Library stdpp.countable

From Coq.QArith Require Import QArith_base Qcanon.
From stdpp Require Export list numbers list_numbers fin.
From stdpp Require Import well_founded.
From stdpp Require Import options.
Local Open Scope positive.

Note that Countable A gives rise to EqDecision A by checking equality of the results of encode. This instance of EqDecision A is very inefficient, so the native decider is typically preferred for actual computation. To avoid overlapping instances, we include EqDecision A explicitly as a parameter of Countable A.
Class Countable A `{EqDecision A} := {
  encode : A positive;
  decode : positive option A;
  decode_encode x : decode (encode x) = Some x
}.
Global Hint Mode Countable ! - : typeclass_instances.
Global Arguments encode : simpl never.
Global Arguments decode : simpl never.

Global Instance encode_inj `{Countable A} : Inj (=) (=) (encode (A:=A)).
Proof.
  intros x y Hxy; apply (inj Some).
  by rewrite <-(decode_encode x), Hxy, decode_encode.
Qed.

Definition encode_nat `{Countable A} (x : A) : nat :=
  pred (Pos.to_nat (encode x)).
Definition decode_nat `{Countable A} (i : nat) : option A :=
  decode (Pos.of_nat (S i)).
Global Instance encode_nat_inj `{Countable A} : Inj (=) (=) (encode_nat (A:=A)).
Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_nat `{Countable A} (x : A) : decode_nat (encode_nat x) = Some x.
Proof.
  pose proof (Pos2Nat.is_pos (encode x)).
  unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia.
  by rewrite Pos2Nat.id, decode_encode.
Qed.

Definition encode_Z `{Countable A} (x : A) : Z :=
  Zpos (encode x).
Definition decode_Z `{Countable A} (i : Z) : option A :=
  match i with Zpos idecode i | _None end.
Global Instance encode_Z_inj `{Countable A} : Inj (=) (=) (encode_Z (A:=A)).
Proof. unfold encode_Z; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_Z `{Countable A} (x : A) : decode_Z (encode_Z x) = Some x.
Proof. apply decode_encode. Qed.

Choice principles

Section choice.
  Context `{Countable A} (P : A Prop).

  Inductive choose_step: relation positive :=
    | choose_step_None {p} : decode (A:=A) p = None choose_step (Pos.succ p) p
    | choose_step_Some {p} {x : A} :
       decode p = Some x ¬P x choose_step (Pos.succ p) p.
  Lemma choose_step_acc : ( x, P x) Acc choose_step 1%positive.
  Proof.
    intros [x Hx]. cut ( i p,
      i encode x 1 + encode x = p + i Acc choose_step p).
    { intros help. by apply (help (encode x)). }
    intros i. induction i as [|i IH] using Pos.peano_ind; intros p ??.
    { constructor. intros j. assert (p = encode x) by lia; subst.
      inv 1 as [? Hd|?? Hd]; rewrite decode_encode in Hd; congruence. }
    constructor. intros j.
    inv 1 as [? Hd|? y Hd]; auto with lia.
  Qed.

  Context `{ x, Decision (P x)}.

  Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
    match Some_dec (decode i) with
    | inleft (xHx) ⇒
      match decide (P x) with
      | left _x | right Hchoose_go (Acc_inv acc (choose_step_Some Hx H))
      end
    | inright Hchoose_go (Acc_inv acc (choose_step_None H))
    end.
  Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc).
  Proof. destruct acc; simpl. repeat case_match; auto. Qed.
  Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) :
    choose_go acc1 = choose_go acc2.
  Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed.

  Definition choose (H: x, P x) : A := choose_go (choose_step_acc H).
  Definition choose_correct (H: x, P x) : P (choose H) := choose_go_correct _.
  Definition choose_pi (H1 H2 : x, P x) :
    choose H1 = choose H2 := choose_go_pi _ _.
  Definition choice (HA : x, P x) : { x | P x } := _choose_correct HA.
End choice.

Section choice_proper.
  Context `{Countable A}.
  Context (P1 P2 : A Prop) `{ x, Decision (P1 x)} `{ x, Decision (P2 x)}.
  Context (Heq : x, P1 x P2 x).

