Library stdpp.list

This file collects general purpose definitions and theorems on lists that are not in the Coq standard library.
From Coq Require Export Permutation.
From stdpp Require Export numbers base option.
From stdpp Require Import options.

Global Arguments length {_} _ : assert.
Global Arguments cons {_} _ _ : assert.
Global Arguments app {_} _ _ : assert.

Global Instance: Params (@length) 1 := {}.
Global Instance: Params (@cons) 1 := {}.
Global Instance: Params (@app) 1 := {}.

head and tail are defined as parsing only for hd_error and tl in the Coq standard library. We redefine these notations to make sure they also pretty print properly.
Notation head := hd_error.
Notation tail := tl.

Notation take := firstn.
Notation drop := skipn.

Global Arguments head {_} _ : assert.
Global Arguments tail {_} _ : assert.

Global Arguments take {_} !_ !_ / : assert.
Global Arguments drop {_} !_ !_ / : assert.

Global Instance: Params (@head) 1 := {}.
Global Instance: Params (@tail) 1 := {}.
Global Instance: Params (@take) 1 := {}.
Global Instance: Params (@drop) 1 := {}.
Global Instance: Params (@Forall) 1 := {}.
Global Instance: Params (@Exists) 1 := {}.
Global Instance: Params (@NoDup) 1 := {}.

Global Arguments Permutation {_} _ _ : assert.
Global Arguments Forall_cons {_} _ _ _ _ _ : assert.

Notation "(::)" := cons (only parsing) : list_scope.
Notation "( x ::.)" := (cons x) (only parsing) : list_scope.
Notation "(.:: l )" := (λ x, cons x l) (only parsing) : list_scope.
Notation "(++)" := app (only parsing) : list_scope.
Notation "( l ++.)" := (app l) (only parsing) : list_scope.
Notation "(.++ k )" := (λ l, app l k) (only parsing) : list_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ.)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(.≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ.)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(.≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.

Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Global Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: lSome (x,l) | _None end.

Definitions

Setoid equality lifted to lists
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] []
  | cons_equiv x y l k : x y l k x :: l y :: k.
Global Existing Instance list_equiv.

The operation l !! i gives the ith element of the list l, or None in case i is out of bounds.
Global Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | []None | x :: lmatch i with 0 ⇒ Some x | S il !! i end
  end.

The operation l !!! i is a total version of the lookup operation l !! i.
Global Instance list_lookup_total `{!Inhabited A} : LookupTotal nat A (list A) :=
  fix go i l {struct l} : A := let _ : LookupTotal _ _ _ := @go in
  match l with
  | []inhabitant
  | x :: lmatch i with 0 ⇒ x | S il !!! i end
  end.

The operation alter f i l applies the function f to the ith element of l. In case i is out of bounds, the list is returned unchanged.
Global Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [][]
  | x :: lmatch i with 0 ⇒ f x :: l | S ix :: go i l end
  end.

The operation <[i:=x]> l overwrites the element at position i with the value x. In case i is out of bounds, the list is returned unchanged.
Global Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [][]
  | x :: lmatch i with 0 ⇒ y :: l | S ix :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | []l
  | y :: k<[i:=y]>(list_inserts (S i) k l)
  end.
Global Instance: Params (@list_inserts) 1 := {}.

The operation delete i l removes the ith element of l and moves all consecutive elements one position ahead. In case i is out of bounds, the list is returned unchanged.
Global Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [][]
  | x :: lmatch i with 0 ⇒ l | S ix :: @delete _ _ go i l end
  end.

The function option_list o converts an element Some x into the singleton list [x], and None into the empty list [].
Definition option_list {A} : option A list A := option_rect _ (λ x, [x]) [].
Global Instance: Params (@option_list) 1 := {}.
Global Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
  match l with [x]Some x | _None end.

The function filter P l returns the list of elements of l that satisfies P. The order remains unchanged.
Global Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [][]
  | x :: lif decide (P x) then x :: filter P l else filter P l
  end.

The function list_find P l returns the first index i whose element satisfies the predicate P.
Definition list_find {A} P `{ x, Decision (P x)} : list A option (nat × A) :=
  fix go l :=
  match l with
  | []None
  | x :: lif decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
Global Instance: Params (@list_find) 3 := {}.

The function replicate n x generates a list with length n of elements with value x.
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 ⇒ [] | S nx :: replicate n x end.
Global Instance: Params (@replicate) 2 := {}.

The function rotate n l rotates the list l by n, e.g., rotate 1 [x0; x1; ...; xm] becomes x1; ...; xm; x0. Rotating by a multiple of length l is the identity function.
Definition rotate {A} (n : nat) (l : list A) : list A :=
  drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.

The function rotate_take s e l returns the range between the indices s (inclusive) and e (exclusive) of l. If e s, all elements after s and before e are returned.
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
  take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.

The function reverse l returns the elements of l in reverse order.
Definition reverse {A} (l : list A) : list A := rev_append l [].
Global Instance: Params (@reverse) 1 := {}.

The function last l returns the last element of the list l, or None if the list l is empty.
Fixpoint last {A} (l : list A) : option A :=
  match l with []None | [x]Some x | _ :: llast l end.
Global Instance: Params (@last) 1 := {}.
Global Arguments last : simpl nomatch.

The function resize n y l takes the first n elements of l in case length l n, and otherwise appends elements with value x to l to obtain a list of length n.
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | []replicate n y
  | x :: lmatch n with 0 ⇒ [] | S nx :: resize n y l end
  end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.

The function reshape k l transforms l into a list of lists whose sizes are specified by k. In case l is too short, the resulting list will be padded with empty lists. In case l is too long, it will be truncated.
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [][] | sz :: szstake sz l :: reshape szs (drop sz l)
  end.
Global Instance: Params (@reshape) 2 := {}.

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

Functions to fold over a list. We redefine foldl with the arguments in the same order as in Haskell.
Notation foldr := fold_right.
Definition foldl {A B} (f : A B A) : A list B A :=
  fix go a l := match l with []a | x :: lgo (f a x) l end.

The monadic operations.
Global Instance list_ret: MRet list := λ A x, x :: @nil A.
Global Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [][] | x :: lf x :: go l end.
Global Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [][]
  | x :: lmatch f x with Some yy :: go l | Nonego l end
  end.
Global Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [][] | x :: lf x ++ go l end.
Global Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [][] | l :: lsl ++ @mjoin _ go _ ls end.

Definition mapM `{MBind M, MRet M} {A B} (f : A M B) : list A M (list B) :=
  fix go l :=
  match l with []mret [] | x :: ly f x; k go l; mret (y :: k) end.
Global Instance: Params (@mapM) 5 := {}.

We define stronger variants of the map function that allow the mapped function to use the index of the elements.
Fixpoint imap {A B} (f : nat A B) (l : list A) : list B :=
  match l with
  | [][]
  | x :: lf 0 x :: imap (f S) l
  end.
Global Instance: Params (@imap) 2 := {}.

Definition zipped_map {A B} (f : list A list A A B) :
    list A list A list B := fix go l k :=
  match k with
  | [][]
  | x :: kf l k x :: go (x :: l) k
  end.
Global Instance: Params (@zipped_map) 2 := {}.

Fixpoint imap2 {A B C} (f : nat A B C) (l : list A) (k : list B) : list C :=
  match l, k with
  | [], _ | _, [][]
  | x :: l, y :: kf 0 x y :: imap2 (f S) l k
  end.
Global Instance: Params (@imap2) 3 := {}.

Inductive zipped_Forall {A} (P : list A list A A Prop) :
    list A list A Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x zipped_Forall P (x :: l) k zipped_Forall P l (x :: k).
Global Arguments zipped_Forall_nil {_ _} _ : assert.
Global Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.

The function mask f βs l applies the function f to elements in l at positions that are true in βs.
Fixpoint mask {A} (f : A A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l(if β then f x else x) :: mask f βs l
  | _, _l
  end.

The function permutations l yields all permutations of l.
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [][[x]]| y :: l(x :: y :: l) :: ((y ::.) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [][[]] | x :: lpermutations l ≫= interleave x end.

The predicate suffix holds if the first list is a suffix of the second. The predicate prefix holds if the first list is a prefix of the second.
Definition suffix {A} : relation (list A) := λ l1 l2, k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `prefix_of` _) ⇒ reflexivity : core.
Global Hint Extern 0 (_ `suffix_of` _) ⇒ reflexivity : core.

Section prefix_suffix_ops.
  Context `{EqDecision A}.

  Definition max_prefix : list A list A list A × list A × list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2([], l2, [])
    | l1, [](l1, [], [])
    | x1 :: l1, x2 :: l2
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::.) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix (l1 l2 : list A) : list A × list A × list A :=
    match max_prefix (reverse l1) (reverse l2) with
    | (k1, k2, k3)(reverse k1, reverse k2, reverse k3)
    end.
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
End prefix_suffix_ops.

A list l1 is a sublist of l2 if l2 is obtained by removing elements from l1 without changing the order.
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2 sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2 sublist l1 (x :: l2).
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `sublist_of` _) ⇒ reflexivity : core.

A list l2 submseteq a list l1 if l2 is obtained by removing elements from l1 while possiblity changing the order.
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2 submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2 submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2 submseteq l2 l3 submseteq l1 l3.
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ ⊆+ _) ⇒ reflexivity : core.

Removes x from the list l. The function returns a Some when the removal succeeds and None when x is not in l.
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | []None
  | y :: lif decide (x = y) then Some l else (y ::.) <$> list_remove x l
  end.

Removes all elements in the list k from the list l. The function returns a Some when the removal succeeds and None some element of k is not in l.
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | []Some l | x :: klist_remove x l ≫= list_remove_list k
  end.

Inductive Forall3 {A B C} (P : A B C Prop) :
     list A list B list C Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z Forall3 P l k k' Forall3 P (x :: l) (y :: k) (z :: k').

Set operations on lists
Global Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, x, x l1 x l2.

Section list_set.
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec : RelDecision (∈@{list A}).
  Proof using Type×.
   refine (
    fix go x l :=
    match l return Decision (x l) with
    | []right _
    | y :: lcast_if_or (decide (x = y)) (go x l)
    end); clear go dec; subst; try (by constructor); abstract by inv 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [][]
    | x :: l
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [][]
    | x :: l
      if decide_rel (∈) x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [][]
    | x :: l
      if decide_rel (∈) x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A A option A) :
    list A list A list A := fix go l k :=
    match l with
    | [][]
    | x :: lfoldr (λ y,
        match f x y with Noneid | Some z(z ::.) end) (go l k) k
    end.
End list_set.

These next functions allow to efficiently encode lists of positives (bit strings) into a single positive and go in the other direction as well. This is for example used for the countable instance of lists and in namespaces. The main functions are positives_flatten and positives_unflatten.
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | []acc
  | x :: xspositives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
  end.

Flatten a list of positives into a single positive by duplicating the bits of each element, so that:
  • 0 00
  • 1 11
and then separating each element with 10.
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 ⇒ Some acc_xs
  | p'~0~0positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _None
  end%positive.

Unflatten a positive into a list of positives, assuming the encoding used by positives_flatten.

Basic tactics on lists

The tactic discriminate_list discharges a goal if it submseteq a list equality involving (::) and (++) of two lists that have a different length as one of its hypotheses.
Tactic Notation "discriminate_list" hyp(H) :=
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
Tactic Notation "discriminate_list" :=
  match goal with H : _ =@{list _} _ |- _discriminate_list H end.

The tactic simplify_list_eq simplifies hypotheses involving equalities on lists using injectivity of (::) and (++). Also, it simplifies lookups in singleton lists.
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1 l1 ++ l2 = k1 ++ k2 l1 = k1 l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2 l1 ++ l2 = k1 ++ k2 l1 = k1 l2 = k2.
Proof.
  intros ? Hl. apply app_inj_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
Ltac simplify_list_eq :=
  repeat match goal with
  | _progress simplify_eq/=
  | H : _ ++ _ = _ ++ _ |- _first
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
  | H : [?x] !! ?i = Some ?y |- _
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

General theorems

Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Global Instance cons_eq_inj : Inj2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.

Global Instance: k, Inj (=) (=) (k ++.).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance: k, Inj (=) (=) (.++ k).
Proof. intros ???. apply app_inv_tail. Qed.
Global Instance: Assoc (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = [] l1 = [] l2 = [].
Proof. split; [apply app_eq_nil|]. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] l1 = [] l2 = [x] l1 = [x] l2 = [].
Proof. split; [apply app_eq_unit|]. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i) l1 = l2.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Qed.
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with []left _ | _right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l 1) (maybe (λ x, [x]) l).
Proof. by destruct l as [|? []]; constructor. Defined.

Lemma list_eq_Forall2 l1 l2 : l1 = l2 Forall2 eq l1 l2.
Proof.
  split.
  - intros <-. induction l1; eauto using Forall2.
  - induction 1; naive_solver.
Qed.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = [] length l 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0 l = [].
Proof. by destruct l. Qed.
Lemma lookup_cons_ne_0 l x i : i 0 (x :: l) !! i = l !! pred i.
Proof. by destruct i. Qed.
Lemma lookup_total_cons_ne_0 `{!Inhabited A} l x i :
  i 0 (x :: l) !!! i = l !!! pred i.
Proof. by destruct i. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_total_nil `{!Inhabited A} i : @nil A !!! i = inhabitant.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_total_tail `{!Inhabited A} l i : tail l !!! i = l !!! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x i < length l.
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l is_Some (l !! i).
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with lia. Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i) i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None length l i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None length l i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l i l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.

Lemma list_eq_same_length l1 l2 n :
  length l2 = n length l1 = n
  ( i x y, i < n l1 !! i = Some x l2 !! i = Some y x = y) l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Qed.

Lemma nth_lookup l i d : nth i l d = default d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x nth i l d = x.
Proof. rewrite nth_lookup. by intros →. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l i}.
Proof.
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Qed.

Lemma list_lookup_total_alt `{!Inhabited A} l i :
  l !!! i = default inhabitant (l !! i).
Proof. revert i. induction l; intros []; naive_solver. Qed.
Lemma list_lookup_total_correct `{!Inhabited A} l i x :
  l !! i = Some x l !!! i = x.
Proof. rewrite list_lookup_total_alt. by intros →. Qed.
Lemma list_lookup_lookup_total `{!Inhabited A} l i :
  is_Some (l !! i) l !! i = Some (l !!! i).
Proof. rewrite list_lookup_total_alt; by intros [x ->]. Qed.
Lemma list_lookup_lookup_total_lt `{!Inhabited A} l i :
  i < length l l !! i = Some (l !!! i).
Proof. intros ?. by apply list_lookup_lookup_total, lookup_lt_is_Some_2. Qed.
Lemma list_lookup_alt `{!Inhabited A} l i x :
  l !! i = Some x i < length l l !!! i = x.
Proof.
  naive_solver eauto using list_lookup_lookup_total_lt,
    list_lookup_total_correct, lookup_lt_Some.
Qed.

Lemma lookup_app l1 l2 i :
  (l1 ++ l2) !! i =
    match l1 !! i with Some xSome x | Nonel2 !! (i - length l1) end.
Proof. revert i. induction l1 as [|x l1 IH]; intros [|i]; naive_solver. Qed.
Lemma lookup_app_l l1 l2 i : i < length l1 (l1 ++ l2) !! i = l1 !! i.
Proof. rewrite lookup_app. by intros [? ->]%lookup_lt_is_Some. Qed.
Lemma lookup_total_app_l `{!Inhabited A} l1 l2 i :
  i < length l1 (l1 ++ l2) !!! i = l1 !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_l. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x (l1 ++ l2) !! i = Some x.
Proof. rewrite lookup_app. by intros →. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1 i (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. rewrite lookup_app. by intros ->%lookup_ge_None. Qed.
Lemma lookup_total_app_r `{!Inhabited A} l1 l2 i :
  length l1 i (l1 ++ l2) !!! i = l2 !!! (i - length l1).
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_r. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x
    l1 !! i = Some x length l1 i l2 !! (i - length l1) = Some x.
Proof.
  rewrite lookup_app. destruct (l1 !! i) eqn:Hi.
  - apply lookup_lt_Some in Hi. naive_solver lia.
  - apply lookup_ge_None in Hi. naive_solver lia.
Qed.

Lemma lookup_cons x l i :
  (x :: l) !! i =
    match i with 0 ⇒ Some x | S il !! i end.
Proof. reflexivity. Qed.
Lemma lookup_cons_Some x l i y :
  (x :: l) !! i = Some y
    (i = 0 x = y) (1 i l !! (i - 1) = Some y).
Proof.
  rewrite lookup_cons. destruct i as [|i].
  - naive_solver lia.
  - replace (S i - 1) with i by lia. naive_solver lia.
Qed.

Lemma list_lookup_singleton x i :
  [x] !! i =
    match i with 0 ⇒ Some x | S _None end.
Proof. reflexivity. Qed.
Lemma list_lookup_singleton_Some x i y :
  [x] !! i = Some y i = 0 x = y.
Proof. rewrite lookup_cons_Some. naive_solver. Qed.

Lemma lookup_snoc_Some x l i y :
  (l ++ [x]) !! i = Some y
    (i < length l l !! i = Some y) (i = length l x = y).
Proof.
  rewrite lookup_app_Some, list_lookup_singleton_Some.
  naive_solver auto using lookup_lt_is_Some_1 with lia.
Qed.

Lemma list_lookup_middle l1 l2 x n :
  n = length l1 (l1 ++ x :: l2) !! n = Some x.
Proof. intros →. by induction l1. Qed.
Lemma list_lookup_total_middle `{!Inhabited A} l1 l2 x n :
  n = length l1 (l1 ++ x :: l2) !!! n = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_middle. Qed.

Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Lemma alter_length f l i : length (alter f i l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof.
  revert i.
  induction l as [|?? IHl]; [done|].
  intros [|i]; [done|]. apply (IHl i).
Qed.
Lemma list_lookup_total_alter `{!Inhabited A} f l i :
  i < length l alter f i l !!! i = f (l !!! i).
Proof.
  intros [x Hx]%lookup_lt_is_Some_2.
  by rewrite !list_lookup_total_alt, list_lookup_alter, Hx.
Qed.
Lemma list_lookup_alter_ne f l i j : i j alter f i l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_total_alter_ne `{!Inhabited A} f l i j :
  i j alter f i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_alter_ne. Qed.

Lemma list_lookup_insert l i x : i < length l <[i:=x]>l !! i = Some x.
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma list_lookup_total_insert `{!Inhabited A} l i x :
  i < length l <[i:=x]>l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert. Qed.
Lemma list_lookup_insert_ne l i j x : i j <[i:=x]>l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_total_insert_ne `{!Inhabited A} l i j x :
  i j <[i:=x]>l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert_ne. Qed.
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y
    i = j x = y j < length l i j l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  - intros Hy. assert (j < length l).
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i j <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Lemma list_insert_id' l i x : (i < length l l !! i = Some x) <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; naive_solver lia. Qed.
Lemma list_insert_id l i x : l !! i = Some x <[i:=x]>l = l.
Proof. intros ?. by apply list_insert_id'. Qed.
Lemma list_insert_ge l i x : length l i <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Lemma list_insert_insert l i x y : <[i:=x]> (<[i:=y]> l) = <[i:=x]> l.
Proof. revert i. induction l; intros [|i]; f_equal/=; auto. Qed.

Lemma list_lookup_other l i x :
  length l 1 l !! i = Some x j y, j i l !! j = Some y.
Proof.
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
  - by 1, x1.
  - by 0, x0.
Qed.

Lemma alter_app_l f l1 l2 i :
  i < length l1 alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma alter_app_r_alt f l1 l2 i :
  length l1 i alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : ( x, f x = x) alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x f x = g x) l = k alter f i l = alter g i k.
Proof. intros H →. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Lemma list_alter_compose f g l i :
  alter (f g) i l = alter f i (alter g i l).
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_commute f g l i j :
  i j alter f i (alter g j l) = alter g j (alter f i l).
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_l l1 l2 i x :
  i < length l1 <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_app_r_alt l1 l2 i x :
  length l1 i <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.

Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; f_equal/=; auto. Qed.
Lemma length_delete l i :
  is_Some (l !! i) length (delete i l) = length l - 1.
Proof.
  rewrite lookup_lt_is_Some. revert i.
  induction l as [|x l IH]; intros [|i] ?; simpl in *; [lia..|].
  rewrite IH by lia. lia.
Qed.
Lemma lookup_delete_lt l i j : j < i delete i l !! j = l !! j.
Proof. revert i j; induction l; intros [] []; naive_solver eauto with lia. Qed.
Lemma lookup_total_delete_lt `{!Inhabited A} l i j :
  j < i delete i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_delete_lt. Qed.
Lemma lookup_delete_ge l i j : i j delete i l !! j = l !! S j.
Proof. revert i j; induction l; intros [] []; naive_solver eauto with lia. Qed.
Lemma lookup_total_delete_ge `{!Inhabited A} l i j :
  i j delete i l !!! j = l !!! S j.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_delete_ge. Qed.

Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i j < i + length k j < length l
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_total_inserts `{!Inhabited A} l i k j :
  i j < i + length k j < length l
  list_inserts i k l !!! j = k !!! (j - i).
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts. Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_total_inserts_lt `{!Inhabited A}l i k j :
  j < i list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_lt. Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k j list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_total_inserts_ge `{!Inhabited A} l i k j :
  i + length k j list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_ge. Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y
    (j < i i + length k j) l !! j = Some y
    i j < i + length k j < length l k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  - intros Hy. assert (j < length l).
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  - intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.
Lemma list_inserts_app_l l1 l2 l3 i :
  list_inserts i (l1 ++ l2) l3 = list_inserts (length l1 + i) l2 (list_inserts i l1 l3).
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. rewrite IH, Nat.add_succ_r. apply list_insert_inserts_lt. lia.
Qed.
Lemma list_inserts_app_r l1 l2 l3 i :
  list_inserts (length l2 + i) l1 (l2 ++ l3) = l2 ++ list_inserts i l1 l3.
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intros i. simpl. by rewrite plus_n_Sm, IH, insert_app_r.
Qed.
Lemma list_inserts_nil l1 i : list_inserts i l1 [] = [].
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_cons l1 l2 i x :
  list_inserts (S i) l1 (x :: l2) = x :: list_inserts i l1 l2.
Proof.
  revert i; induction l1 as [|y l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_r l1 l2 l3 :
  length l1 = length l2 list_inserts 0 l1 (l2 ++ l3) = l1 ++ l3.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] ?; simplify_eq/=; [done|].
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_l l1 l2 l3 :
  length l1 = length l3 list_inserts 0 (l1 ++ l2) l3 = l1.
Proof.
  revert l3. induction l1 as [|x l1 IH]; intros [|z l3] ?; simplify_eq/=.
  { by rewrite list_inserts_nil. }
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.

Properties of the reverse function

Lemma reverse_nil : reverse [] =@{list A} [].
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma reverse_lookup l i :
  i < length l
  reverse l !! i = l !! (length l - S i).
Proof.
  revert i. induction l as [|x l IH]; simpl; intros i Hi; [done|].
  rewrite reverse_cons.
  destruct (decide (i = length l)); subst.
  + by rewrite list_lookup_middle, Nat.sub_diag by by rewrite reverse_length.
  + rewrite lookup_app_l by (rewrite reverse_length; lia).
    rewrite IH by lia.
    by assert (length l - i = S (length l - S i)) asby lia.
Qed.
Lemma reverse_lookup_Some l i x :
  reverse l !! i = Some x l !! (length l - S i) = Some x i < length l.
Proof.
  split.
  - destruct (decide (i < length l)); [ by rewrite reverse_lookup|].
    rewrite lookup_ge_None_2; [done|]. rewrite reverse_length. lia.
  - intros [??]. by rewrite reverse_lookup.
Qed.
Global Instance: Inj (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.

Properties of the elem_of predicate

Lemma not_elem_of_nil x : x [].
Proof. by inv 1. Qed.
Lemma elem_of_nil x : x [] False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : ( x, x l) l = [].
Proof. destruct l; [done|]. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x l l [].
Proof. intros ? →. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x y :: l x = y x l.
Proof. by split; [inv 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x y :: l x y x l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x l1 ++ l2 x l1 x l2.
Proof.
  induction l1 as [|y l1 IH]; simpl.
  - rewrite elem_of_nil. naive_solver.
  - rewrite !elem_of_cons, IH. naive_solver.
Qed.
Lemma not_elem_of_app l1 l2 x : x l1 ++ l2 x l1 x l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x [y] x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Lemma elem_of_reverse_2 x l : x l x reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x reverse l x l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.

Lemma elem_of_list_lookup_1 l x : x l i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by 0 |].
  destruct IH as [i ?]; auto. by (S i).
Qed.
Lemma elem_of_list_lookup_total_1 `{!Inhabited A} l x :
  x l i, i < length l l !!! i = x.
Proof.
  intros [i Hi]%elem_of_list_lookup_1.
  eauto using lookup_lt_Some, list_lookup_total_correct.
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x x l.
Proof.
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Qed.
Lemma elem_of_list_lookup_total_2 `{!Inhabited A} l i :
  i < length l l !!! i l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_lookup_total_lt. Qed.
Lemma elem_of_list_lookup l x : x l i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_lookup_total `{!Inhabited A} l x :
  x l i, i < length l l !!! i = x.
Proof.
  naive_solver eauto using elem_of_list_lookup_total_1, elem_of_list_lookup_total_2.
Qed.
Lemma elem_of_list_split_length l i x :
  l !! i = Some x l1 l2, l = l1 ++ x :: l2 i = length l1.
Proof.
  revert i; induction l as [|y l IH]; intros [|i] Hl; simplify_eq/=.
  - []; eauto.
  - destruct (IH _ Hl) as (?&?&?&?); simplify_eq/=.
    eexists (y :: _); eauto.
Qed.
Lemma elem_of_list_split l x : x l l1 l2, l = l1 ++ x :: l2.
Proof.
  intros [? (?&?&?&_)%elem_of_list_split_length]%elem_of_list_lookup_1; eauto.
Qed.
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x l l1 l2, l = l1 ++ x :: l2 x l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & → & ?).
     (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x l l1 l2, l = l1 ++ x :: l2 x l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & → & ?); auto.
     l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
Lemma list_elem_of_insert l i x : i < length l x <[i:=x]>l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_insert. Qed.
Lemma nth_elem_of l i d : i < length l nth i l d l.
Proof.
  intros; eapply elem_of_list_lookup_2.
  destruct (nth_lookup_or_length l i d); [done | by lia].
Qed.

Lemma not_elem_of_app_cons_inv_l x y l1 l2 k1 k2 :
  x k1 y l1
  l1 ++ x :: l2 = k1 ++ y :: k2
  l1 = k1 x = y l2 = k2.
Proof.
  revert k1. induction l1 as [|x' l1 IH]; intros [|y' k1] Hx Hy ?; simplify_eq/=;
    try apply not_elem_of_cons in Hx as [??];
    try apply not_elem_of_cons in Hy as [??]; naive_solver.
Qed.
Lemma not_elem_of_app_cons_inv_r x y l1 l2 k1 k2 :
  x k2 y l2
  l1 ++ x :: l2 = k1 ++ y :: k2
  l1 = k1 x = y l2 = k2.
Proof.
  intros. destruct (not_elem_of_app_cons_inv_l x y (reverse l2) (reverse l1)
    (reverse k2) (reverse k1)); [..|naive_solver].
  - by rewrite elem_of_reverse.
  - by rewrite elem_of_reverse.
  - rewrite <-!reverse_snoc, <-!reverse_app, <-!(assoc_L (++)). by f_equal.
Qed.

Properties of the NoDup predicate

Lemma NoDup_nil : NoDup (@nil A) True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l) x l NoDup l.
Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
Lemma NoDup_cons_1_1 x l : NoDup (x :: l) x l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_1_2 x l : NoDup (x :: l) NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor; [apply not_elem_of_nil | constructor]. Qed.
Lemma NoDup_app l k : NoDup (l ++ k) NoDup l ( x, x l x k) NoDup k.
Proof.
  induction l; simpl.
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l l !! i = Some x l !! j = Some x i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l i j x, l !! i = Some x l !! j = Some x i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  - rewrite elem_of_list_lookup. intros [i ?].
    opose proof× (Hl (S i) 0); by auto.
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Qed.

Section no_dup_dec.
  Context `{!EqDecision A}.
  Global Instance NoDup_dec: l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | []left NoDup_nil_2
    | x :: l
      match decide_rel (∈) x l with
      | left Hinright (λ H, NoDup_cons_1_1 _ _ H Hin)
      | right Hin
        match NoDup_dec l with
        | left Hleft (NoDup_cons_2 _ _ Hin H)
        | right Hright (H NoDup_cons_1_2 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x remove_dups l x l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

Set operations on lists

Section list_set.
  Lemma elem_of_list_intersection_with f l k x :
    x list_intersection_with f l k x1 x2,
        x1 l x2 k f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2 k f x1 x2 = Some x)
            x list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1 l|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.

  Context `{!EqDecision A}.
  Lemma elem_of_list_difference l k x : x list_difference l k x l x k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    - constructor.
    - done.
    - constructor; [|done]. rewrite elem_of_list_difference; intuition.
  Qed.
  Lemma elem_of_list_union l k x : x list_union l k x l x k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l NoDup k NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x list_intersection l k x l x k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    - constructor.
    - constructor; [|done]. rewrite elem_of_list_intersection; intuition.
    - done.
  Qed.
End list_set.

Properties of the last function

Lemma last_nil : last [] =@{option A} None.
Proof. done. Qed.
Lemma last_singleton x : last [x] = Some x.
Proof. done. Qed.
Lemma last_cons_cons x1 x2 l : last (x1 :: x2 :: l) = last (x2 :: l).
Proof. done. Qed.
Lemma last_app_cons l1 l2 x :
  last (l1 ++ x :: l2) = last (x :: l2).
Proof. induction l1 as [|y [|y' l1] IHl]; done. Qed.
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_None l : last l = None l = [].
Proof.
  split; [|by intros ->].
  induction l as [|x1 [|x2 l] IH]; naive_solver.
Qed.
Lemma last_Some l x : last l = Some x l', l = l' ++ [x].
Proof.
  split.
  - destruct l as [|x' l'] using rev_ind; [done|].
    rewrite last_snoc. naive_solver.
  - intros [l' ->]. by rewrite last_snoc.
Qed.
Lemma last_is_Some l : is_Some (last l) l [].
Proof. rewrite <-not_eq_None_Some, last_None. naive_solver. Qed.
Lemma last_app l1 l2 :
  last (l1 ++ l2) = match last l2 with Some ySome y | Nonelast l1 end.
Proof.
  destruct l2 as [|x l2 _] using rev_ind.
  - by rewrite (right_id_L _ (++)).
  - by rewrite (assoc_L (++)), !last_snoc.
Qed.
Lemma last_cons x l :
  last (x :: l) = match last l with Some ySome y | NoneSome x end.
Proof. by apply (last_app [x]). Qed.
Lemma last_cons_Some_ne x y l :
  x y last (x :: l) = Some y last l = Some y.
Proof. rewrite last_cons. destruct (last l); naive_solver. Qed.
Lemma last_lookup l : last l = l !! pred (length l).
Proof. by induction l as [| ?[]]. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. destruct l as [|x l]; simpl; by rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma last_Some_elem_of l x :
  last l = Some x x l.
Proof.
  rewrite last_Some. intros [l' ->]. apply elem_of_app. right.
  by apply elem_of_list_singleton.
Qed.

Properties of the head function

Lemma head_nil : head [] =@{option A} None.
Proof. done. Qed.
Lemma head_cons x l : head (x :: l) = Some x.
Proof. done. Qed.

Lemma head_None l : head l = None l = [].
Proof. split; [|by intros ->]. by destruct l. Qed.
Lemma head_Some l x : head l = Some x l', l = x :: l'.
Proof. split; [destruct l as [|x' l]; naive_solver | by intros [l' ->]]. Qed.
Lemma head_is_Some l : is_Some (head l) l [].
Proof. rewrite <-not_eq_None_Some, head_None. naive_solver. Qed.

Lemma head_snoc x l :
  head (l ++ [x]) = match head l with Some ySome y | NoneSome x end.
Proof. by destruct l. Qed.
Lemma head_snoc_snoc x1 x2 l :
  head (l ++ [x1; x2]) = head (l ++ [x1]).
Proof. by destruct l. Qed.
Lemma head_lookup l : head l = l !! 0.
Proof. by destruct l. Qed.

Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
Lemma head_Some_elem_of l x :
  head l = Some x x l.
Proof. rewrite head_Some. intros [l' ->]. left. Qed.

Properties of the take function

Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Qed.
Lemma take_0 l : take 0 l = [].
Proof. reflexivity. Qed.
Lemma take_nil n : take n [] =@{list A} [].
Proof. by destruct n. Qed.
Lemma take_S_r l n x : l !! n = Some x take (S n) l = take n l ++ [x].
Proof. revert n. induction l; intros []; naive_solver eauto with f_equal. Qed.
Lemma take_ge l n : length l n take n l = l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.

take_app is the most general lemma for take and app. Below that we establish a number of useful corollaries.
Lemma take_app l k n : take n (l ++ k) = take n l ++ take (n - length l) k.
Proof. apply firstn_app. Qed.

Lemma take_app_ge l k n :
  length l n take n (l ++ k) = l ++ take (n - length l) k.
Proof. intros. by rewrite take_app, take_ge. Qed.
Lemma take_app_le l k n : n length l take n (l ++ k) = take n l.
Proof.
  intros. by rewrite take_app, (proj2 (Nat.sub_0_le _ _)), take_0, (right_id _ _).
Qed.
Lemma take_app_add l k m :
  take (length l + m) (l ++ k) = l ++ take m k.
Proof. rewrite take_app, take_ge by lia. repeat f_equal; lia. Qed.
Lemma take_app_add' l k n m :
  n = length l take (n + m) (l ++ k) = l ++ take m k.
Proof. intros →. apply take_app_add. Qed.
Lemma take_app_length l k : take (length l) (l ++ k) = l.
Proof. by rewrite take_app, take_ge, Nat.sub_diag, take_0, (right_id _ _). Qed.
Lemma take_app_length' l k n : n = length l take n (l ++ k) = l.
Proof. intros →. by apply take_app_length. Qed.
Lemma take_app3_length l1 l2 l3 : take (length l1) ((l1 ++ l2) ++ l3) = l1.
Proof. by rewrite <-(assoc_L (++)), take_app_length. Qed.
Lemma take_app3_length' l1 l2 l3 n :
  n = length l1 take n ((l1 ++ l2) ++ l3) = l1.
Proof. intros →. by apply take_app3_length. Qed.

Lemma take_take l n m : take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma take_idemp l n : take n (take n l) = take n l.
Proof. by rewrite take_take, Nat.min_id. Qed.
Lemma take_length l n : length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Lemma take_length_le l n : n length l length (take n l) = n.
Proof. rewrite take_length. apply Nat.min_l. Qed.
Lemma take_length_ge l n : length l n length (take n l) = length l.
Proof. rewrite take_length. apply Nat.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.

Lemma lookup_take l n i : i < n take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_total_take `{!Inhabited A} l n i : i < n take n l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_take. Qed.
Lemma lookup_take_ge l n i : n i take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma lookup_total_take_ge `{!Inhabited A} l n i : n i take n l !!! i = inhabitant.
Proof. intros. by rewrite list_lookup_total_alt, lookup_take_ge. Qed.
Lemma lookup_take_Some l n i a : take n l !! i = Some a l !! i = Some a i < n.
Proof.
  split.
  - destruct (decide (i < n)).
    + rewrite lookup_take; naive_solver.
    + rewrite lookup_take_ge; [done|lia].
  - intros [??]. by rewrite lookup_take.
Qed.

Lemma elem_of_take x n l : x take n l i, l !! i = Some x i < n.
Proof.
  rewrite elem_of_list_lookup. setoid_rewrite lookup_take_Some. naive_solver.
Qed.

Lemma take_alter f l n i : n i take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert l n i x : n i take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Qed.
Lemma take_insert_lt l n i x : i < n take n (<[i:=x]>l) = <[i:=x]>(take n l).
Proof.
  revert l i. induction n as [|? IHn]; auto; simpl.
  intros [|] [|] ?; auto; simpl. by rewrite IHn by lia.
Qed.

Properties of the drop function

Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n [] =@{list A} [].
Proof. by destruct n. Qed.
Lemma drop_S l x n :
  l !! n = Some x drop n l = x :: drop (S n) l.
Proof. revert n. induction l; intros []; naive_solver. Qed.
Lemma drop_length l n : length (drop n l) = length l - n.
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Lemma drop_ge l n : length l n drop n l = [].
Proof. revert n. induction l; intros [|?]; simpl in *; auto with lia. Qed.
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.

drop_app is the most general lemma for drop and app. Below we prove a number of useful corollaries.
Lemma drop_app l k n : drop n (l ++ k) = drop n l ++ drop (n - length l) k.
Proof. apply skipn_app. Qed.

Lemma drop_app_ge l k n :
  length l n drop n (l ++ k) = drop (n - length l) k.
Proof. intros. by rewrite drop_app, drop_ge. Qed.
Lemma drop_app_le l k n :
  n length l drop n (l ++ k) = drop n l ++ k.
Proof. intros. by rewrite drop_app, (proj2 (Nat.sub_0_le _ _)), drop_0. Qed.
Lemma drop_app_add l k m :
  drop (length l + m) (l ++ k) = drop m k.
Proof. rewrite drop_app, drop_ge by lia. simpl. f_equal; lia. Qed.
Lemma drop_app_add' l k n m :
  n = length l drop (n + m) (l ++ k) = drop m k.
Proof. intros →. apply drop_app_add. Qed.
Lemma drop_app_length l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_length' l k n : n = length l drop n (l ++ k) = k.
Proof. intros →. by apply drop_app_length. Qed.
Lemma drop_app3_length l1 l2 l3 :
  drop (length l1) ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. by rewrite <-(assoc_L (++)), drop_app_length. Qed.
Lemma drop_app3_length' l1 l2 l3 n :
  n = length l1 drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. intros →. apply drop_app3_length. Qed.

Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma lookup_total_drop `{!Inhabited A} l n i : drop n l !!! i = l !!! (n + i).
Proof. by rewrite !list_lookup_total_alt, lookup_drop. Qed.
Lemma drop_alter f l n i : i < n drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert_le l n i x : n i drop n (<[i:=x]>l) = <[i-n:=x]>(drop n l).
Proof. revert i n. induction l; intros [] []; naive_solver lia. Qed.
Lemma drop_insert_gt l n i x : i < n drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma drop_take_drop l n m : n m drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
    f_equal/=; auto using take_drop with lia.
Qed.
Lemma insert_take_drop l i x :
  i < length l
  <[i:=x]> l = take i l ++ x :: drop (S i) l.
Proof.
  intros Hi.
  rewrite <-(take_drop_middle (<[i:=x]> l) i x).
  2:{ by rewrite list_lookup_insert. }
  rewrite take_insert by done.
  rewrite drop_insert_gt by lia.
  done.
Qed.

Interaction between the take/drop/reverse functions

Lemma take_reverse l n : take n (reverse l) = reverse (drop (length l - n) l).
Proof. unfold reverse; rewrite <-!rev_alt. apply firstn_rev. Qed.
Lemma drop_reverse l n : drop n (reverse l) = reverse (take (length l - n) l).
Proof. unfold reverse; rewrite <-!rev_alt. apply skipn_rev. Qed.
Lemma reverse_take l n : reverse (take n l) = drop (length l - n) (reverse l).
Proof.
  rewrite drop_reverse. destruct (decide (n length l)).
  - repeat f_equal; lia.
  - by rewrite !take_ge by lia.
Qed.
Lemma reverse_drop l n : reverse (drop n l) = take (length l - n) (reverse l).
Proof.
  rewrite take_reverse. destruct (decide (n length l)).
  - repeat f_equal; lia.
  - by rewrite !drop_ge by lia.
Qed.

