset M).
Proof.
  split; [split | | ].
  - unfold empty, elem_of, mapset_empty, mapset_elem_of.
    simpl. intros. by simpl_map.
  - unfold singleton, elem_of, mapset_singleton, mapset_elem_of.
    simpl. by split; intros; simplify_map_eq.
  - unfold union, elem_of, mapset_union, mapset_elem_of.
    intros [m1] [m2] x. simpl. rewrite lookup_union_Some_raw.
    destruct (m1 !! x) as [[]|]; tauto.
  - unfold intersection, elem_of, mapset_intersection, mapset_elem_of.
    intros [m1] [m2] x. simpl. rewrite lookup_intersection_Some.
    assert (is_Some (m2 !! x) m2 !! x = Some ()).
    { split; eauto. by intros [[] ?]. }
    naive_solver.
  - unfold difference, elem_of, mapset_difference, mapset_elem_of.
    intros [m1] [m2] x. simpl. rewrite lookup_difference_Some.
    destruct (m2 !! x) as [[]|]; intuition congruence.
Qed.
Global Instance mapset_leibniz : LeibnizEquiv (mapset M).
Proof. intros ??. apply mapset_eq. Qed.
Global Instance mapset_fin_set : FinSet K (mapset M).
Proof.
  split.
  - apply _.
  - unfold elements, elem_of at 2, mapset_elements, mapset_elem_of.
    intros [m] x. simpl. rewrite elem_of_list_fmap. split.
    + intros ([y []] &?& Hy). subst. by rewrite <-elem_of_map_to_list.
    + intros. (x, ()). by rewrite elem_of_map_to_list.
  - unfold elements, mapset_elements. intros [m]. simpl.
    apply NoDup_fst_map_to_list.
Qed.

Section deciders.
  Context `{EqDecision (M unit)}.
  Global Instance mapset_eq_dec : EqDecision (mapset M) | 1.
  Proof.
   refine (λ X1 X2,
    match X1, X2 with Mapset m1, Mapset m2cast_if (decide (m1 = m2)) end);
    abstract congruence.
  Defined.
  Global Program Instance mapset_countable `{Countable (M ())} : Countable (mapset M) :=
    inj_countable mapset_car (Some Mapset) _.
  Next Obligation. by intros ? ? []. Qed.
  Global Instance mapset_equiv_dec : RelDecision (≡@{mapset M}) | 1.
  Proof. refine (λ X1 X2, cast_if (decide (X1 = X2))); abstract (by fold_leibniz). Defined.
  Global Instance mapset_elem_of_dec : RelDecision (∈@{mapset M}) | 1.
  Proof. refine (λ x X, cast_if (decide (mapset_car X !! x = Some ()))); done. Defined.
  Global Instance mapset_disjoint_dec : RelDecision (##@{mapset M}).
  Proof.
   refine (λ X1 X2, cast_if (decide (X1 X2 = )));
    abstract (by rewrite disjoint_intersection_L).
  Defined.
  Global Instance mapset_subseteq_dec : RelDecision (⊆@{mapset M}).
  Proof.
   refine (λ X1 X2, cast_if (decide (X1 X2 = X2)));
    abstract (by rewrite subseteq_union_L).
  Defined.
End deciders.

Definition mapset_map_with {A B} (f : bool A option B)
    (X : mapset M) : M A M B :=
  let (mX) := X in merge (λ x y,
    match x, y with
    | Some _, Some af true a | None, Some af false a | _, NoneNone
    end) mX.

Definition mapset_dom_with {A} (f : A bool) (m : M A) : mapset M :=
  Mapset $ omap (λ a, if f a then Some () else None) m.

Lemma lookup_mapset_map_with {A B} (f : bool A option B) X m i :
  mapset_map_with f X m !! i = m !! i ≫= f (bool_decide (i X)).
Proof.
  destruct X as [mX]. unfold mapset_map_with, elem_of, mapset_elem_of.
  rewrite lookup_merge by done. simpl.
  by case_bool_decide; destruct (mX !! i) as [[]|], (m !! i).
Qed.
Lemma elem_of_mapset_dom_with {A} (f : A bool) m i :
  i mapset_dom_with f m x, m !! i = Some x f x.
Proof.
  unfold mapset_dom_with, elem_of, mapset_elem_of.
  simpl. rewrite lookup_omap. destruct (m !! i) as [a|]; simpl.
  - destruct (Is_true_reflect (f a)); naive_solver.
  - naive_solver.
Qed.

Local Instance mapset_dom {A} : Dom (M A) (mapset M) := λ m,
  Mapset $ fmap (λ _, ()) m.
Local Instance mapset_dom_spec: FinMapDom K M (mapset M).
Proof.
  split; try apply _. intros A m i.
  unfold dom, mapset_dom, is_Some, elem_of, mapset_elem_of; simpl.
  rewrite lookup_fmap. destruct (m !! i); naive_solver.
Qed.
End mapset.

Global Arguments mapset_eq_dec : simpl never.