  Lemma choose_go_proper {i} (acc1 acc2 : Acc (choose_step _) i) :
    choose_go P1 acc1 = choose_go P2 acc2.
  Proof using Heq.
    induction acc1 as [i a1 IH] using Acc_dep_ind;
      destruct acc2 as [acc2]; simpl.
    destruct (Some_dec _) as [[x Hx]|]; [|done].
    do 2 case_decide; done || exfalso; naive_solver.
  Qed.

  Lemma choose_proper p1 p2 :
    choose P1 p1 = choose P2 p2.
  Proof using Heq. apply choose_go_proper. Qed.
End choice_proper.

Lemma surj_cancel `{Countable A} `{EqDecision B}
  (f : A B) `{!Surj (=) f} : { g : B A & Cancel (=) f g }.
Proof.
   (λ y, choose (λ x, f x = y) (surj f y)).
  intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
Qed.

Instances

Injection

Section inj_countable.
  Context `{Countable A, EqDecision B}.
  Context (f : B A) (g : A option B) (fg : x, g (f x) = Some x).

  Program Definition inj_countable : Countable B :=
    {| encode y := encode (f y); decode p := x decode p; g x |}.
  Next Obligation. intros y; simpl; rewrite decode_encode; eauto. Qed.
End inj_countable.

Section inj_countable'.
  Context `{Countable A, EqDecision B}.
  Context (f : B A) (g : A B) (fg : x, g (f x) = x).

  Program Definition inj_countable' : Countable B := inj_countable f (Some g) _.
  Next Obligation. intros x. by f_equal/=. Qed.
End inj_countable'.

Empty

Global Program Instance Empty_set_countable : Countable Empty_set :=
  {| encode u := 1; decode p := None |}.
Next Obligation. by intros []. Qed.

Unit

Global Program Instance unit_countable : Countable unit :=
  {| encode u := 1; decode p := Some () |}.
Next Obligation. by intros []. Qed.

Bool

Global Program Instance bool_countable : Countable bool := {|
  encode b := if b then 1 else 2;
  decode p := Some match p return bool with 1 ⇒ true | _false end
|}.
Next Obligation. by intros []. Qed.

Option

Global Program Instance option_countable `{Countable A} : Countable (option A) := {|
  encode o := match o with None ⇒ 1 | Some xPos.succ (encode x) end;
  decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p)
|}.
Next Obligation.
  intros ??? [x|]; simpl; repeat case_decide; auto with lia.
  by rewrite Pos.pred_succ, decode_encode.
Qed.

Sums

Global Program Instance sum_countable `{Countable A} `{Countable B} :
  Countable (A + B)%type := {|
    encode xy :=
      match xy with inl x(encode x)~0 | inr y(encode y)~1 end;
    decode p :=
      match p with
      | 1 ⇒ None | p~0inl <$> decode p | p~1inr <$> decode p
      end
  |}.
Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed.

Products

Fixpoint prod_encode_fst (p : positive) : positive :=
  match p with
  | 1 ⇒ 1
  | p~0(prod_encode_fst p)~0~0
  | p~1(prod_encode_fst p)~0~1
  end.
Fixpoint prod_encode_snd (p : positive) : positive :=
  match p with
  | 1 ⇒ 1~0
  | p~0(prod_encode_snd p)~0~0
  | p~1(prod_encode_snd p)~1~0
  end.
Fixpoint prod_encode (p q : positive) : positive :=
  match p, q with
  | 1, 1 ⇒ 1~1
  | p~0, 1 ⇒ (prod_encode_fst p)~1~0
  | p~1, 1 ⇒ (prod_encode_fst p)~1~1
  | 1, q~0(prod_encode_snd q)~0~1
  | 1, q~1(prod_encode_snd q)~1~1
  | p~0, q~0(prod_encode p q)~0~0
  | p~0, q~1(prod_encode p q)~1~0
  | p~1, q~0(prod_encode p q)~0~1
  | p~1, q~1(prod_encode p q)~1~1
  end.
Fixpoint prod_decode_fst (p : positive) : option positive :=
  match p with
  | p~0~0(~0) <$> prod_decode_fst p
  | p~0~1Some match prod_decode_fst p with Some qq~1 | _ ⇒ 1 end
  | p~1~0(~0) <$> prod_decode_fst p
  | p~1~1Some match prod_decode_fst p with Some qq~1 | _ ⇒ 1 end
  | 1~0None
  | 1~1Some 1
  | 1 ⇒ Some 1
  end.
Fixpoint prod_decode_snd (p : positive) : option positive :=
  match p with
  | p~0~0(~0) <$> prod_decode_snd p
  | p~0~1(~0) <$> prod_decode_snd p
  | p~1~0Some match prod_decode_snd p with Some qq~1 | _ ⇒ 1 end
  | p~1~1Some match prod_decode_snd p with Some qq~1 | _ ⇒ 1 end
  | 1~0Some 1
  | 1~1Some 1
  | 1 ⇒ None
  end.

Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p.
Proof.
  assert ( p, prod_decode_fst (prod_encode_fst p) = Some p).
  { intros p'. by induction p'; simplify_option_eq. }
  assert ( p, prod_decode_fst (prod_encode_snd p) = None).
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q.
Proof.
  assert ( p, prod_decode_snd (prod_encode_snd p) = Some p).
  { intros p'. by induction p'; simplify_option_eq. }
  assert ( p, prod_decode_snd (prod_encode_fst p) = None).
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Global Program Instance prod_countable `{Countable A} `{Countable B} :
  Countable (A × B)%type := {|
    encode xy := prod_encode (encode (xy.1)) (encode (xy.2));
    decode p :=
     x prod_decode_fst p ≫= decode;
     y prod_decode_snd p ≫= decode; Some (x, y)
  |}.
Next Obligation.
  intros ?????? [x y]; simpl.
  rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl.
  by rewrite !decode_encode.
Qed.

Lists

Global Program Instance list_countable `{Countable A} : Countable (list A) :=
  {| encode xs := positives_flatten (encode <$> xs);
     decode p := positives positives_unflatten p;
                 mapM decode positives; |}.
Next Obligation.
  intros A EqA CA xs.
  simpl.
  rewrite positives_unflatten_flatten.
  simpl.
  apply (mapM_fmap_Some _ _ _ decode_encode).
Qed.

Numbers

Global Instance pos_countable : Countable positive :=
  {| encode := id; decode := Some; decode_encode x := eq_refl |}.
Global Program Instance N_countable : Countable N := {|
  encode x := match x with N0 ⇒ 1 | Npos pPos.succ p end;
  decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p))
|}.
Next Obligation.
  intros [|p]; simpl; [done|].
  by rewrite decide_False, Pos.pred_succ by (by destruct p).
Qed.
Global Program Instance Z_countable : Countable Z := {|
  encode x := match x with Z0 ⇒ 1 | Zpos pp~0 | Zneg pp~1 end;
  decode p := Some match p with 1 ⇒ Z0 | p~0Zpos p | p~1Zneg p end
|}.
Next Obligation. by intros [|p|p]. Qed.
Global Program Instance nat_countable : Countable nat :=
  {| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}.
Next Obligation.
  by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id.
Qed.

Global Program Instance Qc_countable : Countable Qc :=
  inj_countable
    (λ p : Qc, let 'Qcmake (x # y) _ := p return _ in (x,y))
    (λ q : Z × positive, let '(x,y) := q return _ in Some (Q2Qc (x # y))) _.
Next Obligation.
  intros [[x y] Hcan]. f_equal. apply Qc_is_canon. simpl. by rewrite Hcan.
Qed.

Global Program Instance Qp_countable : Countable Qp :=
  inj_countable
    Qp_to_Qc
    (λ p : Qc, Hp guard (0 < p)%Qc; Some (mk_Qp p Hp)) _.
Next Obligation.
  intros [p Hp]. case_guard; simplify_eq/=; [|done].
  f_equal. by apply Qp.to_Qc_inj_iff.
Qed.