Other lemmas that use take/drop in their proof.

Lemma app_eq_inv l1 l2 k1 k2 :
  l1 ++ l2 = k1 ++ k2
  ( k, l1 = k1 ++ k k2 = k ++ l2) ( k, k1 = l1 ++ k l2 = k ++ k2).
Proof.
  intros Hlk. destruct (decide (length l1 < length k1)).
  - right. rewrite <-(take_drop (length l1) k1), <-(assoc_L _) in Hlk.
    apply app_inj_1 in Hlk as [Hl1 Hl2]; [|rewrite take_length; lia].
     (drop (length l1) k1). by rewrite Hl1 at 1; rewrite take_drop.
  - left. rewrite <-(take_drop (length k1) l1), <-(assoc_L _) in Hlk.
    apply app_inj_1 in Hlk as [Hk1 Hk2]; [|rewrite take_length; lia].
     (drop (length k1) l1). by rewrite <-Hk1 at 1; rewrite take_drop.
Qed.

Properties of the replicate function

Lemma replicate_length n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y y = x i < n.
Proof.
  split.
  - revert i. induction n; intros [|?]; naive_solver auto with lia.
  - intros [-> Hi]. revert i Hi.
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma elem_of_replicate n x y : y replicate n x y = x n 0.
Proof.
  rewrite elem_of_list_lookup, Nat.neq_0_lt_0.
  setoid_rewrite lookup_replicate; naive_solver eauto with lia.
Qed.
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y y = x i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_total_replicate_2 `{!Inhabited A} n x i :
  i < n replicate n x !!! i = x.
Proof. intros. by rewrite list_lookup_total_alt, lookup_replicate_2. Qed.
Lemma lookup_replicate_None n x i : n i replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
  - intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  - intros Hx ?. destruct Hx. x; auto using lookup_replicate_2.
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_replicate_lt x y n i :
  i < n
  <[i:=y]>(replicate n x) = replicate i x ++ y :: replicate (n - S i) x.
Proof.
  revert i. induction n as [|n IH]; intros [|i] Hi; simpl; [lia..| |].
  - by rewrite Nat.sub_0_r.
  - by rewrite IH by lia.
Qed.
Lemma elem_of_replicate_inv x n y : x replicate n y x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate n x.
Proof. done. Qed.
Lemma replicate_S_end n x : replicate (S n) x = replicate n x ++ [x].
Proof. induction n; f_equal/=; auto. Qed.
Lemma replicate_add n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; f_equal/=; auto. Qed.
Lemma replicate_cons_app n x :
  x :: replicate n x = replicate n x ++ [x].
Proof. induction n; f_equal/=; eauto. Qed.
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma take_replicate_add n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma drop_replicate_add n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
  replicate n x = l length l = n y, y l y = x.
Proof.
  split; [intros <-; eauto using elem_of_replicate_inv, replicate_length|].
  intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal/=.
  - apply Hl. by left.
  - apply IH. intros ??. apply Hl. by right.
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
  symmetry. apply replicate_as_elem_of.
  rewrite reverse_length, replicate_length. split; auto.
  intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.
Lemma tail_replicate x n : tail (replicate n x) = replicate (pred n) x.
Proof. by destruct n. Qed.
Lemma head_replicate_Some x n : head (replicate n x) = Some x 0 < n.
Proof. destruct n; naive_solver lia. Qed.

Properties of the resize function

Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
  length l n resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n length l resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l resize n x l = l.
Proof. intros →. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
  - by rewrite Nat.add_0_r, (right_id_L [] (++)).
  - by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
  length l = n resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n length l1 resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 resize n x (l1 ++ l2) = l1.
Proof. intros →. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1 n resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
  do 2 f_equal. rewrite app_length. lia.
Qed.
Lemma resize_length l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, app_length, replicate_length, take_length. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n m resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite !resize_nil, resize_replicate.
  - intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n m resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n m take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
  n m drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  - intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n i < length l resize n x l !! i = l !! i.
Proof.
  intros ??. destruct (decide (n < length l)).
  - by rewrite resize_le, lookup_take by lia.
  - by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
  i < n i < length l resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
  length l i i < n resize n x l !! i = Some x.
Proof.
  intros ??. rewrite resize_ge by lia.
  replace i with (length l + (i - length l)) by lia.
  by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
  length l i i < n resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n i resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite resize_length. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
  n i resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.

Properties of the rotate function

Lemma rotate_replicate n1 n2 x:
  rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
  unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
  f_equal. lia.
Qed.

Lemma rotate_length l n:
  length (rotate n l) = length l.
Proof. unfold rotate. rewrite app_length, drop_length, take_length. lia. Qed.

Lemma lookup_rotate_r l n i:
  i < length l
  rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
  intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
  unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
  remember (n `mod` length l) as n'.
  case_decide.
  - by rewrite lookup_app_l, lookup_drop by (rewrite drop_length; lia).
  - rewrite lookup_app_r, lookup_take, drop_length by (rewrite drop_length; lia).
    f_equal. lia.
Qed.

Lemma lookup_rotate_r_Some l n i x:
  rotate n l !! i = Some x
  l !! rotate_nat_add n i (length l) = Some x i < length l.
Proof.
  split.
  - intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
    rewrite rotate_length in Hlen. by rewrite <-lookup_rotate_r.
  - intros [??]. by rewrite lookup_rotate_r.
Qed.

Lemma lookup_rotate_l l n i:
  i < length l rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
  intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
  apply rotate_nat_sub_lt. lia.
Qed.

Lemma elem_of_rotate l n x:
  x rotate n l x l.
Proof.
  unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
  rewrite !elem_of_app. naive_solver.
Qed.

Lemma rotate_insert_l l n i x:
  i < length l
  rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
  intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
  rewrite insert_length, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
  remember (n `mod` length l) as n'.
  case_decide.
  - rewrite take_insert, drop_insert_le, insert_app_l
      by (rewrite ?drop_length; lia). do 2 f_equal. lia.
  - rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, drop_length
      by (rewrite ?drop_length; lia). do 2 f_equal. lia.
Qed.

Lemma rotate_insert_r l n i x:
  i < length l
  rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
  intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
  apply rotate_nat_sub_lt. lia.
Qed.

Properties of the rotate_take function

Lemma rotate_take_insert l s e i x:
  i < length l
  rotate_take s e (<[i:=x]>l) =
  if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
    <[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
  intros ?. unfold rotate_take. rewrite rotate_insert_r, insert_length by done.
  case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.

Lemma rotate_take_add l b i :
  i < length l
  rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.

Properties of the reshape function

Lemma reshape_length szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
End general_properties.

Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Properties of sublist_lookup and sublist_alter

Lemma sublist_lookup_length l i n k :
  sublist_lookup i n l = Some k length k = n.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq.
  rewrite take_length, drop_length; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n sublist_lookup 0 n l = Some l.
Proof.
  intros. unfold sublist_lookup; case_guard; [|lia].
  by rewrite take_ge by (rewrite drop_length; lia).
Qed.
Lemma sublist_lookup_Some l i n :
  i + n length l sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
  sublist_lookup i n l = Some l' l' = take n (drop i l) i + n length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
  length l < i + n sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
  (n | length l) (n | length k)
  ( i, sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) l = k.
Proof.
  revert l k. assert ( l i,
    n 0 (n | length l) ¬n × i `div` n + n length l length l i).
  { intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
    rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
    apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
  intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l),
      (nil_length_inv k) by eauto using Nat.divide_0_l. }
  apply list_eq; intros i. specialize (Hlookup (i `div` n)).
  rewrite (Nat.mul_comm _ n) in Hlookup.
  unfold sublist_lookup in *; simplify_option_eq;
    [|by rewrite !lookup_ge_None_2 by auto].
  apply (f_equal (.!! i `mod` n)) in Hlookup.
  by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
    by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
  length l = j × n length k = j × n
  ( i,i < j sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) l = k.
Proof.
  intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
  apply sublist_eq with n; [by j|by j|].
  intros i. destruct (decide (i < j)); [by auto|].
  assert ( m, m = j × n m < i × n + n).
  { intros ? →. replace (i × n + n) with (S i × n) by lia.
    apply Nat.mul_lt_mono_pos_r; lia. }
  by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
  0 < n length l = m × n
  reshape (replicate m n) l !! i = sublist_lookup (i × n) n l.
Proof.
  intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
  - intros Hx. case_guard as Hi; simplify_eq/=.
    { f_equal. clear Hi. revert i l Hl Hx.
      induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
      rewrite <-drop_drop. apply IH; rewrite ?drop_length; auto with lia. }
    destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
    apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
    by rewrite reshape_length, replicate_length in Hx.
  - intros Hx. case_guard as Hi; simplify_eq/=.
    revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
    intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
    rewrite IH; rewrite ?drop_length; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
  sublist_lookup i n l1 = Some l2 sublist_lookup j m l2 = Some l3
  sublist_lookup (i + j) m l1 = Some l3.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq;
    repeat match goal with
    | H : _ length _ |- _rewrite take_length, drop_length in H
    end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
      ?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma sublist_alter_length f l i n k :
  sublist_lookup i n l = Some k length (f k) = n
  length (sublist_alter f i n l) = length l.
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
  rewrite !app_length, Hk, !take_length, !drop_length; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
  sublist_lookup i n l = Some k length (f k) = n
  sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk ?. erewrite sublist_alter_length by eauto.
  unfold sublist_alter; simplify_option_eq.
  by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?take_length; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
  sublist_lookup j n l = Some k length (f k) = n i + n j j + n i
  sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk Hi ?. erewrite sublist_alter_length by eauto.
  unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
  apply list_eq; intros ii.
  destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
  rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
  { by rewrite lookup_app_l, lookup_take by (rewrite ?take_length; lia). }
  rewrite lookup_app_r by (rewrite take_length; lia).
  rewrite take_length_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n sublist_alter f 0 n l = f l.
Proof.
  intros <-. unfold sublist_alter; simpl.
  by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
  sublist_lookup i n l = Some k length (f k) = n length (g k) = n
  sublist_alter (f g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
  by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
    take_app_length' by (rewrite ?app_length, ?take_length, ?Hk; lia).
Qed.

Properties of the mask function

Lemma mask_nil f βs : mask f βs [] =@{list A} [].
Proof. by destruct βs. Qed.
Lemma mask_length f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l n mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
  mask f (βs1 ++ βs2) l
  = mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
  mask f βs (l1 ++ l2)
  = mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
  revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
  sublist_lookup i n (mask f βs l)
  = mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup; rewrite mask_length; simplify_option_eq; auto.
  by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
  ( x, f (g x) = f x) βs1 =.>* βs2
  mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
  intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
  βs !! i = Some true mask f βs l !! i = f <$> l !! i.
Proof.
  revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
  βs !! i Some true mask f βs l !! i = l !! i.
Proof.
  revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.

Properties of the Permutation predicate

Lemma Permutation_nil_r l : l ≡ₚ [] l = [].
Proof. split; [by intro; apply Permutation_nil | by intros ->]. Qed.
Lemma Permutation_singleton_r l x : l ≡ₚ [x] l = [x].
Proof. split; [by intro; apply Permutation_length_1_inv | by intros ->]. Qed.
Lemma Permutation_nil_l l : [] ≡ₚ l [] = l.
Proof. by rewrite (symmetry_iff (≡ₚ)), Permutation_nil_r. Qed.
Lemma Permutation_singleton_l l x : [x] ≡ₚ l [x] = l.
Proof. by rewrite (symmetry_iff (≡ₚ)), Permutation_singleton_r. Qed.

Lemma Permutation_skip x l l' : l ≡ₚ l' x :: l ≡ₚ x :: l'.
Proof. apply perm_skip. Qed.
Lemma Permutation_swap x y l : y :: x :: l ≡ₚ x :: y :: l.
Proof. apply perm_swap. Qed.
Lemma Permutation_singleton_inj x y : [x] ≡ₚ [y] x = y.
Proof. apply Permutation_length_1. Qed.

Global Instance length_Permutation_proper : Proper ((≡ₚ) ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
Global Instance elem_of_Permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈.).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Global Instance NoDup_Permutation_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
Qed.

Global Instance app_Permutation_comm : Comm (≡ₚ) (@app A).
Proof.
  intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
  - by rewrite (right_id_L [] (++)).
  - rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Qed.

Global Instance cons_Permutation_inj_r x : Inj (≡ₚ) (≡ₚ) (x ::.).
Proof. red. eauto using Permutation_cons_inv. Qed.
Global Instance app_Permutation_inj_r k : Inj (≡ₚ) (≡ₚ) (k ++.).
Proof.
  induction k as [|x k IH]; intros l1 l2; simpl; auto.
  intros. by apply IH, (inj (x ::.)).
Qed.
Global Instance cons_Permutation_inj_l k : Inj (=) (≡ₚ) (.:: k).
Proof.
  intros x1 x2 Hperm. apply Permutation_singleton_inj.
  apply (inj (k ++.)). by rewrite !(comm (++) k).
Qed.
Global Instance app_Permutation_inj_l k : Inj (≡ₚ) (≡ₚ) (.++ k).
Proof. intros l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++.)). Qed.

Lemma replicate_Permutation n x l : replicate n x ≡ₚ l replicate n x = l.
Proof.
  intros Hl. apply replicate_as_elem_of. split.
  - by rewrite <-Hl, replicate_length.
  - intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Qed.
Lemma reverse_Permutation l : reverse l ≡ₚ l.
Proof.
  induction l as [|x l IH]; [done|].
  by rewrite reverse_cons, (comm (++)), IH.
Qed.
Lemma delete_Permutation l i x : l !! i = Some x l ≡ₚ x :: delete i l.
Proof.
  revert i; induction l as [|y l IH]; intros [|i] ?; simplify_eq/=; auto.
  by rewrite Permutation_swap, <-(IH i).
Qed.
Lemma elem_of_Permutation l x : x l k, l ≡ₚ x :: k.
Proof.
  split.
  - intros [i ?]%elem_of_list_lookup. eexists. by apply delete_Permutation.
  - intros [k ->]. by left.
Qed.

Lemma Permutation_cons_inv_r l k x :
  k ≡ₚ x :: l k1 k2, k = k1 ++ x :: k2 l ≡ₚ k1 ++ k2.
Proof.
  intros Hk. assert ( i, k !! i = Some x) as [i Hi].
  { apply elem_of_list_lookup. rewrite Hk, elem_of_cons; auto. }
   (take i k), (drop (S i) k). split.
  - by rewrite take_drop_middle.
  - rewrite <-delete_take_drop. apply (inj (x ::.)).
    by rewrite <-Hk, <-(delete_Permutation k) by done.
Qed.
Lemma Permutation_cons_inv_l l k x :
  x :: l ≡ₚ k k1 k2, k = k1 ++ x :: k2 l ≡ₚ k1 ++ k2.
Proof. by intros ?%(symmetry_iff (≡ₚ))%Permutation_cons_inv_r. Qed.

Lemma Permutation_cross_split (la lb lc ld : list A) :
  la ++ lb ≡ₚ lc ++ ld
   lac lad lbc lbd,
    lac ++ lad ≡ₚ la lbc ++ lbd ≡ₚ lb lac ++ lbc ≡ₚ lc lad ++ lbd ≡ₚ ld.
Proof.
  revert lc ld.
  induction la as [|x la IH]; simpl; intros lc ld Hperm.
  { [], [], lc, ld. by rewrite !(right_id_L [] (++)). }
  assert (x lc ++ ld)
    as [[lc' Hlc]%elem_of_Permutation|[ld' Hld]%elem_of_Permutation]%elem_of_app.
  { rewrite <-Hperm, elem_of_cons. auto. }
  - rewrite Hlc in Hperm. simpl in Hperm. apply (inj (x ::.)) in Hperm.
    apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
     (x :: lac), lad, lbc, lbd; simpl. by rewrite Ha, Hb, Hc, Hd.
  - rewrite Hld, <-Permutation_middle in Hperm. apply (inj (x ::.)) in Hperm.
    apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
     lac, (x :: lad), lbc, lbd; simpl.
    by rewrite <-Permutation_middle, Ha, Hb, Hc, Hd.
Qed.

Lemma Permutation_inj l1 l2 :
  Permutation l1 l2
    length l1 = length l2
     f : nat nat, Inj (=) (=) f i, l1 !! i = l2 !! f i.
Proof.
  split.
  - intros Hl; split; [by apply Permutation_length|].
    induction Hl as [|x l1 l2 _ [f [??]]|x y l|l1 l2 l3 _ [f [? Hf]] _ [g [? Hg]]].
    + id; split; [apply _|done].
    + (λ i, match i with 0 ⇒ 0 | S iS (f i) end); split.
      × by intros [|i] [|j] ?; simplify_eq/=.
      × intros [|i]; simpl; auto.
    + (λ i, match i with 0 ⇒ 1 | 1 ⇒ 0 | _i end); split.
      × intros [|[|i]] [|[|j]]; congruence.
      × by intros [|[|i]].
    + (g f); split; [apply _|]. intros i; simpl. by rewrite <-Hg, <-Hf.
  - intros (Hlen & f & Hf & Hl). revert l2 f Hlen Hf Hl.
    induction l1 as [|x l1 IH]; intros l2 f Hlen Hf Hl; [by destruct l2|].
    rewrite (delete_Permutation l2 (f 0) x) by (by rewrite <-Hl).
    pose (g n := let m := f (S n) in if lt_eq_lt_dec m (f 0) then m else m - 1).
    apply Permutation_skip, (IH _ g).
    + rewrite length_delete by (rewrite <-Hl; eauto); simpl in *; lia.
    + unfold g. intros i j Hg.
      repeat destruct (lt_eq_lt_dec _ _) as [[?|?]|?]; simplify_eq/=; try lia.
      apply (inj S), (inj f); lia.
    + intros i. unfold g. destruct (lt_eq_lt_dec _ _) as [[?|?]|?].
      × by rewrite lookup_delete_lt, <-Hl.
      × simplify_eq.
      × rewrite lookup_delete_ge, <-Nat.sub_succ_l by lia; simpl.
        by rewrite Nat.sub_0_r, <-Hl.
Qed.

Properties of the filter function

Section filter.
  Context (P : A Prop) `{ x, Decision (P x)}.
  Local Arguments filter {_ _ _} _ {_} !_ /.

  Lemma filter_nil : filter P [] = [].
  Proof. done. Qed.
  Lemma filter_cons x l :
    filter P (x :: l) = if decide (P x) then x :: filter P l else filter P l.
  Proof. done. Qed.
  Lemma filter_cons_True x l : P x filter P (x :: l) = x :: filter P l.
  Proof. intros. by rewrite filter_cons, decide_True. Qed.
  Lemma filter_cons_False x l : ¬P x filter P (x :: l) = filter P l.
  Proof. intros. by rewrite filter_cons, decide_False. Qed.

  Lemma filter_app l1 l2 : filter P (l1 ++ l2) = filter P l1 ++ filter P l2.
  Proof.
    induction l1 as [|x l1 IH]; simpl; [done| ].
    case_decide; [|done].
    by rewrite IH.
  Qed.

  Lemma elem_of_list_filter l x : x filter P l P x x l.
  Proof.
    induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l NoDup (filter P l).
  Proof.
    induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.

  Global Instance filter_Permutation : Proper ((≡ₚ) ==> (≡ₚ)) (filter P).
  Proof. induction 1; repeat (simpl; repeat case_decide); by econstructor. Qed.