Global Program Instance fin_countable n : Countable (fin n) :=
  inj_countable
    fin_to_nat
    (λ m : nat, Hm guard (m < n)%nat; Some (nat_to_fin Hm)) _.
Next Obligation.
  intros n i; simplify_option_eq.
  - by rewrite nat_to_fin_to_nat.
  - by pose proof (fin_to_nat_lt i).
Qed.

Generic trees

Local Close Scope positive.

This type can help you construct a Countable instance for an arbitrary (even recursive) inductive datatype. The idea is tht you make T something like T1 + T2 + ..., covering all the data types that can be contained inside your type.
  • Each non-recursive constructor to a GenLeaf. Different constructors must use different variants of T to ensure they remain distinguishable!
  • Each recursive constructor to a GenNode where the nat is a (typically small) constant representing the constructor itself, and then all the data in the constructor (recursive or otherwise) is put into child nodes.
This data type is the same as GenTree.tree in mathcomp, see https://github.com/math-comp/math-comp/blob/master/ssreflect/choice.v
Inductive gen_tree (T : Type) : Type :=
  | GenLeaf : T gen_tree T
  | GenNode : nat list (gen_tree T) gen_tree T.
Global Arguments GenLeaf {_} _ : assert.
Global Arguments GenNode {_} _ _ : assert.

Global Instance gen_tree_dec `{EqDecision T} : EqDecision (gen_tree T).
Proof.
 refine (
  fix go t1 t2 := let _ : EqDecision _ := @go in
  match t1, t2 with
  | GenLeaf x1, GenLeaf x2cast_if (decide (x1 = x2))
  | GenNode n1 ts1, GenNode n2 ts2
     cast_if_and (decide (n1 = n2)) (decide (ts1 = ts2))
  | _, _right _
  end); abstract congruence.
Defined.

Fixpoint gen_tree_to_list {T} (t : gen_tree T) : list (nat × nat + T) :=
  match t with
  | GenLeaf x[inr x]
  | GenNode n ts(ts ≫= gen_tree_to_list) ++ [inl (length ts, n)]
  end.

Fixpoint gen_tree_of_list {T}
    (k : list (gen_tree T)) (l : list (nat × nat + T)) : option (gen_tree T) :=
  match l with
  | []head k
  | inr x :: lgen_tree_of_list (GenLeaf x :: k) l
  | inl (len,n) :: l
     gen_tree_of_list (GenNode n (reverse (take len k)) :: drop len k) l
  end.

Lemma gen_tree_of_to_list {T} k l (t : gen_tree T) :
  gen_tree_of_list k (gen_tree_to_list t ++ l) = gen_tree_of_list (t :: k) l.
Proof.
  revert t k l; fix FIX 1; intros [|n ts] k l; simpl; auto.
  trans (gen_tree_of_list (reverse ts ++ k) ([inl (length ts, n)] ++ l)).
  - rewrite <-(assoc_L _). revert k. generalize ([inl (length ts, n)] ++ l).
    induction ts as [|t ts'' IH]; intros k ts'''; csimpl; auto.
    rewrite reverse_cons, <-!(assoc_L _), FIX; simpl; auto.
  - simpl. by rewrite take_app_length', drop_app_length', reverse_involutive
      by (by rewrite length_reverse).
Qed.

Global Program Instance gen_tree_countable `{Countable T} : Countable (gen_tree T) :=
  inj_countable gen_tree_to_list (gen_tree_of_list []) _.
Next Obligation.
  intros T ?? t.
  by rewrite <-(right_id_L [] _ (gen_tree_to_list _)), gen_tree_of_to_list.
Qed.

Sigma

Global Program Instance countable_sig `{Countable A} (P : A Prop)
        `{!∀ x, Decision (P x), !∀ x, ProofIrrel (P x)} :
  Countable { x : A | P x } :=
  inj_countable proj1_sig (λ x, Hx guard (P x); Some (x Hx)) _.
Next Obligation.
  intros A ?? P ?? [x Hx]. by erewrite (option_guard_True_pi (P x)).
Qed.