  Lemma filter_length l : length (filter P l) length l.
  Proof. induction l; simpl; repeat case_decide; simpl; lia. Qed.
  Lemma filter_length_lt l x : x l ¬P x length (filter P l) < length l.
  Proof.
    intros [k ->]%elem_of_Permutation ?; simpl.
    rewrite decide_False, Nat.lt_succ_r by done. apply filter_length.
  Qed.
  Lemma filter_nil_not_elem_of l x : filter P l = [] P x x l.
  Proof. induction 3; simplify_eq/=; case_decide; naive_solver. Qed.
  Lemma filter_reverse l : filter P (reverse l) = reverse (filter P l).
  Proof.
    induction l as [|x l IHl]; [done|].
    rewrite reverse_cons, filter_app, IHl, !filter_cons.
    case_decide; [by rewrite reverse_cons|by rewrite filter_nil, app_nil_r].
  Qed.

  Lemma filter_app_complement l : filter P l ++ filter (λ x, ¬P x) l ≡ₚ l.
  Proof.
    induction l as [|x l IH]; simpl; [done|]. case_decide.
    - rewrite decide_False by naive_solver. simpl. by rewrite IH.
    - rewrite decide_True by done. by rewrite <-Permutation_middle, IH.
  Qed.
End filter.

Lemma list_filter_iff (P1 P2 : A Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  ( x, P1 x P2 x)
  filter P1 l = filter P2 l.
Proof.
  intros HPiff. induction l as [|a l IH]; [done|].
  destruct (decide (P1 a)).
  - rewrite !filter_cons_True by naive_solver. by rewrite IH.
  - rewrite !filter_cons_False by naive_solver. by rewrite IH.
Qed.

Lemma list_filter_filter (P1 P2 : A Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  filter P1 (filter P2 l) = filter (λ a, P1 a P2 a) l.
Proof.
  induction l as [|x l IH]; [done|].
  rewrite !filter_cons. case (decide (P2 x)) as [HP2|HP2].
  - rewrite filter_cons, IH. apply decide_ext. naive_solver.
  - rewrite IH. symmetry. apply decide_False. by intros [_ ?].
Qed.

Lemma list_filter_filter_l (P1 P2 : A Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  ( x, P1 x P2 x)
  filter P1 (filter P2 l) = filter P1 l.
Proof.
  intros HPimp. rewrite list_filter_filter.
  apply list_filter_iff. naive_solver.
Qed.

Lemma list_filter_filter_r (P1 P2 : A Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  ( x, P2 x P1 x)
  filter P1 (filter P2 l) = filter P2 l.
Proof.
  intros HPimp. rewrite list_filter_filter.
  apply list_filter_iff. naive_solver.
Qed.

Properties of the prefix and suffix predicates

Global Instance: PartialOrder (@prefix A).
Proof.
  split; [split|].
  - intros ?. eexists []. by rewrite (right_id_L [] (++)).
  - intros ???[k1->] [k2->]. (k1 ++ k2). by rewrite (assoc_L (++)).
  - intros l1 l2 [k1 ?] [[|x2 k2] ->]; [|discriminate_list].
    by rewrite (right_id_L _ _).
Qed.
Lemma prefix_nil l : [] `prefix_of` l.
Proof. by l. Qed.
Lemma prefix_nil_inv l : l `prefix_of` [] l = [].
Proof. intros [k ?]. by destruct l. Qed.
Lemma prefix_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Lemma prefix_cons x l1 l2 : l1 `prefix_of` l2 x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by k. Qed.
Lemma prefix_cons_alt x y l1 l2 :
  x = y l1 `prefix_of` l2 x :: l1 `prefix_of` y :: l2.
Proof. intros →. apply prefix_cons. Qed.
Lemma prefix_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 x = y.
Proof. by intros [k ?]; simplify_eq/=. Qed.
Lemma prefix_cons_inv_2 x y l1 l2 :
  x :: l1 `prefix_of` y :: l2 l1 `prefix_of` l2.
Proof. intros [k ?]; simplify_eq/=. by k. Qed.
Lemma prefix_app k l1 l2 : l1 `prefix_of` l2 k ++ l1 `prefix_of` k ++ l2.
Proof. intros [k' ->]. k'. by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_alt k1 k2 l1 l2 :
  k1 = k2 l1 `prefix_of` l2 k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros →. apply prefix_app. Qed.
Lemma prefix_app_inv k l1 l2 :
  k ++ l1 `prefix_of` k ++ l2 l1 `prefix_of` l2.
Proof.
  intros [k' E]. k'. rewrite <-(assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma prefix_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 l1 `prefix_of` l2.
Proof. intros [k ->]. (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_r l1 l2 l3 : l1 `prefix_of` l2 l1 `prefix_of` l2 ++ l3.
Proof. intros [k ->]. (k ++ l3). by rewrite (assoc_L (++)). Qed.
Lemma prefix_take l n : take n l `prefix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply prefix_app_r. done. Qed.
Lemma prefix_lookup_lt l1 l2 i :
  i < length l1 l1 `prefix_of` l2 l1 !! i = l2 !! i.
Proof. intros ? [? ->]. by rewrite lookup_app_l. Qed.
Lemma prefix_lookup_Some l1 l2 i x :
  l1 !! i = Some x l1 `prefix_of` l2 l2 !! i = Some x.
Proof. intros ? [k ->]. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma prefix_length l1 l2 : l1 `prefix_of` l2 length l1 length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Lemma prefix_snoc_not l x : ¬l ++ [x] `prefix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_prefix l1 l2 x :
  x l1 l1 `prefix_of` l2 x l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by left. Qed.
Lemma prefix_weak_total l1 l2 l3 :
  l1 `prefix_of` l3 l2 `prefix_of` l3 l1 `prefix_of` l2 l2 `prefix_of` l1.
Proof.
  intros [k1 H1] [k2 H2]. rewrite H2 in H1.
  apply app_eq_inv in H1 as [(k&?&?)|(k&?&?)]; [left|right]; k; eauto.
Qed.
Global Instance: PartialOrder (@suffix A).
Proof.
  split; [split|].
  - intros ?. by eexists [].
  - intros ???[k1->] [k2->]. (k2 ++ k1). by rewrite (assoc_L (++)).
  - intros l1 l2 [k1 ?] [[|x2 k2] ->]; [done|discriminate_list].
Qed.
Global Instance prefix_dec `{!EqDecision A} : RelDecision prefix :=
  fix go l1 l2 :=
  match l1, l2 with
  | [], _left (prefix_nil _)
  | _, []right (prefix_nil_not _ _)
  | x :: l1, y :: l2
    match decide_rel (=) x y with
    | left Hxy
      match go l1 l2 with
      | left Hl1l2left (prefix_cons_alt _ _ _ _ Hxy Hl1l2)
      | right Hl1l2right (Hl1l2 prefix_cons_inv_2 _ _ _ _)
      end
    | right Hxyright (Hxy prefix_cons_inv_1 _ _ _ _)
    end
  end.
Lemma prefix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
  x k1 y l1
  (l1 ++ x :: l2) `prefix_of` (k1 ++ y :: k2)
  l1 = k1 x = y l2 `prefix_of` k2.
Proof.
  intros Hin1 Hin2 [k Hle]. rewrite <-(assoc_L (++)) in Hle.
  apply not_elem_of_app_cons_inv_l in Hle; [|done..]. unfold prefix. naive_solver.
Qed.

Lemma prefix_length_eq l1 l2 :
  l1 `prefix_of` l2 length l2 length l1 l1 = l2.
Proof.
  intros Hprefix Hlen. assert (length l1 = length l2).
  { apply prefix_length in Hprefix. lia. }
  eapply list_eq_same_length with (length l1); [done..|].
  intros i x y _ ??. assert (l2 !! i = Some x) by eauto using prefix_lookup_Some.
  congruence.
Qed.

Section prefix_ops.
  Context `{!EqDecision A}.
  Lemma max_prefix_fst l1 l2 :
    l1 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.1.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
      repeat case_decide; f_equal/=; auto.
  Qed.
  Lemma max_prefix_fst_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1, k2, k3) l1 = k3 ++ k1.
  Proof.
    intros. pose proof (max_prefix_fst l1 l2).
    by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_fst_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l1.
  Proof. eexists. apply max_prefix_fst. Qed.
  Lemma max_prefix_fst_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1, k2, k3) k3 `prefix_of` l1.
  Proof. eexists. eauto using max_prefix_fst_alt. Qed.
  Lemma max_prefix_snd l1 l2 :
    l2 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.2.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
      repeat case_decide; f_equal/=; auto.
  Qed.
  Lemma max_prefix_snd_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1, k2, k3) l2 = k3 ++ k2.
  Proof.
    intro. pose proof (max_prefix_snd l1 l2).
    by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_snd_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l2.
  Proof. eexists. apply max_prefix_snd. Qed.
  Lemma max_prefix_snd_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1,k2,k3) k3 `prefix_of` l2.
  Proof. eexists. eauto using max_prefix_snd_alt. Qed.
  Lemma max_prefix_max l1 l2 k :
    k `prefix_of` l1 k `prefix_of` l2 k `prefix_of` (max_prefix l1 l2).2.
  Proof.
    intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
      simpl; auto using prefix_nil, prefix_cons.
  Qed.
  Lemma max_prefix_max_alt l1 l2 k1 k2 k3 k :
    max_prefix l1 l2 = (k1,k2,k3)
    k `prefix_of` l1 k `prefix_of` l2 k `prefix_of` k3.
  Proof.
    intro. pose proof (max_prefix_max l1 l2 k).
    by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_prefix l1 l2 = (x1 :: k1, x2 :: k2, k3) x1 x2.
  Proof.
    intros Hl →. destruct (prefix_snoc_not k3 x2).
    eapply max_prefix_max_alt; eauto.
    - rewrite (max_prefix_fst_alt _ _ _ _ _ Hl).
      apply prefix_app, prefix_cons, prefix_nil.
    - rewrite (max_prefix_snd_alt _ _ _ _ _ Hl).
      apply prefix_app, prefix_cons, prefix_nil.
  Qed.
End prefix_ops.

Lemma prefix_suffix_reverse l1 l2 :
  l1 `prefix_of` l2 reverse l1 `suffix_of` reverse l2.
Proof.
  split; intros [k E]; (reverse k).
  - by rewrite E, reverse_app.
  - by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Qed.
Lemma suffix_prefix_reverse l1 l2 :
  l1 `suffix_of` l2 reverse l1 `prefix_of` reverse l2.
Proof. by rewrite prefix_suffix_reverse, !reverse_involutive. Qed.
Lemma suffix_nil l : [] `suffix_of` l.
Proof. l. by rewrite (right_id_L [] (++)). Qed.
Lemma suffix_nil_inv l : l `suffix_of` [] l = [].
Proof. by intros [[|?] ?]; simplify_list_eq. Qed.
Lemma suffix_cons_nil_inv x l : ¬x :: l `suffix_of` [].
Proof. by intros [[] ?]. Qed.
Lemma suffix_snoc l1 l2 x :
  l1 `suffix_of` l2 l1 ++ [x] `suffix_of` l2 ++ [x].
Proof. intros [k ->]. k. by rewrite (assoc_L (++)). Qed.
Lemma suffix_snoc_alt x y l1 l2 :
  x = y l1 `suffix_of` l2 l1 ++ [x] `suffix_of` l2 ++ [y].
Proof. intros →. apply suffix_snoc. Qed.
Lemma suffix_app l1 l2 k : l1 `suffix_of` l2 l1 ++ k `suffix_of` l2 ++ k.
Proof. intros [k' ->]. k'. by rewrite (assoc_L (++)). Qed.
Lemma suffix_app_alt l1 l2 k1 k2 :
  k1 = k2 l1 `suffix_of` l2 l1 ++ k1 `suffix_of` l2 ++ k2.
Proof. intros →. apply suffix_app. Qed.
Lemma suffix_snoc_inv_1 x y l1 l2 :
  l1 ++ [x] `suffix_of` l2 ++ [y] x = y.
Proof. intros [k' E]. rewrite (assoc_L (++)) in E. by simplify_list_eq. Qed.
Lemma suffix_snoc_inv_2 x y l1 l2 :
  l1 ++ [x] `suffix_of` l2 ++ [y] l1 `suffix_of` l2.
Proof.
  intros [k' E]. k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_app_inv l1 l2 k :
  l1 ++ k `suffix_of` l2 ++ k l1 `suffix_of` l2.
Proof.
  intros [k' E]. k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_cons_l l1 l2 x : x :: l1 `suffix_of` l2 l1 `suffix_of` l2.
Proof. intros [k ->]. (k ++ [x]). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 l1 `suffix_of` l2.
Proof. intros [k ->]. (k ++ l3). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_cons_r l1 l2 x : l1 `suffix_of` l2 l1 `suffix_of` x :: l2.
Proof. intros [k ->]. by (x :: k). Qed.
Lemma suffix_app_r l1 l2 l3 : l1 `suffix_of` l2 l1 `suffix_of` l3 ++ l2.
Proof. intros [k ->]. (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma suffix_drop l n : drop n l `suffix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply suffix_app_r. done. Qed.
Lemma suffix_cons_inv l1 l2 x y :
  x :: l1 `suffix_of` y :: l2 x :: l1 = y :: l2 x :: l1 `suffix_of` l2.
Proof.
  intros [[|? k] E]; [by left|]. right. simplify_eq/=. by apply suffix_app_r.
Qed.
Lemma suffix_lookup_lt l1 l2 i :
  i < length l1
  l1 `suffix_of` l2
  l1 !! i = l2 !! (i + (length l2 - length l1)).
Proof.
  intros Hi [k ->]. rewrite app_length, lookup_app_r by lia. f_equal; lia.
Qed.
Lemma suffix_lookup_Some l1 l2 i x :
  l1 !! i = Some x
  l1 `suffix_of` l2
  l2 !! (i + (length l2 - length l1)) = Some x.
Proof. intros. by rewrite <-suffix_lookup_lt by eauto using lookup_lt_Some. Qed.
Lemma suffix_length l1 l2 : l1 `suffix_of` l2 length l1 length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Lemma suffix_cons_not x l : ¬x :: l `suffix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_suffix l1 l2 x :
  x l1 l1 `suffix_of` l2 x l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by right. Qed.
Lemma suffix_weak_total l1 l2 l3 :
  l1 `suffix_of` l3 l2 `suffix_of` l3 l1 `suffix_of` l2 l2 `suffix_of` l1.
Proof.
  intros [k1 Hl1] [k2 Hl2]. rewrite Hl1 in Hl2.
  apply app_eq_inv in Hl2 as [(k&?&?)|(k&?&?)]; [left|right]; k; eauto.
Qed.
Global Instance suffix_dec `{!EqDecision A} : RelDecision (@suffix A).
Proof.
  refine (λ l1 l2, cast_if (decide_rel prefix (reverse l1) (reverse l2)));
   abstract (by rewrite suffix_prefix_reverse).
Defined.
Lemma suffix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
  x k2 y l2
  (l1 ++ x :: l2) `suffix_of` (k1 ++ y :: k2)
  l1 `suffix_of` k1 x = y l2 = k2.
Proof.
  intros Hin1 Hin2 [k Hle]. rewrite (assoc_L (++)) in Hle.
  apply not_elem_of_app_cons_inv_r in Hle; [|done..]. unfold suffix. naive_solver.
Qed.

Lemma suffix_length_eq l1 l2 :
  l1 `suffix_of` l2 length l2 length l1 l1 = l2.
Proof.
  intros. apply (inj reverse), prefix_length_eq.
  - by apply suffix_prefix_reverse.
  - by rewrite !reverse_length.
Qed.

Section max_suffix.
  Context `{!EqDecision A}.

  Lemma max_suffix_fst l1 l2 :
    l1 = (max_suffix l1 l2).1.1 ++ (max_suffix l1 l2).2.
  Proof.
    rewrite <-(reverse_involutive l1) at 1.
    rewrite (max_prefix_fst (reverse l1) (reverse l2)). unfold max_suffix.
    destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    by rewrite reverse_app.
  Qed.
  Lemma max_suffix_fst_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1, k2, k3) l1 = k1 ++ k3.
  Proof.
    intro. pose proof (max_suffix_fst l1 l2).
    by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_fst_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l1.
  Proof. eexists. apply max_suffix_fst. Qed.
  Lemma max_suffix_fst_suffix_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1, k2, k3) k3 `suffix_of` l1.
  Proof. eexists. eauto using max_suffix_fst_alt. Qed.
  Lemma max_suffix_snd l1 l2 :
    l2 = (max_suffix l1 l2).1.2 ++ (max_suffix l1 l2).2.
  Proof.
    rewrite <-(reverse_involutive l2) at 1.
    rewrite (max_prefix_snd (reverse l1) (reverse l2)). unfold max_suffix.
    destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    by rewrite reverse_app.
  Qed.
  Lemma max_suffix_snd_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1,k2,k3) l2 = k2 ++ k3.
  Proof.
    intro. pose proof (max_suffix_snd l1 l2).
    by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_snd_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l2.
  Proof. eexists. apply max_suffix_snd. Qed.
  Lemma max_suffix_snd_suffix_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1,k2,k3) k3 `suffix_of` l2.
  Proof. eexists. eauto using max_suffix_snd_alt. Qed.
  Lemma max_suffix_max l1 l2 k :
    k `suffix_of` l1 k `suffix_of` l2 k `suffix_of` (max_suffix l1 l2).2.
  Proof.
    generalize (max_prefix_max (reverse l1) (reverse l2)).
    rewrite !suffix_prefix_reverse. unfold max_suffix.
    destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    rewrite reverse_involutive. auto.
  Qed.
  Lemma max_suffix_max_alt l1 l2 k1 k2 k3 k :
    max_suffix l1 l2 = (k1, k2, k3)
    k `suffix_of` l1 k `suffix_of` l2 k `suffix_of` k3.
  Proof.
    intro. pose proof (max_suffix_max l1 l2 k).
    by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_suffix l1 l2 = (k1 ++ [x1], k2 ++ [x2], k3) x1 x2.
  Proof.
    intros Hl →. destruct (suffix_cons_not x2 k3).
    eapply max_suffix_max_alt; eauto.
    - rewrite (max_suffix_fst_alt _ _ _ _ _ Hl).
      by apply (suffix_app [x2]), suffix_app_r.
    - rewrite (max_suffix_snd_alt _ _ _ _ _ Hl).
      by apply (suffix_app [x2]), suffix_app_r.
  Qed.
End max_suffix.

Properties of the sublist predicate

Lemma sublist_length l1 l2 : l1 `sublist_of` l2 length l1 length l2.
Proof. induction 1; simpl; auto with arith. Qed.
Lemma sublist_nil_l l : [] `sublist_of` l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r l : l `sublist_of` [] l = [].
Proof. split; [by inv 1|]. intros →. constructor. Qed.
Lemma sublist_app l1 l2 k1 k2 :
  l1 `sublist_of` l2 k1 `sublist_of` k2 l1 ++ k1 `sublist_of` l2 ++ k2.
Proof. induction 1; simpl; try constructor; auto. Qed.
Lemma sublist_inserts_l k l1 l2 : l1 `sublist_of` l2 l1 `sublist_of` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_inserts_r k l1 l2 : l1 `sublist_of` l2 l1 `sublist_of` l2 ++ k.
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.
Lemma sublist_cons_r x l k :
  l `sublist_of` x :: k l `sublist_of` k l', l = x :: l' l' `sublist_of` k.
Proof. split; [inv 1; eauto|]. intros [?|(?&->&?)]; constructor; auto. Qed.
Lemma sublist_cons_l x l k :
  x :: l `sublist_of` k k1 k2, k = k1 ++ x :: k2 l `sublist_of` k2.
Proof.
  split.
  - intros Hlk. induction k as [|y k IH]; inv Hlk.
    + eexists [], k. by repeat constructor.
    + destruct IH as (k1&k2&->&?); auto. by (y :: k1), k2.
  - intros (k1&k2&->&?). by apply sublist_inserts_l, sublist_skip.
Qed.
Lemma sublist_app_r l k1 k2 :
  l `sublist_of` k1 ++ k2
     l1 l2, l = l1 ++ l2 l1 `sublist_of` k1 l2 `sublist_of` k2.
Proof.
  split.
  - revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
    { eexists [], l. by repeat constructor. }
    rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
    + destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
       l1, l2. auto using sublist_cons.
    + destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
       (y :: l1), l2. auto using sublist_skip.
  - intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_l l1 l2 k :
  l1 ++ l2 `sublist_of` k
     k1 k2, k = k1 ++ k2 l1 `sublist_of` k1 l2 `sublist_of` k2.
Proof.
  split.
  - revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
    { eexists [], k. by repeat constructor. }
    rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
    destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
     (k1 ++ x :: h1), h2. rewrite <-(assoc_L (++)).
    auto using sublist_inserts_l, sublist_skip.
  - intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_inv_l k l1 l2 : k ++ l1 `sublist_of` k ++ l2 l1 `sublist_of` l2.
Proof.
  induction k as [|y k IH]; simpl; [done |].
  rewrite sublist_cons_r. intros [Hl12|(?&?&?)]; [|simplify_eq; eauto].
  rewrite sublist_cons_l in Hl12. destruct Hl12 as (k1&k2&Hk&?).
  apply IH. rewrite Hk. eauto using sublist_inserts_l, sublist_cons.
Qed.
Lemma sublist_app_inv_r k l1 l2 : l1 ++ k `sublist_of` l2 ++ k l1 `sublist_of` l2.
Proof.
  revert l1 l2. induction k as [|y k IH]; intros l1 l2.
  { by rewrite !(right_id_L [] (++)). }
  intros. opose proof× (IH (l1 ++ [_]) (l2 ++ [_])) as Hl12.
  { by rewrite <-!(assoc_L (++)). }
  rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
  destruct k2 as [|z k2] using rev_ind; [inv Hk2|].
  rewrite (assoc_L (++)) in E; simplify_list_eq.
  eauto using sublist_inserts_r.
Qed.
Global Instance: PartialOrder (@sublist A).
Proof.
  split; [split|].
  - intros l. induction l; constructor; auto.
  - intros l1 l2 l3 Hl12. revert l3. induction Hl12.
    + auto using sublist_nil_l.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_inserts_l, sublist_skip.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_inserts_l, sublist_cons.
  - intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
    induction Hl12 as [| |??? Hl12]; f_equal/=; auto with arith.
    apply sublist_length in Hl12. lia.
Qed.
Lemma sublist_take l i : take i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_r. Qed.
Lemma sublist_drop l i : drop i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_l. Qed.
Lemma sublist_delete l i : delete i l `sublist_of` l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof.
  induction is as [|i is IH]; simpl; [done |].
  trans (foldr delete l is); auto using sublist_delete.
Qed.
Lemma sublist_alt l1 l2 : l1 `sublist_of` l2 is, l1 = foldr delete l2 is.
Proof.
  split; [|intros [is ->]; apply sublist_foldr_delete].
  intros Hl12. cut ( k, is, k ++ l1 = foldr delete (k ++ l2) is).
  { intros help. apply (help []). }
  induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
  - by eexists [].
  - destruct (IH (k ++ [x])) as [is His]. is.
    by rewrite <-!(assoc_L (++)) in His.
  - destruct (IH k) as [is His]. (is ++ [length k]).
    rewrite fold_right_app. simpl. by rewrite delete_middle.
Qed.
Lemma Permutation_sublist l1 l2 l3 :
  l1 ≡ₚ l2 l2 `sublist_of` l3 l4, l1 `sublist_of` l4 l4 ≡ₚ l3.
Proof.
  intros Hl1l2. revert l3.
  induction Hl1l2 as [|x l1 l2 ? IH|x y l1|l1 l1' l2 ? IH1 ? IH2].
  - intros l3. by l3.
  - intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?&?); subst.
    destruct (IH l3'') as (l4&?&Hl4); auto. (l3' ++ x :: l4).
    split.
    + by apply sublist_inserts_l, sublist_skip.
    + by rewrite Hl4.
  - intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?& Hl3); subst.
    rewrite sublist_cons_l in Hl3. destruct Hl3 as (l5'&l5''&?& Hl5); subst.
     (l3' ++ y :: l5' ++ x :: l5''). split.
    + by do 2 apply sublist_inserts_l, sublist_skip.
    + by rewrite !Permutation_middle, Permutation_swap.
  - intros l3 ?. destruct (IH2 l3) as (l3'&?&?); trivial.
    destruct (IH1 l3') as (l3'' &?&?); trivial. l3''.
    split; [done|]. etrans; eauto.
Qed.
Lemma sublist_Permutation l1 l2 l3 :
  l1 `sublist_of` l2 l2 ≡ₚ l3 l4, l1 ≡ₚ l4 l4 `sublist_of` l3.
Proof.
  intros Hl1l2 Hl2l3. revert l1 Hl1l2.
  induction Hl2l3 as [|x l2 l3 ? IH|x y l2|l2 l2' l3 ? IH1 ? IH2].
  - intros l1. by l1.
  - intros l1. rewrite sublist_cons_r. intros [?|(l1'&l1''&?)]; subst.
    { destruct (IH l1) as (l4&?&?); trivial.
       l4. split.
      - done.
      - by constructor. }
    destruct (IH l1') as (l4&?&Hl4); auto. (x :: l4).
    split; [ by constructor | by constructor ].
  - intros l1. rewrite sublist_cons_r. intros [Hl1|(l1'&l1''&Hl1)]; subst.
    { l1. split; [done|]. rewrite sublist_cons_r in Hl1.
      destruct Hl1 as [?|(l1'&?&?)]; subst; by repeat constructor. }
    rewrite sublist_cons_r in Hl1. destruct Hl1 as [?|(l1''&?&?)]; subst.
    + (y :: l1'). by repeat constructor.
    + (x :: y :: l1''). by repeat constructor.
  - intros l1 ?. destruct (IH1 l1) as (l3'&?&?); trivial.
    destruct (IH2 l3') as (l3'' &?&?); trivial. l3''.
    split; [|done]. etrans; eauto.
Qed.

Properties of the submseteq predicate
Lemma submseteq_length l1 l2 : l1 ⊆+ l2 length l1 length l2.
Proof. induction 1; simpl; auto with lia. Qed.
Lemma submseteq_nil_l l : [] ⊆+ l.
Proof. induction l; constructor; auto. Qed.
Lemma submseteq_nil_r l : l ⊆+ [] l = [].
Proof.
  split; [|intros ->; constructor].
  intros Hl. apply submseteq_length in Hl. destruct l; simpl in *; auto with lia.
Qed.
Global Instance: PreOrder (@submseteq A).
Proof.
  split.
  - intros l. induction l; constructor; auto.
  - red. apply submseteq_trans.
Qed.
Lemma Permutation_submseteq l1 l2 : l1 ≡ₚ l2 l1 ⊆+ l2.
Proof. induction 1; econstructor; eauto. Qed.
Lemma sublist_submseteq l1 l2 : l1 `sublist_of` l2 l1 ⊆+ l2.
Proof. induction 1; constructor; auto. Qed.
Lemma submseteq_Permutation l1 l2 : l1 ⊆+ l2 k, l2 ≡ₚ l1 ++ k.
Proof.
  induction 1 as
    [|x y l ? [k Hk]| |x l1 l2 ? [k Hk]|l1 l2 l3 ? [k Hk] ? [k' Hk']].
  - by eexists [].
  - k. by rewrite Hk.
  - eexists []. rewrite (right_id_L [] (++)). by constructor.
  - (x :: k). by rewrite Hk, Permutation_middle.
  - (k ++ k'). by rewrite Hk', Hk, (assoc_L (++)).
Qed.

Global Instance: Proper ((≡ₚ) ==> (≡ₚ) ==> iff) (@submseteq A).
Proof.
  intros l1 l2 ? k1 k2 ?. split; intros.
  - trans l1; [by apply Permutation_submseteq|].
    trans k1; [done|]. by apply Permutation_submseteq.
  - trans l2; [by apply Permutation_submseteq|].
    trans k2; [done|]. by apply Permutation_submseteq.
Qed.

Lemma submseteq_length_Permutation l1 l2 :
  l1 ⊆+ l2 length l2 length l1 l1 ≡ₚ l2.
Proof.
  intros Hsub Hlen. destruct (submseteq_Permutation l1 l2) as [[|??] Hk]; auto.
  - by rewrite Hk, (right_id_L [] (++)).
  - rewrite Hk, app_length in Hlen. simpl in *; lia.
Qed.

Global Instance: AntiSymm (≡ₚ) (@submseteq A).
Proof.
  intros l1 l2 ??.
  apply submseteq_length_Permutation; auto using submseteq_length.
Qed.

Lemma elem_of_submseteq l k x : x l l ⊆+ k x k.
Proof. intros ? [l' ->]%submseteq_Permutation. apply elem_of_app; auto. Qed.
Lemma lookup_submseteq l k i x :
  l !! i = Some x
  l ⊆+ k
   j, k !! j = Some x.
Proof.
  intros Hsub Hlook.
  eapply elem_of_list_lookup_1, elem_of_submseteq;
    eauto using elem_of_list_lookup_2.
Qed.

Lemma submseteq_take l i : take i l ⊆+ l.
Proof. auto using sublist_take, sublist_submseteq. Qed.
Lemma submseteq_drop l i : drop i l ⊆+ l.
Proof. auto using sublist_drop, sublist_submseteq. Qed.
Lemma submseteq_delete l i : delete i l ⊆+ l.
Proof. auto using sublist_delete, sublist_submseteq. Qed.
Lemma submseteq_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof. auto using sublist_foldr_delete, sublist_submseteq. Qed.
Lemma submseteq_sublist_l l1 l3 : l1 ⊆+ l3 l2, l1 `sublist_of` l2 l2 ≡ₚ l3.
Proof.
  split.
  { intros Hl13. elim Hl13; clear l1 l3 Hl13.
    - by eexists [].
    - intros x l1 l3 ? (l2&?&?). (x :: l2). by repeat constructor.
    - intros x y l. (y :: x :: l). by repeat constructor.
    - intros x l1 l3 ? (l2&?&?). (x :: l2). by repeat constructor.
    - intros l1 l3 l5 ? (l2&?&?) ? (l4&?&?).
      destruct (Permutation_sublist l2 l3 l4) as (l3'&?&?); trivial.
       l3'. split; etrans; eauto. }
  intros (l2&?&?).
  trans l2; auto using sublist_submseteq, Permutation_submseteq.
Qed.
Lemma submseteq_sublist_r l1 l3 :
  l1 ⊆+ l3 l2, l1 ≡ₚ l2 l2 `sublist_of` l3.
Proof.
  rewrite submseteq_sublist_l.
  split; intros (l2&?&?); eauto using sublist_Permutation, Permutation_sublist.
Qed.
Lemma submseteq_inserts_l k l1 l2 : l1 ⊆+ l2 l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_inserts_r k l1 l2 : l1 ⊆+ l2 l1 ⊆+ l2 ++ k.
Proof. rewrite (comm (++)). apply submseteq_inserts_l. Qed.
Lemma submseteq_skips_l k l1 l2 : l1 ⊆+ l2 k ++ l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_skips_r k l1 l2 : l1 ⊆+ l2 l1 ++ k ⊆+ l2 ++ k.
Proof. rewrite !(comm (++) _ k). apply submseteq_skips_l. Qed.
Lemma submseteq_app l1 l2 k1 k2 : l1 ⊆+ l2 k1 ⊆+ k2 l1 ++ k1 ⊆+ l2 ++ k2.
Proof. trans (l1 ++ k2); auto using submseteq_skips_l, submseteq_skips_r. Qed.
Lemma submseteq_cons_r x l k :
  l ⊆+ x :: k l ⊆+ k l', l ≡ₚ x :: l' l' ⊆+ k.
Proof.
  split.
  - rewrite submseteq_sublist_r. intros (l'&E&Hl').
    rewrite sublist_cons_r in Hl'. destruct Hl' as [?|(?&?&?)]; subst.
    + left. rewrite E. eauto using sublist_submseteq.
    + right. eauto using sublist_submseteq.
  - intros [?|(?&E&?)]; [|rewrite E]; by constructor.
Qed.
Lemma submseteq_cons_l x l k : x :: l ⊆+ k k', k ≡ₚ x :: k' l ⊆+ k'.
Proof.
  split.
  - rewrite submseteq_sublist_l. intros (l'&Hl'&E).
    rewrite sublist_cons_l in Hl'. destruct Hl' as (k1&k2&?&?); subst.
     (k1 ++ k2). split; eauto using submseteq_inserts_l, sublist_submseteq.
    by rewrite Permutation_middle.
  - intros (?&E&?). rewrite E. by constructor.
Qed.
Lemma submseteq_app_r l k1 k2 :
  l ⊆+ k1 ++ k2 l1 l2, l ≡ₚ l1 ++ l2 l1 ⊆+ k1 l2 ⊆+ k2.
Proof.
  split.
  - rewrite submseteq_sublist_r. intros (l'&E&Hl').
    rewrite sublist_app_r in Hl'. destruct Hl' as (l1&l2&?&?&?); subst.
     l1, l2. eauto using sublist_submseteq.
  - intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_l l1 l2 k :
  l1 ++ l2 ⊆+ k k1 k2, k ≡ₚ k1 ++ k2 l1 ⊆+ k1 l2 ⊆+ k2.
Proof.
  split.
  - rewrite submseteq_sublist_l. intros (l'&Hl'&E).
    rewrite sublist_app_l in Hl'. destruct Hl' as (k1&k2&?&?&?); subst.
     k1, k2. split; [done|]. eauto using sublist_submseteq.
  - intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_inv_l l1 l2 k : k ++ l1 ⊆+ k ++ l2 l1 ⊆+ l2.
Proof.
  induction k as [|y k IH]; simpl; [done |]. rewrite submseteq_cons_l.
  intros (?&E%(inj (cons y))&?). apply IH. by rewrite E.
Qed.
Lemma submseteq_app_inv_r l1 l2 k : l1 ++ k ⊆+ l2 ++ k l1 ⊆+ l2.
Proof. rewrite <-!(comm (++) k). apply submseteq_app_inv_l. Qed.
Lemma submseteq_cons_middle x l k1 k2 : l ⊆+ k1 ++ k2 x :: l ⊆+ k1 ++ x :: k2.
Proof. rewrite <-Permutation_middle. by apply submseteq_skip. Qed.
Lemma submseteq_app_middle l1 l2 k1 k2 :
  l2 ⊆+ k1 ++ k2 l1 ++ l2 ⊆+ k1 ++ l1 ++ k2.
Proof.
  rewrite !(assoc (++)), (comm (++) k1 l1), <-(assoc_L (++)).
  by apply submseteq_skips_l.
Qed.
Lemma submseteq_middle l k1 k2 : l ⊆+ k1 ++ l ++ k2.
Proof. by apply submseteq_inserts_l, submseteq_inserts_r. Qed.

Lemma NoDup_submseteq l k : NoDup l ( x, x l x k) l ⊆+ k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hx ? IH].
  { intros k Hk. by apply submseteq_nil_l. }
  intros k Hlk. destruct (elem_of_list_split k x) as (l1&l2&?); subst.
  { apply Hlk. by constructor. }
  rewrite <-Permutation_middle. apply submseteq_skip, IH.
  intros y Hy. rewrite elem_of_app.
  specialize (Hlk y). rewrite elem_of_app, !elem_of_cons in Hlk.
  by destruct Hlk as [?|[?|?]]; subst; eauto.
Qed.
Lemma NoDup_Permutation l k : NoDup l NoDup k ( x, x l x k) l ≡ₚ k.
Proof.
  intros. apply (anti_symm submseteq); apply NoDup_submseteq; naive_solver.
Qed.

Lemma submseteq_insert l1 l2 i j x y :
  l1 !! i = Some x
  l2 !! j = Some x
  l1 ⊆+ l2
  (<[i := y]> l1) ⊆+ (<[j := y]> l2).
Proof.
  intros ?? Hsub.
  rewrite !insert_take_drop,
    <-!Permutation_middle by eauto using lookup_lt_Some.
  rewrite <-(take_drop_middle l1 i x), <-(take_drop_middle l2 j x),
    <-!Permutation_middle in Hsub by done.
  by apply submseteq_skip, (submseteq_app_inv_l _ _ [x]).
Qed.

Lemma singleton_submseteq_l l x :
  [x] ⊆+ l x l.
Proof.
  split.
  - intros Hsub. eapply elem_of_submseteq; [|done].
    apply elem_of_list_singleton. done.
  - intros (l1&l2&->)%elem_of_list_split.
    apply submseteq_cons_middle, submseteq_nil_l.
Qed.
Lemma singleton_submseteq x y :
  [x] ⊆+ [y] x = y.
Proof. rewrite singleton_submseteq_l. apply elem_of_list_singleton. Qed.

Section submseteq_dec.
  Context `{!EqDecision A}.

  Lemma list_remove_Permutation l1 l2 k1 x :
    l1 ≡ₚ l2 list_remove x l1 = Some k1
     k2, list_remove x l2 = Some k2 k1 ≡ₚ k2.
  Proof.
    intros Hl. revert k1. induction Hl
      as [|y l1 l2 ? IH|y1 y2 l|l1 l2 l3 ? IH1 ? IH2]; simpl; intros k1 Hk1.
    - done.
    - case_decide; simplify_eq; eauto.
      destruct (list_remove x l1) as [l|] eqn:?; simplify_eq.
      destruct (IH l) as (?&?&?); simplify_option_eq; eauto.
    - simplify_option_eq; eauto using Permutation_swap.
    - destruct (IH1 k1) as (k2&?&?); trivial.
      destruct (IH2 k2) as (k3&?&?); trivial.
       k3. split; eauto. by trans k2.
  Qed.
  Lemma list_remove_Some l k x : list_remove x l = Some k l ≡ₚ x :: k.
  Proof.
    revert k. induction l as [|y l IH]; simpl; intros k ?; [done |].
    simplify_option_eq; auto. by rewrite Permutation_swap, <-IH.
  Qed.
  Lemma list_remove_Some_inv l k x :
    l ≡ₚ x :: k k', list_remove x l = Some k' k ≡ₚ k'.
  Proof.
    intros. destruct (list_remove_Permutation (x :: k) l k x) as (k'&?&?).
    - done.
    - simpl; by case_decide.
    - by k'.
  Qed.
  Lemma list_remove_list_submseteq l1 l2 :
    l1 ⊆+ l2 is_Some (list_remove_list l1 l2).
  Proof.
    split.
    - revert l2. induction l1 as [|x l1 IH]; simpl.
      { intros l2 _. by l2. }
      intros l2. rewrite submseteq_cons_l. intros (k&Hk&?).
      destruct (list_remove_Some_inv l2 k x) as (k2&?&Hk2); trivial.
      simplify_option_eq. apply IH. by rewrite <-Hk2.
    - intros [k Hk]. revert l2 k Hk.
      induction l1 as [|x l1 IH]; simpl; intros l2 k.
      { intros. apply submseteq_nil_l. }
      destruct (list_remove x l2) as [k'|] eqn:?; intros; simplify_eq.
      rewrite submseteq_cons_l. eauto using list_remove_Some.
  Qed.
  Global Instance submseteq_dec : RelDecision (submseteq : relation (list A)).
  Proof using Type×.
   refine (λ l1 l2, cast_if (decide (is_Some (list_remove_list l1 l2))));
    abstract (rewrite list_remove_list_submseteq; tauto).
  Defined.
  Global Instance Permutation_dec : RelDecision (≡ₚ@{A}).
  Proof using Type×.
    refine (λ l1 l2, cast_if_and
      (decide (l1 ⊆+ l2)) (decide (length l2 length l1)));
      [by apply submseteq_length_Permutation
      |abstract (intros He; by rewrite He in *)..].
  Defined.
End submseteq_dec.

Properties of the Forall and Exists predicate

Lemma Forall_Exists_dec (P Q : A Prop) (dec : x, {P x} + {Q x}) :
   l, {Forall P l} + {Exists Q l}.
Proof.
 refine (
  fix go l :=
  match l return {Forall P l} + {Exists Q l} with
  | []left _
  | x :: lcast_if_and (dec x) (go l)
  end); clear go; intuition.
Defined.

Export the Coq stdlib constructors under different names, because we use Forall_nil and Forall_cons for a version with a biimplication.
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Global Instance Forall_proper:
  Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Global Instance Exists_proper:
  Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.

Section Forall_Exists.
  Context (P : A Prop).

  Lemma Forall_forall l : Forall P l x, x l P x.
  Proof.
    split; [induction 1; inv 1; auto|].
    intros Hin; induction l as [|x l IH]; constructor; [apply Hin; constructor|].
    apply IH. intros ??. apply Hin. by constructor.
  Qed.
  Lemma Forall_nil : Forall P [] True.
  Proof. done. Qed.
  Lemma Forall_cons_1 x l : Forall P (x :: l) P x Forall P l.
  Proof. by inv 1. Qed.
  Lemma Forall_cons x l : Forall P (x :: l) P x Forall P l.
  Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
  Lemma Forall_singleton x : Forall P [x] P x.
  Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
  Lemma Forall_app_2 l1 l2 : Forall P l1 Forall P l2 Forall P (l1 ++ l2).
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) Forall P l1 Forall P l2.
  Proof.
    split; [induction l1; inv 1; naive_solver|].
    intros [??]; auto using Forall_app_2.
  Qed.
  Lemma Forall_true l : ( x, P x) Forall P l.
  Proof. intros ?. induction l; auto. Defined.
  Lemma Forall_impl (Q : A Prop) l :
    Forall P l ( x, P x Q x) Forall Q l.
  Proof. intros H ?. induction H; auto. Defined.
  Lemma Forall_iff l (Q : A Prop) :
    ( x, P x Q x) Forall P l Forall Q l.
  Proof. intros H. apply Forall_proper. { red; apply H. } done. Qed.
  Lemma Forall_not l : length l 0 Forall (not P) l ¬Forall P l.
  Proof. by destruct 2; inv 1. Qed.
  Lemma Forall_and {Q} l : Forall (λ x, P x Q x) l Forall P l Forall Q l.
  Proof.
    split; [induction 1; constructor; naive_solver|].
    intros [Hl Hl']; revert Hl'; induction Hl; inv 1; auto.
  Qed.
  Lemma Forall_and_l {Q} l : Forall (λ x, P x Q x) l Forall P l.
  Proof. rewrite Forall_and; tauto. Qed.
  Lemma Forall_and_r {Q} l : Forall (λ x, P x Q x) l Forall Q l.
  Proof. rewrite Forall_and; tauto. Qed.
  Lemma Forall_delete l i : Forall P l Forall P (delete i l).
  Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.

  Lemma Forall_lookup l : Forall P l i x, l !! i = Some x P x.
  Proof.
    rewrite Forall_forall. setoid_rewrite elem_of_list_lookup. naive_solver.
  Qed.
  Lemma Forall_lookup_total `{!Inhabited A} l :
    Forall P l i, i < length l P (l !!! i).
  Proof. rewrite Forall_lookup. setoid_rewrite list_lookup_alt. naive_solver. Qed.
  Lemma Forall_lookup_1 l i x : Forall P l l !! i = Some x P x.
  Proof. rewrite Forall_lookup. eauto. Qed.
  Lemma Forall_lookup_total_1 `{!Inhabited A} l i :
    Forall P l i < length l P (l !!! i).
  Proof. rewrite Forall_lookup_total. eauto. Qed.
  Lemma Forall_lookup_2 l : ( i x, l !! i = Some x P x) Forall P l.
  Proof. by rewrite Forall_lookup. Qed.
  Lemma Forall_lookup_total_2 `{!Inhabited A} l :
    ( i, i < length l P (l !!! i)) Forall P l.
  Proof. by rewrite Forall_lookup_total. Qed.
  Lemma Forall_nth d l : Forall P l i, i < length l P (nth i l d).
  Proof.
    rewrite Forall_lookup. split.
    - intros Hl ? [x Hl']%lookup_lt_is_Some_2.
      rewrite (nth_lookup_Some _ _ _ _ Hl'). by eapply Hl.
    - intros Hl i x Hl'. specialize (Hl _ (lookup_lt_Some _ _ _ Hl')).
      by rewrite (nth_lookup_Some _ _ _ _ Hl') in Hl.
  Qed.

  Lemma Forall_reverse l : Forall P (reverse l) Forall P l.
  Proof.
    induction l as [|x l IH]; simpl; [done|].
    rewrite reverse_cons, Forall_cons, Forall_app, Forall_singleton. naive_solver.
  Qed.
  Lemma Forall_tail l : Forall P l Forall P (tail l).
  Proof. destruct 1; simpl; auto. Qed.
  Lemma Forall_alter f l i :
    Forall P l ( x, l !! i = Some x P x P (f x)) Forall P (alter f i l).
  Proof.
    intros Hl. revert i. induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
  Lemma Forall_alter_inv f l i :
    Forall P (alter f i l) ( x, l !! i = Some x P (f x) P x) Forall P l.
  Proof.
    revert i. induction l; intros [|?]; simpl;
      inv 1; constructor; eauto.
  Qed.
  Lemma Forall_insert l i x : Forall P l P x Forall P (<[i:=x]>l).
  Proof. rewrite list_insert_alter; auto using Forall_alter. Qed.
  Lemma Forall_inserts l i k :
    Forall P l Forall P k Forall P (list_inserts i k l).
  Proof.
    intros Hl Hk; revert i.
    induction Hk; simpl; auto using Forall_insert.
  Qed.
  Lemma Forall_replicate n x : P x Forall P (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.
  Lemma Forall_replicate_eq n (x : A) : Forall (x =.) (replicate n x).
  Proof using -(P). induction n; simpl; constructor; auto. Qed.
  Lemma Forall_take n l : Forall P l Forall P (take n l).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall_drop n l : Forall P l Forall P (drop n l).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall_resize n x l : P x Forall P l Forall P (resize n x l).
  Proof.
    intros ? Hl. revert n.
    induction Hl; intros [|?]; simpl; auto using Forall_replicate.
  Qed.
  Lemma Forall_resize_inv n x l :
    length l n Forall P (resize n x l) Forall P l.
  Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
  Lemma Forall_sublist_lookup l i n k :
    sublist_lookup i n l = Some k Forall P l Forall P k.
  Proof.
    unfold sublist_lookup. intros; simplify_option_eq.
    auto using Forall_take, Forall_drop.
  Qed.
  Lemma Forall_sublist_alter f l i n k :
    Forall P l sublist_lookup i n l = Some k Forall P (f k)
    Forall P (sublist_alter f i n l).
  Proof.
    unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
    auto using Forall_app_2, Forall_drop, Forall_take.
  Qed.
  Lemma Forall_sublist_alter_inv f l i n k :
    sublist_lookup i n l = Some k
    Forall P (sublist_alter f i n l) Forall P (f k).
  Proof.
    unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
    rewrite !Forall_app; tauto.
  Qed.
  Lemma Forall_reshape l szs : Forall P l Forall (Forall P) (reshape szs l).
  Proof.
    revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
  Qed.
  Lemma Forall_rev_ind (Q : list A Prop) :
    Q [] ( x l, P x Forall P l Q l Q (l ++ [x]))
     l, Forall P l Q l.
  Proof.
    intros ?? l. induction l using rev_ind; auto.
    rewrite Forall_app, Forall_singleton; intros [??]; auto.
  Qed.

  Lemma Exists_exists l : Exists P l x, x l P x.
  Proof.
    split.
    - induction 1 as [x|y ?? [x [??]]]; x; by repeat constructor.
    - intros [x [Hin ?]]. induction l; [by destruct (not_elem_of_nil x)|].
      inv Hin; subst; [left|right]; auto.
  Qed.
  Lemma Exists_inv x l : Exists P (x :: l) P x Exists P l.
  Proof. inv 1; intuition trivial. Qed.
  Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) Exists P l1 Exists P l2.
  Proof.
    split.
    - induction l1; inv 1; naive_solver.
    - intros [H|H]; [induction H | induction l1]; simpl; intuition.
  Qed.
  Lemma Exists_impl (Q : A Prop) l :
    Exists P l ( x, P x Q x) Exists Q l.
  Proof. intros H ?. induction H; auto. Defined.

  Lemma Exists_not_Forall l : Exists (not P) l ¬Forall P l.
  Proof. induction 1; inv 1; contradiction. Qed.
  Lemma Forall_not_Exists l : Forall (not P) l ¬Exists P l.
  Proof. induction 1; inv 1; contradiction. Qed.

  Lemma Forall_list_difference `{!EqDecision A} l k :
    Forall P l Forall P (list_difference l k).
  Proof.
    rewrite !Forall_forall.
    intros ? x; rewrite elem_of_list_difference; naive_solver.
  Qed.
  Lemma Forall_list_union `{!EqDecision A} l k :
    Forall P l Forall P k Forall P (list_union l k).
  Proof. intros. apply Forall_app; auto using Forall_list_difference. Qed.
  Lemma Forall_list_intersection `{!EqDecision A} l k :
    Forall P l Forall P (list_intersection l k).
  Proof.
    rewrite !Forall_forall.
    intros ? x; rewrite elem_of_list_intersection; naive_solver.
  Qed.

  Context {dec : x, Decision (P x)}.
  Lemma not_Forall_Exists l : ¬Forall P l Exists (not P) l.
  Proof using Type×. intro. by destruct (Forall_Exists_dec P (not P) dec l). Qed.
  Lemma not_Exists_Forall l : ¬Exists P l Forall (not P) l.
  Proof using Type×.
    by destruct (Forall_Exists_dec (not P) P
        (λ x : A, swap_if (decide (P x))) l).
  Qed.
  Global Instance Forall_dec l : Decision (Forall P l) :=
    match Forall_Exists_dec P (not P) dec l with
    | left Hleft H
    | right Hright (Exists_not_Forall _ H)
    end.
  Global Instance Exists_dec l : Decision (Exists P l) :=
    match Forall_Exists_dec (not P) P (λ x, swap_if (decide (P x))) l with
    | left Hright (Forall_not_Exists _ H)
    | right Hleft H
    end.
End Forall_Exists.

Global Instance Forall_Permutation :
  Proper (pointwise_relation _ (↔) ==> (≡ₚ) ==> (↔)) (@Forall A).
Proof.
  intros P1 P2 HP l1 l2 Hl. rewrite !Forall_forall.
  apply forall_proper; intros x. by rewrite Hl, (HP x).
Qed.
Global Instance Exists_Permutation :
  Proper (pointwise_relation _ (↔) ==> (≡ₚ) ==> (↔)) (@Exists A).
Proof.
  intros P1 P2 HP l1 l2 Hl. rewrite !Exists_exists.
  f_equiv; intros x. by rewrite Hl, (HP x).
Qed.

Lemma head_filter_Some P `{!∀ x : A, Decision (P x)} l x :
  head (filter P l) = Some x
   l1 l2, l = l1 ++ x :: l2 Forall (λ z, ¬P z) l1.
Proof.
  intros Hl. induction l as [|x' l IH]; [done|].
  rewrite filter_cons in Hl. case_decide; simplify_eq/=.
  - [], l. repeat constructor.
  - destruct IH as (l1&l2&->&?); [done|].
     (x' :: l1), l2. by repeat constructor.
Qed.
Lemma last_filter_Some P `{!∀ x : A, Decision (P x)} l x :
  last (filter P l) = Some x
   l1 l2, l = l1 ++ x :: l2 Forall (λ z, ¬P z) l2.
Proof.
  rewrite <-(reverse_involutive (filter P l)), last_reverse, <-filter_reverse.
  intros (l1&l2&Heq&Hl)%head_filter_Some.
   (reverse l2), (reverse l1).
  rewrite <-(reverse_involutive l), Heq, reverse_app, reverse_cons, <-(assoc_L (++)).
  split; [done|by apply Forall_reverse].
Qed.

Lemma list_exist_dec P l :
  ( x, Decision (P x)) Decision ( x, x l P x).
Proof.
  refine (λ _, cast_if (decide (Exists P l))); by rewrite <-Exists_exists.
Defined.
Lemma list_forall_dec P l :
  ( x, Decision (P x)) Decision ( x, x l P x).
Proof.
  refine (λ _, cast_if (decide (Forall P l))); by rewrite <-Forall_forall.
Defined.

Lemma forallb_True (f : A bool) xs : forallb f xs Forall f xs.
Proof.
  split.
  - induction xs; naive_solver.
  - induction 1; naive_solver.
Qed.
Lemma existb_True (f : A bool) xs : existsb f xs Exists f xs.
Proof.
  split.
  - induction xs; naive_solver.
  - induction 1; naive_solver.
Qed.

Lemma replicate_as_Forall (x : A) n l :
  replicate n x = l length l = n Forall (x =.) l.
Proof. rewrite replicate_as_elem_of, Forall_forall. naive_solver. Qed.
Lemma replicate_as_Forall_2 (x : A) n l :
  length l = n Forall (x =.) l replicate n x = l.
Proof. by rewrite replicate_as_Forall. Qed.
End more_general_properties.

Lemma Forall_swap {A B} (Q : A B Prop) l1 l2 :
  Forall (λ y, Forall (Q y) l1) l2 Forall (λ x, Forall (flip Q x) l2) l1.
Proof. repeat setoid_rewrite Forall_forall. simpl. split; eauto. Qed.

Properties of the Forall2 predicate

Lemma Forall_Forall2_diag {A} (Q : A A Prop) l :
  Forall (λ x, Q x x) l Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.

Lemma Forall2_forall `{Inhabited A} B C (Q : A B C Prop) l k :
  Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
Proof.
  split; [induction 1; constructor; auto|].
  intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
  - intros z. by oinv Hlk.
  - apply IH. intros z. by oinv Hlk.
Qed.

Lemma Forall2_same_length {A B} (l : list A) (k : list B) :
  Forall2 (λ _ _, True) l k length l = length k.
Proof.
  split; [by induction 1; f_equal/=|].
  revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.

Lemma Forall2_Forall {A} P (l1 l2 : list A) :
  Forall2 P l1 l2 Forall (uncurry P) (zip l1 l2).
Proof. induction 1; constructor; auto. Qed.

Export the Coq stdlib constructors under a different name, because we use Forall2_nil and Forall2_cons for a version with a biimplication.
Definition Forall2_nil_2 := @Forall2_nil.
Definition Forall2_cons_2 := @Forall2_cons.
Section Forall2.
  Context {A B} (P : A B Prop).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma Forall2_length l k : Forall2 P l k length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall2_length_l l k n : Forall2 P l k length l = n length k = n.
  Proof. intros ? <-; symmetry. by apply Forall2_length. Qed.
  Lemma Forall2_length_r l k n : Forall2 P l k length k = n length l = n.
  Proof. intros ? <-. by apply Forall2_length. Qed.

  Lemma Forall2_true l k : ( x y, P x y) length l = length k Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 2; naive_solver. Qed.
  Lemma Forall2_flip l k : Forall2 (flip P) k l Forall2 P l k.
  Proof. split; induction 1; constructor; auto. Qed.
  Lemma Forall2_transitive {C} (Q : B C Prop) (R : A C Prop) l k lC :
    ( x y z, P x y Q y z R x z)
    Forall2 P l k Forall2 Q k lC Forall2 R l lC.
  Proof. intros ? Hl. revert lC. induction Hl; inv 1; eauto. Qed.
  Lemma Forall2_impl (Q : A B Prop) l k :
    Forall2 P l k ( x y, P x y Q x y) Forall2 Q l k.
  Proof. intros H ?. induction H; auto. Defined.
  Lemma Forall2_unique l k1 k2 :
    Forall2 P l k1 Forall2 P l k2
    ( x y1 y2, P x y1 P x y2 y1 = y2) k1 = k2.
  Proof.
    intros H. revert k2. induction H; inv 1; intros; f_equal; eauto.
  Qed.

  Lemma Forall_Forall2_l l k :
    length l = length k Forall (λ x, y, P x y) l Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.
  Lemma Forall_Forall2_r l k :
    length l = length k Forall (λ y, x, P x y) k Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.

  Lemma Forall2_Forall_l (Q : A Prop) l k :
    Forall2 P l k Forall (λ y, x, P x y Q x) k Forall Q l.
  Proof. induction 1; inv 1; eauto. Qed.
  Lemma Forall2_Forall_r (Q : B Prop) l k :
    Forall2 P l k Forall (λ x, y, P x y Q y) l Forall Q k.
  Proof. induction 1; inv 1; eauto. Qed.

  Lemma Forall2_nil_inv_l k : Forall2 P [] k k = [].
  Proof. by inv 1. Qed.
  Lemma Forall2_nil_inv_r l : Forall2 P l [] l = [].
  Proof. by inv 1. Qed.
  Lemma Forall2_nil : Forall2 P [] [] True.
  Proof. done. Qed.

  Lemma Forall2_cons_1 x l y k :
    Forall2 P (x :: l) (y :: k) P x y Forall2 P l k.
  Proof. by inv 1. Qed.
  Lemma Forall2_cons_inv_l x l k :
    Forall2 P (x :: l) k y k', P x y Forall2 P l k' k = y :: k'.
  Proof. inv 1; eauto. Qed.
  Lemma Forall2_cons_inv_r l k y :
    Forall2 P l (y :: k) x l', P x y Forall2 P l' k l = x :: l'.
  Proof. inv 1; eauto. Qed.
  Lemma Forall2_cons_nil_inv x l : Forall2 P (x :: l) [] False.
  Proof. by inv 1. Qed.
  Lemma Forall2_nil_cons_inv y k : Forall2 P [] (y :: k) False.
  Proof. by inv 1. Qed.

  Lemma Forall2_cons x l y k :
    Forall2 P (x :: l) (y :: k) P x y Forall2 P l k.
  Proof.
    split; [by apply Forall2_cons_1|]. intros []. by apply Forall2_cons_2.
  Qed.

  Lemma Forall2_app_l l1 l2 k :
    Forall2 P l1 (take (length l1) k) Forall2 P l2 (drop (length l1) k)
    Forall2 P (l1 ++ l2) k.
  Proof. intros. rewrite <-(take_drop (length l1) k). by apply Forall2_app. Qed.
  Lemma Forall2_app_r l k1 k2 :
    Forall2 P (take (length k1) l) k1 Forall2 P (drop (length k1) l) k2
    Forall2 P l (k1 ++ k2).
  Proof. intros. rewrite <-(take_drop (length k1) l). by apply Forall2_app. Qed.
  Lemma Forall2_app_inv l1 l2 k1 k2 :
    length l1 = length k1
    Forall2 P (l1 ++ l2) (k1 ++ k2) Forall2 P l1 k1 Forall2 P l2 k2.
  Proof.
    rewrite <-Forall2_same_length. induction 1; inv 1; naive_solver.
  Qed.
  Lemma Forall2_app_inv_l l1 l2 k :
    Forall2 P (l1 ++ l2) k
       k1 k2, Forall2 P l1 k1 Forall2 P l2 k2 k = k1 ++ k2.
  Proof.
    split; [|intros (?&?&?&?&->); by apply Forall2_app].
    revert k. induction l1; inv 1; naive_solver.
  Qed.
  Lemma Forall2_app_inv_r l k1 k2 :
    Forall2 P l (k1 ++ k2)
       l1 l2, Forall2 P l1 k1 Forall2 P l2 k2 l = l1 ++ l2.
  Proof.
    split; [|intros (?&?&?&?&->); by apply Forall2_app].
    revert l. induction k1; inv 1; naive_solver.
  Qed.

  Lemma Forall2_tail l k : Forall2 P l k Forall2 P (tail l) (tail k).
  Proof. destruct 1; simpl; auto. Qed.
  Lemma Forall2_take l k n : Forall2 P l k Forall2 P (take n l) (take n k).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall2_drop l k n : Forall2 P l k Forall2 P (drop n l) (drop n k).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.

  Lemma Forall2_lookup l k :
    Forall2 P l k i, option_Forall2 P (l !! i) (k !! i).
  Proof.
    split; [induction 1; intros [|?]; simpl; try constructor; eauto|].
    revert k. induction l as [|x l IH]; intros [| y k] H.
    - done.
    - oinv (H 0).
    - oinv (H 0).
    - constructor; [by oinv (H 0)|]. apply (IH _ $ λ i, H (S i)).
  Qed.
  Lemma Forall2_lookup_lr l k i x y :
    Forall2 P l k l !! i = Some x k !! i = Some y P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_lookup_l l k i x :
    Forall2 P l k l !! i = Some x y, k !! i = Some y P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_lookup_r l k i y :
    Forall2 P l k k !! i = Some y x, l !! i = Some x P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_same_length_lookup_2 l k :
    length l = length k
    ( i x y, l !! i = Some x k !! i = Some y P x y) Forall2 P l k.
  Proof.
    rewrite <-Forall2_same_length. intros Hl Hlookup.
    induction Hl as [|?????? IH]; constructor; [by apply (Hlookup 0)|].
    apply IH. apply (λ i, Hlookup (S i)).
  Qed.
  Lemma Forall2_same_length_lookup l k :
    Forall2 P l k
      length l = length k
      ( i x y, l !! i = Some x k !! i = Some y P x y).
  Proof.
    naive_solver eauto using Forall2_length,
      Forall2_lookup_lr, Forall2_same_length_lookup_2.
  Qed.

  Lemma Forall2_alter_l f l k i :
    Forall2 P l k
    ( x y, l !! i = Some x k !! i = Some y P x y P (f x) y)
    Forall2 P (alter f i l) k.
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_alter_r f l k i :
    Forall2 P l k
    ( x y, l !! i = Some x k !! i = Some y P x y P x (f y))
    Forall2 P l (alter f i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_alter f g l k i :
    Forall2 P l k
    ( x y, l !! i = Some x k !! i = Some y P x y P (f x) (g y))
    Forall2 P (alter f i l) (alter g i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.

  Lemma Forall2_insert l k x y i :
    Forall2 P l k P x y Forall2 P (<[i:=x]> l) (<[i:=y]> k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_inserts l k l' k' i :
    Forall2 P l k Forall2 P l' k'
    Forall2 P (list_inserts i l' l) (list_inserts i k' k).
  Proof. intros ? H. revert i. induction H; eauto using Forall2_insert. Qed.

  Lemma Forall2_delete l k i :
    Forall2 P l k Forall2 P (delete i l) (delete i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; simpl; intuition. Qed.
  Lemma Forall2_option_list mx my :
    option_Forall2 P mx my Forall2 P (option_list mx) (option_list my).
  Proof. destruct 1; by constructor. Qed.

  Lemma Forall2_filter Q1 Q2 `{ x, Decision (Q1 x), y, Decision (Q2 y)} l k:
    ( x y, P x y Q1 x Q2 y)
    Forall2 P l k Forall2 P (filter Q1 l) (filter Q2 k).
  Proof.
    intros HP; induction 1 as [|x y l k]; unfold filter; simpl; auto.
    simplify_option_eq by (by rewrite <-(HP x y)); repeat constructor; auto.
  Qed.

  Lemma Forall2_replicate_l k n x :
    length k = n Forall (P x) k Forall2 P (replicate n x) k.
  Proof. intros <-. induction 1; simpl; auto. Qed.
  Lemma Forall2_replicate_r l n y :
    length l = n Forall (flip P y) l Forall2 P l (replicate n y).
  Proof. intros <-. induction 1; simpl; auto. Qed.
  Lemma Forall2_replicate n x y :
    P x y Forall2 P (replicate n x) (replicate n y).
  Proof. induction n; simpl; constructor; auto. Qed.

  Lemma Forall2_rotate n l k :
    Forall2 P l k Forall2 P (rotate n l) (rotate n k).
  Proof.
    intros HAll. unfold rotate. rewrite (Forall2_length _ _ HAll).
    eauto using Forall2_app, Forall2_take, Forall2_drop.
  Qed.
  Lemma Forall2_rotate_take s e l k :
    Forall2 P l k Forall2 P (rotate_take s e l) (rotate_take s e k).
  Proof.
    intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ HAll).
    eauto using Forall2_take, Forall2_rotate.
  Qed.

  Lemma Forall2_reverse l k : Forall2 P l k Forall2 P (reverse l) (reverse k).
  Proof.
    induction 1; rewrite ?reverse_nil, ?reverse_cons; eauto using Forall2_app.
  Qed.
  Lemma Forall2_last l k : Forall2 P l k option_Forall2 P (last l) (last k).
  Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.

  Lemma Forall2_resize l k x y n :
    P x y Forall2 P l k Forall2 P (resize n x l) (resize n y k).
  Proof.
    intros. rewrite !resize_spec, (Forall2_length l k) by done.
    auto using Forall2_app, Forall2_take, Forall2_replicate.
  Qed.
  Lemma Forall2_resize_l l k x y n m :
    P x y Forall (flip P y) l
    Forall2 P (resize n x l) k Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m n)).
    { rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
    intros. assert (n = length k); subst.
    { by rewrite <-(Forall2_length (resize n x l) k), resize_length. }
    rewrite (Nat.le_add_sub (length k) m), !resize_add,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_r,
      Forall_resize, Forall_drop, resize_length.
  Qed.
  Lemma Forall2_resize_r l k x y n m :
    P x y Forall (P x) k
    Forall2 P l (resize n y k) Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m n)).
    { rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
    assert (n = length l); subst.
    { by rewrite (Forall2_length l (resize n y k)), resize_length. }
    rewrite (Nat.le_add_sub (length l) m), !resize_add,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_l,
      Forall_resize, Forall_drop, resize_length.
  Qed.
  Lemma Forall2_resize_r_flip l k x y n m :
    P x y Forall (P x) k
    length k = m Forall2 P l (resize n y k) Forall2 P (resize m x l) k.
  Proof.
    intros ?? <- ?. rewrite <-(resize_all k y) at 2.
    apply Forall2_resize_r with n; auto using Forall_true.
  Qed.

  Lemma Forall2_sublist_lookup_l l k n i l' :
    Forall2 P l k sublist_lookup n i l = Some l'
     k', sublist_lookup n i k = Some k' Forall2 P l' k'.
  Proof.
    unfold sublist_lookup. intros Hlk Hl.
     (take i (drop n k)); simplify_option_eq.
    - auto using Forall2_take, Forall2_drop.
    - apply Forall2_length in Hlk; lia.
  Qed.
  Lemma Forall2_sublist_lookup_r l k n i k' :
    Forall2 P l k sublist_lookup n i k = Some k'
     l', sublist_lookup n i l = Some l' Forall2 P l' k'.
  Proof.
    intro. unfold sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    eauto using Forall2_take, Forall2_drop.
  Qed.
  Lemma Forall2_sublist_alter f g l k i n l' k' :
    Forall2 P l k sublist_lookup i n l = Some l'
    sublist_lookup i n k = Some k' Forall2 P (f l') (g k')
    Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
  Proof.
    intro. unfold sublist_alter, sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    auto using Forall2_app, Forall2_drop, Forall2_take.
  Qed.
  Lemma Forall2_sublist_alter_l f l k i n l' k' :
    Forall2 P l k sublist_lookup i n l = Some l'
    sublist_lookup i n k = Some k' Forall2 P (f l') k'
    Forall2 P (sublist_alter f i n l) k.
  Proof.
    intro. unfold sublist_lookup, sublist_alter.
    erewrite <-Forall2_length by eauto; intros; simplify_option_eq.
    apply Forall2_app_l;
      rewrite ?take_length_le by lia; auto using Forall2_take.
    apply Forall2_app_l; erewrite Forall2_length, take_length,
      drop_length, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
    rewrite drop_drop; auto using Forall2_drop.
  Qed.

  Global Instance Forall2_dec `{dec : x y, Decision (P x y)} :
    RelDecision (Forall2 P).
  Proof.
   refine (
    fix go l k : Decision (Forall2 P l k) :=
    match l, k with
    | [], []left _
    | x :: l, y :: kcast_if_and (decide (P x y)) (go l k)
    | _, _right _
    end); clear dec go; abstract first [by constructor | by inv 1].
  Defined.
End Forall2.

Section Forall2_proper.
  Context {A} (R : relation A).

  Global Instance: Reflexive R Reflexive (Forall2 R).
  Proof. intros ? l. induction l; by constructor. Qed.
  Global Instance: Symmetric R Symmetric (Forall2 R).
  Proof. intros. induction 1; constructor; auto. Qed.
  Global Instance: Transitive R Transitive (Forall2 R).
  Proof. intros ????. apply Forall2_transitive. by apply @transitivity. Qed.
  Global Instance: Equivalence R Equivalence (Forall2 R).
  Proof. split; apply _. Qed.
  Global Instance: PreOrder R PreOrder (Forall2 R).
  Proof. split; apply _. Qed.
  Global Instance: AntiSymm (=) R AntiSymm (=) (Forall2 R).
  Proof. induction 2; inv 1; f_equal; auto. Qed.

  Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
  Proof. by constructor. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (++).
  Proof. repeat intro. by apply Forall2_app. Qed.
  Global Instance: Proper (Forall2 R ==> (=)) length.
  Proof. repeat intro. eauto using Forall2_length. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) tail.
  Proof. repeat intro. eauto using Forall2_tail. Qed.
  Global Instance: n, Proper (Forall2 R ==> Forall2 R) (take n).
  Proof. repeat intro. eauto using Forall2_take. Qed.
  Global Instance: n, Proper (Forall2 R ==> Forall2 R) (drop n).
  Proof. repeat intro. eauto using Forall2_drop. Qed.

  Global Instance: i, Proper (Forall2 R ==> option_Forall2 R) (lookup i).
  Proof. repeat intro. by apply Forall2_lookup. Qed.
  Global Instance:
    Proper ((R ==> R) ==> (=) ==> Forall2 R ==> Forall2 R) (alter (M:=list A)).
  Proof. repeat intro. subst. eauto using Forall2_alter. Qed.
  Global Instance: i, Proper (R ==> Forall2 R ==> Forall2 R) (insert i).
  Proof. repeat intro. eauto using Forall2_insert. Qed.
  Global Instance: i,
    Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (list_inserts i).
  Proof. repeat intro. eauto using Forall2_inserts. Qed.
  Global Instance: i, Proper (Forall2 R ==> Forall2 R) (delete i).
  Proof. repeat intro. eauto using Forall2_delete. Qed.

  Global Instance: Proper (option_Forall2 R ==> Forall2 R) option_list.
  Proof. repeat intro. eauto using Forall2_option_list. Qed.
  Global Instance: P `{ x, Decision (P x)},
    Proper (R ==> iff) P Proper (Forall2 R ==> Forall2 R) (filter P).
  Proof. repeat intro; eauto using Forall2_filter. Qed.

  Global Instance: n, Proper (R ==> Forall2 R) (replicate n).
  Proof. repeat intro. eauto using Forall2_replicate. Qed.
  Global Instance: n, Proper (Forall2 R ==> Forall2 R) (rotate n).
  Proof. repeat intro. eauto using Forall2_rotate. Qed.
  Global Instance: s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
  Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) reverse.
  Proof. repeat intro. eauto using Forall2_reverse. Qed.
  Global Instance: Proper (Forall2 R ==> option_Forall2 R) last.
  Proof. repeat intro. eauto using Forall2_last. Qed.
  Global Instance: n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
  Proof. repeat intro. eauto using Forall2_resize. Qed.
End Forall2_proper.

Section Forall3.
  Context {A B C} (P : A B C Prop).
  Local Hint Extern 0 (Forall3 _ _ _ _) ⇒ constructor : core.

  Lemma Forall3_app l1 l2 k1 k2 k1' k2' :
    Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'
    Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2').
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall3_cons_inv_l x l k k' :
    Forall3 P (x :: l) k k' y k2 z k2',
      k = y :: k2 k' = z :: k2' P x y z Forall3 P l k2 k2'.
  Proof. inv 1; naive_solver. Qed.
  Lemma Forall3_app_inv_l l1 l2 k k' :
    Forall3 P (l1 ++ l2) k k' k1 k2 k1' k2',
     k = k1 ++ k2 k' = k1' ++ k2' Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
  Proof.
    revert k k'. induction l1 as [|x l1 IH]; simpl; inv 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_cons_inv_m l y k k' :
    Forall3 P l (y :: k) k' x l2 z k2',
      l = x :: l2 k' = z :: k2' P x y z Forall3 P l2 k k2'.
  Proof. inv 1; naive_solver. Qed.
  Lemma Forall3_app_inv_m l k1 k2 k' :
    Forall3 P l (k1 ++ k2) k' l1 l2 k1' k2',
     l = l1 ++ l2 k' = k1' ++ k2' Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
  Proof.
    revert l k'. induction k1 as [|x k1 IH]; simpl; inv 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_cons_inv_r l k z k' :
    Forall3 P l k (z :: k') x l2 y k2,
      l = x :: l2 k = y :: k2 P x y z Forall3 P l2 k2 k'.
  Proof. inv 1; naive_solver. Qed.
  Lemma Forall3_app_inv_r l k k1' k2' :
    Forall3 P l k (k1' ++ k2') l1 l2 k1 k2,
      l = l1 ++ l2 k = k1 ++ k2 Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
  Proof.
    revert l k. induction k1' as [|x k1' IH]; simpl; inv 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_impl (Q : A B C Prop) l k k' :
    Forall3 P l k k' ( x y z, P x y z Q x y z) Forall3 Q l k k'.
  Proof. intros Hl ?; induction Hl; auto. Defined.
  Lemma Forall3_length_lm l k k' : Forall3 P l k k' length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall3_length_lr l k k' : Forall3 P l k k' length l = length k'.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall3_lookup_lmr l k k' i x y z :
    Forall3 P l k k'
    l !! i = Some x k !! i = Some y k' !! i = Some z P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ???; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_l l k k' i x :
    Forall3 P l k k' l !! i = Some x
     y z, k !! i = Some y k' !! i = Some z P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_m l k k' i y :
    Forall3 P l k k' k !! i = Some y
     x z, l !! i = Some x k' !! i = Some z P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_r l k k' i z :
    Forall3 P l k k' k' !! i = Some z
     x y, l !! i = Some x k !! i = Some y P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_alter_lm f g l k k' i :
    Forall3 P l k k'
    ( x y z, l !! i = Some x k !! i = Some y k' !! i = Some z
      P x y z P (f x) (g y) z)
    Forall3 P (alter f i l) (alter g i k) k'.
  Proof. intros Hl. revert i. induction Hl; intros [|]; auto. Qed.
End Forall3.

Properties of subseteq

Section subseteq.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Global Instance list_subseteq_po : PreOrder (⊆@{list A}).
Proof. split; firstorder. Qed.
Lemma list_subseteq_nil l : [] l.
Proof. intros x. by rewrite elem_of_nil. Qed.
Lemma list_nil_subseteq l : l [] l = [].
Proof.
  intro Hl. destruct l as [|x l1]; [done|]. exfalso.
  rewrite <-(elem_of_nil x).
  apply Hl, elem_of_cons. by left.
Qed.
Lemma list_subseteq_skip x l1 l2 : l1 l2 x :: l1 x :: l2.
Proof.
  intros Hin y Hy%elem_of_cons.
  destruct Hy as [-> | Hy]; [by left|]. right. by apply Hin.
Qed.
Lemma list_subseteq_cons x l1 l2 : l1 l2 l1 x :: l2.
Proof. intros Hin y Hy. right. by apply Hin. Qed.
Lemma list_subseteq_app_l l1 l2 l : l1 l2 l1 l2 ++ l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_app_r l1 l2 l : l1 l2 l1 l ++ l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.

Lemma list_subseteq_app_iff_l l1 l2 l :
  l1 ++ l2 l l1 l l2 l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_cons_iff x l1 l2 :
  x :: l1 l2 x l2 l1 l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_cons. naive_solver. Qed.

Lemma list_delete_subseteq i l : delete i l l.
Proof.
  revert i. induction l as [|x l IHl]; intros i; [done|].
  destruct i as [|i];
    [by apply list_subseteq_cons|by apply list_subseteq_skip].
Qed.
Lemma list_filter_subseteq P `{!∀ x : A, Decision (P x)} l :
  filter P l l.
Proof.
  induction l as [|x l IHl]; [done|]. rewrite filter_cons.
  destruct (decide (P x));
    [by apply list_subseteq_skip|by apply list_subseteq_cons].
Qed.
Lemma subseteq_drop n l : drop n l l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_r. done. Qed.
Lemma subseteq_take n l : take n l l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_l. done. Qed.

Global Instance list_subseteq_Permutation:
  Proper ((≡ₚ) ==> (≡ₚ) ==> (↔)) (⊆@{list A}) .
Proof.
  intros l1 l2 Hl k1 k2 Hk. apply forall_proper; intros x. by rewrite Hl, Hk.
Qed.

Global Program Instance list_subseteq_dec `{!EqDecision A} : RelDecision (⊆@{list A}) :=
  λ xs ys, cast_if (decide (Forall (λ x, x ys) xs)).
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
End subseteq.

Setoids
Section setoid.
  Context `{Equiv A}.
  Implicit Types l k : list A.

  Lemma list_equiv_Forall2 l k : l k Forall2 (≡) l k.
  Proof. split; induction 1; constructor; auto. Qed.
  Lemma list_equiv_lookup l k : l k i, l !! i k !! i.
  Proof.
    rewrite list_equiv_Forall2, Forall2_lookup.
    by setoid_rewrite option_equiv_Forall2.
  Qed.

  Global Instance list_equivalence :
    Equivalence (≡@{A}) Equivalence (≡@{list A}).
  Proof.
    split.
    - intros l. by apply list_equiv_Forall2.
    - intros l k; rewrite !list_equiv_Forall2; by intros.
    - intros l1 l2 l3; rewrite !list_equiv_Forall2; intros; by trans l2.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.

  Global Instance cons_proper : Proper ((≡) ==> (≡) ==> (≡@{list A})) cons.
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper ((≡) ==> (≡) ==> (≡@{list A})) app.
  Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
  Global Instance length_proper : Proper ((≡@{list A}) ==> (=)) length.
  Proof. induction 1; f_equal/=; auto. Qed.
  Global Instance tail_proper : Proper ((≡@{list A}) ==> (≡)) tail.
  Proof. destruct 1; try constructor; auto. Qed.
  Global Instance take_proper n : Proper ((≡@{list A}) ==> (≡)) (take n).
  Proof. induction n; destruct 1; constructor; auto. Qed.
  Global Instance drop_proper n : Proper ((≡@{list A}) ==> (≡)) (drop n).
  Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
  Global Instance list_lookup_proper i : Proper ((≡@{list A}) ==> (≡)) (lookup i).
  Proof. induction i; destruct 1; simpl; try constructor; auto. Qed.
  Global Instance list_lookup_total_proper `{!Inhabited A} i :
    Proper (≡@{A}) inhabitant
    Proper ((≡@{list A}) ==> (≡)) (lookup_total i).
  Proof. intros ?. induction i; destruct 1; simpl; auto. Qed.
  Global Instance list_alter_proper :
    Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡@{list A})) alter.
  Proof.
    intros f1 f2 Hf i ? <-. induction i; destruct 1; constructor; eauto.
  Qed.
  Global Instance list_insert_proper i :
    Proper ((≡) ==> (≡) ==> (≡@{list A})) (insert i).
  Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
  Global Instance list_inserts_proper i :
    Proper ((≡) ==> (≡) ==> (≡@{list A})) (list_inserts i).
  Proof.
    intros k1 k2 Hk; revert i.
    induction Hk; intros ????; simpl; try f_equiv; naive_solver.
  Qed.
  Global Instance list_delete_proper i :
    Proper ((≡) ==> (≡@{list A})) (delete i).
  Proof. induction i; destruct 1; try constructor; eauto. Qed.
  Global Instance option_list_proper : Proper ((≡) ==> (≡@{list A})) option_list.
  Proof. destruct 1; repeat constructor; auto. Qed.
  Global Instance list_filter_proper P `{ x, Decision (P x)} :
    Proper ((≡) ==> iff) P Proper ((≡) ==> (≡@{list A})) (filter P).
  Proof. intros ???. rewrite !list_equiv_Forall2. by apply Forall2_filter. Qed.
  Global Instance replicate_proper n : Proper ((≡@{A}) ==> (≡)) (replicate n).
  Proof. induction n; constructor; auto. Qed.
  Global Instance rotate_proper n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
  Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.
  Global Instance rotate_take_proper s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
  Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
  Global Instance reverse_proper : Proper ((≡) ==> (≡@{list A})) reverse.
  Proof.
    induction 1; rewrite ?reverse_cons; simpl; [constructor|].
    apply app_proper; repeat constructor; auto.
  Qed.
  Global Instance last_proper : Proper ((≡) ==> (≡)) (@last A).
  Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.
  Global Instance resize_proper n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
  Proof.
    induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
  Qed.

  Global Instance cons_equiv_inj : Inj2 (≡) (≡) (≡) (@cons A).
  Proof. inv 1; auto. Qed.

  Lemma nil_equiv_eq l : l [] l = [].
  Proof. split; [by inv 1|intros ->; constructor]. Qed.
  Lemma cons_equiv_eq l x k : l x :: k x' k', l = x' :: k' x' x k' k.
  Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.
  Lemma list_singleton_equiv_eq l x : l [x] x', l = [x'] x' x.
  Proof. rewrite cons_equiv_eq. setoid_rewrite nil_equiv_eq. naive_solver. Qed.
  Lemma app_equiv_eq l k1 k2 :
    l k1 ++ k2 k1' k2', l = k1' ++ k2' k1' k1 k2' k2.
  Proof.
    split; [|intros (?&?&->&?&?); by f_equiv].
    setoid_rewrite list_equiv_Forall2. rewrite Forall2_app_inv_r. naive_solver.
  Qed.

  Lemma equiv_Permutation l1 l2 l3 :
    l1 l2 l2 ≡ₚ l3 l2', l1 ≡ₚ l2' l2' l3.
  Proof.
    intros Hequiv Hperm. revert l1 Hequiv.
    induction Hperm as [|x l2 l3 _ IH|x y l2|l2 l3 l4 _ IH1 _ IH2]; intros l1.
    - intros ?. by l1.
    - intros (x'&l2'&->&?&(l2''&?&?)%IH)%cons_equiv_eq.
       (x' :: l2''). by repeat constructor.
    - intros (y'&?&->&?&(x'&l2'&->&?&?)%cons_equiv_eq)%cons_equiv_eq.
       (x' :: y' :: l2'). by repeat constructor.
    - intros (l2'&?&(l3'&?&?)%IH2)%IH1. l3'. split; [by etrans|done].
  Qed.

  Lemma Permutation_equiv `{!Equivalence (≡@{A})} l1 l2 l3 :
    l1 ≡ₚ l2 l2 l3 l2', l1 l2' l2' ≡ₚ l3.
  Proof.
    intros Hperm%symmetry Hequiv%symmetry.
    destruct (equiv_Permutation _ _ _ Hequiv Hperm) as (l2'&?&?).
    by l2'.
  Qed.
End setoid.

Properties of the find function

Section find.
  Context {A} (P : A Prop) `{ x, Decision (P x)}.

  Lemma list_find_Some l i x :
    list_find P l = Some (i,x)
      l !! i = Some x P x j y, l !! j = Some y j < i ¬P y.
  Proof.
    revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
    case_decide.
    - split; [naive_solver lia|]. intros (Hi&HP&Hlt).
      destruct i as [|i]; simplify_eq/=; [done|].
      destruct (Hlt 0 y); naive_solver lia.
    - split.
      + intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
        apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
        intros [|j] ?; naive_solver lia.
      + intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
        rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
        intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
  Qed.

  Lemma list_find_elem_of l x : x l P x is_Some (list_find P l).
  Proof.
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
    by destruct IH as [[i x'] ->]; [| (S i, x')].
  Qed.

  Lemma list_find_None l :
    list_find P l = None Forall (λ x, ¬P x) l.
  Proof.
    rewrite eq_None_not_Some, Forall_forall. split.
    - intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
    - intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
  Qed.

  Lemma list_find_app_None l1 l2 :
    list_find P (l1 ++ l2) = None list_find P l1 = None list_find P l2 = None.
  Proof. by rewrite !list_find_None, Forall_app. Qed.

  Lemma list_find_app_Some l1 l2 i x :
    list_find P (l1 ++ l2) = Some (i,x)
      list_find P l1 = Some (i,x)
      length l1 i list_find P l1 = None list_find P l2 = Some (i - length l1,x).
  Proof.
    split.
    - intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
      + left. apply list_find_Some; eauto using lookup_app_l_Some.
      + right. split; [lia|]. split.
        { apply list_find_None, Forall_lookup. intros j z ??.
          assert (j < length l1) by eauto using lookup_lt_Some.
          naive_solver eauto using lookup_app_l_Some with lia. }
        apply list_find_Some. split_and!; [done..|].
        intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
        by rewrite lookup_app_r, Nat.add_sub' by lia.
    - intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
      + apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
        assert (i < length l1) by eauto using lookup_lt_Some.
        intros j y ?%lookup_app_Some; naive_solver eauto with lia.
      + rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
        intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
        by eapply (Forall_lookup_1 (not P) l1); [by apply list_find_None|..].
  Qed.
  Lemma list_find_app_l l1 l2 i x:
    list_find P l1 = Some (i, x) list_find P (l1 ++ l2) = Some (i, x).
  Proof. rewrite list_find_app_Some. auto. Qed.
  Lemma list_find_app_r l1 l2:
    list_find P l1 = None
    list_find P (l1 ++ l2) = prod_map (λ x, x + length l1) id <$> list_find P l2.
  Proof.
    intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
    - intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
    - intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
  Qed.

  Lemma list_find_insert_Some l i j x y :
    list_find P (<[i:=x]> l) = Some (j,y)
      (j < i list_find P l = Some (j,y))
      (i = j x = y j < length l P x k z, l !! k = Some z k < i ¬P z)
      (i < j ¬P x list_find P l = Some (j,y) z, l !! i = Some z ¬P z)
      ( z, i < j ¬P x P y P z l !! i = Some z l !! j = Some y
             k z, l !! k = Some z k i k < j ¬P z).
   Proof.
     split.
     - intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
       { right; left. split_and!; [done..|]. intros k z ??.
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       assert (j < i i < j) as [?|?] by lia.
       { left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       right; right. assert (j < length l) by eauto using lookup_lt_Some.
       destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
       destruct (decide (P z)).
       { right. z. split_and!; [done| |done..|].
         + apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
         + intros k z' ???.
           apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       left. split_and!; [done|..|naive_solver].
       + apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
       + apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
         destruct (decide (k = i)) as [->|]; [naive_solver|].
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
     - intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
         apply list_find_Some.
       + apply list_find_Some in Hl as (?&?&Hleast).
         rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + rewrite list_lookup_insert by done. split_and!; [by auto..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + apply list_find_Some in Hl as (?&?&Hleast).
         rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
  Qed.

  Lemma list_find_fmap {B : Type} (f : B A) (l : list B) :
    list_find P (f <$> l) = prod_map id f <$> list_find (P f) l.
  Proof.
    induction l as [|x l IH]; [done|]; csimpl.     case_decide; [done|].
    rewrite IH. by destruct (list_find (P f) l).
  Qed.

  Lemma list_find_ext (Q : A Prop) `{ x, Decision (Q x)} l :
    ( x, P x Q x)
    list_find P l = list_find Q l.
  Proof.
    intros HPQ. induction l as [|x l IH]; simpl; [done|].
    by rewrite (decide_ext (P x) (Q x)), IH by done.
  Qed.
End find.

Properties of the monadic operations

Lemma list_fmap_id {A} (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.

Global Instance list_fmap_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) fmap.
Proof. induction 2; csimpl; constructor; auto. Qed.

Section fmap.
  Context {A B : Type} (f : A B).
  Implicit Types l : list A.

  Lemma list_fmap_compose {C} (g : B C) l : g f <$> l = g <$> (f <$> l).
  Proof. induction l; f_equal/=; auto. Qed.

  Lemma list_fmap_inj_1 f' l x :
    f <$> l = f' <$> l x l f x = f' x.
  Proof. intros Hf Hin. induction Hin; naive_solver. Qed.

  Definition fmap_nil : f <$> [] = [] := eq_refl.
  Definition fmap_cons x l : f <$> x :: l = f x :: (f <$> l) := eq_refl.

  Lemma list_fmap_singleton x : f <$> [x] = [f x].
  Proof. reflexivity. Qed.
  Lemma fmap_app l1 l2 : f <$> l1 ++ l2 = (f <$> l1) ++ (f <$> l2).
  Proof. by induction l1; f_equal/=. Qed.
  Lemma fmap_snoc l x : f <$> l ++ [x] = (f <$> l) ++ [f x].
  Proof. rewrite fmap_app, list_fmap_singleton. done. Qed.
  Lemma fmap_nil_inv k : f <$> k = [] k = [].
  Proof. by destruct k. Qed.
  Lemma fmap_cons_inv y l k :
    f <$> l = y :: k x l', y = f x k = f <$> l' l = x :: l'.
  Proof. intros. destruct l; simplify_eq/=; eauto. Qed.
  Lemma fmap_app_inv l k1 k2 :
    f <$> l = k1 ++ k2 l1 l2, k1 = f <$> l1 k2 = f <$> l2 l = l1 ++ l2.
  Proof.
    revert l. induction k1 as [|y k1 IH]; simpl; [intros l ?; by eexists [],l|].
    intros [|x l] ?; simplify_eq/=.
    destruct (IH l) as (l1&l2&->&->&->); [done|]. by (x :: l1), l2.
  Qed.
  Lemma fmap_option_list mx :
    f <$> (option_list mx) = option_list (f <$> mx).
  Proof. by destruct mx. Qed.

  Lemma list_fmap_alt l :
    f <$> l = omap (λ x, Some (f x)) l.
  Proof. induction l; simplify_eq/=; done. Qed.

  Lemma fmap_length l : length (f <$> l) = length l.
  Proof. by induction l; f_equal/=. Qed.
  Lemma fmap_reverse l : f <$> reverse l = reverse (f <$> l).
  Proof.
    induction l as [|?? IH]; csimpl; by rewrite ?reverse_cons, ?fmap_app, ?IH.
  Qed.
  Lemma fmap_tail l : f <$> tail l = tail (f <$> l).
  Proof. by destruct l. Qed.
  Lemma fmap_last l : last (f <$> l) = f <$> last l.
  Proof. induction l as [|? []]; simpl; auto. Qed.
  Lemma fmap_replicate n x : f <$> replicate n x = replicate n (f x).
  Proof. by induction n; f_equal/=. Qed.
  Lemma fmap_take n l : f <$> take n l = take n (f <$> l).
  Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
  Lemma fmap_drop n l : f <$> drop n l = drop n (f <$> l).
  Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
  Lemma fmap_resize n x l : f <$> resize n x l = resize n (f x) (f <$> l).
  Proof.
    revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
  Qed.
  Lemma const_fmap (l : list A) (y : B) :
    ( x, f x = y) f <$> l = replicate (length l) y.
  Proof. intros; induction l; f_equal/=; auto. Qed.
  Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i).
  Proof. revert i. induction l; intros [|n]; by try revert n. Qed.
  Lemma list_lookup_fmap_Some l i x :
    (f <$> l) !! i = Some x y, l !! i = Some y x = f y.
  Proof. by rewrite list_lookup_fmap, fmap_Some. Qed.
  Lemma list_lookup_total_fmap `{!Inhabited A, !Inhabited B} l i :
    i < length l (f <$> l) !!! i = f (l !!! i).
  Proof.
    intros [x Hx]%lookup_lt_is_Some_2.
    by rewrite !list_lookup_total_alt, list_lookup_fmap, Hx.
  Qed.
  Lemma list_lookup_fmap_inv l i x :
    (f <$> l) !! i = Some x y, x = f y l !! i = Some y.
  Proof.
    intros Hi. rewrite list_lookup_fmap in Hi.
    destruct (l !! i) eqn:?; simplify_eq/=; eauto.
  Qed.
  Lemma list_fmap_insert l i x: f <$> <[i:=x]>l = <[i:=f x]>(f <$> l).
  Proof. revert i. by induction l; intros [|i]; f_equal/=. Qed.
  Lemma list_alter_fmap (g : A A) (h : B B) l i :
    Forall (λ x, f (g x) = h (f x)) l f <$> alter g i l = alter h i (f <$> l).
  Proof. intros Hl. revert i. by induction Hl; intros [|i]; f_equal/=. Qed.
  Lemma list_fmap_delete l i : f <$> (delete i l) = delete i (f <$> l).
  Proof.
    revert i. induction l; intros i; destruct i; csimpl; eauto.
    naive_solver congruence.
  Qed.

  Lemma elem_of_list_fmap_1 l x : x l f x f <$> l.
  Proof. induction 1; csimpl; rewrite elem_of_cons; intuition. Qed.
  Lemma elem_of_list_fmap_1_alt l x y : x l y = f x y f <$> l.
  Proof. intros. subst. by apply elem_of_list_fmap_1. Qed.
  Lemma elem_of_list_fmap_2 l x : x f <$> l y, x = f y y l.
  Proof.
    induction l as [|y l IH]; simpl; inv 1.
    - y. split; [done | by left].
    - destruct IH as [z [??]]; [done|]. z. split; [done | by right].
  Qed.
  Lemma elem_of_list_fmap l x : x f <$> l y, x = f y y l.
  Proof.
    naive_solver eauto using elem_of_list_fmap_1_alt, elem_of_list_fmap_2.
  Qed.
  Lemma elem_of_list_fmap_2_inj `{!Inj (=) (=) f} l x : f x f <$> l x l.
  Proof.
    intros (y, (E, I))%elem_of_list_fmap_2. by rewrite (inj f) in I.
  Qed.
  Lemma elem_of_list_fmap_inj `{!Inj (=) (=) f} l x : f x f <$> l x l.
  Proof.
    naive_solver eauto using elem_of_list_fmap_1, elem_of_list_fmap_2_inj.
  Qed.

  Lemma list_fmap_inj R1 R2 :
    Inj R1 R2 f Inj (Forall2 R1) (Forall2 R2) (fmap f).
  Proof.
    intros ? l1. induction l1; intros [|??]; inv 1; constructor; auto.
  Qed.
  Global Instance list_fmap_eq_inj : Inj (=) (=) f Inj (=@{list A}) (=) (fmap f).
  Proof.
    intros ?%list_fmap_inj ?? ?%list_eq_Forall2%(inj _). by apply list_eq_Forall2.
  Qed.
  Global Instance list_fmap_equiv_inj `{!Equiv A, !Equiv B} :
    Inj (≡) (≡) f Inj (≡@{list A}) (≡) (fmap f).
  Proof.
    intros ?%list_fmap_inj ?? ?%list_equiv_Forall2%(inj _).
    by apply list_equiv_Forall2.
  Qed.

A version of NoDup_fmap_2 that does not require f to be injective for *all* inputs.
  Lemma NoDup_fmap_2_strong l :
    ( x y, x l y l f x = f y x = y)
    NoDup l
    NoDup (f <$> l).
  Proof.
    intros Hinj. induction 1 as [|x l ?? IH]; simpl; constructor.
    - intros [y [Hxy ?]]%elem_of_list_fmap.
      apply Hinj in Hxy; [by subst|by constructor..].
    - apply IH. clear- Hinj.
      intros x' y Hx' Hy. apply Hinj; by constructor.
  Qed.

  Lemma NoDup_fmap_1 l : NoDup (f <$> l) NoDup l.
  Proof.
    induction l; simpl; inv 1; constructor; auto.
    rewrite elem_of_list_fmap in ×. naive_solver.
  Qed.
  Lemma NoDup_fmap_2 `{!Inj (=) (=) f} l : NoDup l NoDup (f <$> l).
  Proof. apply NoDup_fmap_2_strong. intros ?? _ _. apply (inj f). Qed.
  Lemma NoDup_fmap `{!Inj (=) (=) f} l : NoDup (f <$> l) NoDup l.
  Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.

  Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.
  Global Instance fmap_submseteq: Proper (submseteq ==> submseteq) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.
  Global Instance fmap_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.

  Lemma Forall_fmap_ext_1 (g : A B) (l : list A) :
    Forall (λ x, f x = g x) l fmap f l = fmap g l.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall_fmap_ext (g : A B) (l : list A) :
    Forall (λ x, f x = g x) l fmap f l = fmap g l.
  Proof.
    split; [auto using Forall_fmap_ext_1|].
    induction l; simpl; constructor; simplify_eq; auto.
  Qed.
  Lemma Forall_fmap (P : B Prop) l : Forall P (f <$> l) Forall (P f) l.
  Proof. split; induction l; inv 1; constructor; auto. Qed.
  Lemma Exists_fmap (P : B Prop) l : Exists P (f <$> l) Exists (P f) l.
  Proof. split; induction l; inv 1; constructor; by auto. Qed.

  Lemma Forall2_fmap_l {C} (P : B C Prop) l k :
    Forall2 P (f <$> l) k Forall2 (P f) l k.
  Proof.
    split; revert k; induction l; inv 1; constructor; auto.
  Qed.
  Lemma Forall2_fmap_r {C} (P : C B Prop) k l :
    Forall2 P k (f <$> l) Forall2 (λ x, P x f) k l.
  Proof.
    split; revert k; induction l; inv 1; constructor; auto.
  Qed.
  Lemma Forall2_fmap_1 {C D} (g : C D) (P : B D Prop) l k :
    Forall2 P (f <$> l) (g <$> k) Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
  Proof. revert k; induction l; intros [|??]; inv 1; auto. Qed.
  Lemma Forall2_fmap_2 {C D} (g : C D) (P : B D Prop) l k :
    Forall2 (λ x1 x2, P (f x1) (g x2)) l k Forall2 P (f <$> l) (g <$> k).
  Proof. induction 1; csimpl; auto. Qed.
  Lemma Forall2_fmap {C D} (g : C D) (P : B D Prop) l k :
    Forall2 P (f <$> l) (g <$> k) Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
  Proof. split; auto using Forall2_fmap_1, Forall2_fmap_2. Qed.

  Lemma list_fmap_bind {C} (g : B list C) l : (f <$> l) ≫= g = l ≫= g f.
  Proof. by induction l; f_equal/=. Qed.
End fmap.

Section ext.
  Context {A B : Type}.
  Implicit Types l : list A.

  Lemma list_fmap_ext (f g : A B) l :
    ( i x, l !! i = Some x f x = g x) f <$> l = g <$> l.
  Proof.
    intros Hfg. apply list_eq; intros i. rewrite !list_lookup_fmap.
    destruct (l !! i) eqn:?; f_equal/=; eauto.
  Qed.
  Lemma list_fmap_equiv_ext `{!Equiv B} (f g : A B) l :
    ( i x, l !! i = Some x f x g x) f <$> l g <$> l.
  Proof.
    intros Hl. apply list_equiv_lookup; intros i. rewrite !list_lookup_fmap.
    destruct (l !! i) eqn:?; simpl; constructor; eauto.
  Qed.
End ext.

Lemma list_alter_fmap_mono {A} (f : A A) (g : A A) l i :
  Forall (λ x, f (g x) = g (f x)) l f <$> alter g i l = alter g i (f <$> l).
Proof. auto using list_alter_fmap. Qed.
Lemma NoDup_fmap_fst {A B} (l : list (A × B)) :
  ( x y1 y2, (x,y1) l (x,y2) l y1 = y2) NoDup l NoDup (l.*1).
Proof.
  intros Hunique. induction 1 as [|[x1 y1] l Hin Hnodup IH]; csimpl; constructor.
  - rewrite elem_of_list_fmap.
    intros [[x2 y2] [??]]; simpl in *; subst. destruct Hin.
    rewrite (Hunique x2 y1 y2); rewrite ?elem_of_cons; auto.
  - apply IH. intros. eapply Hunique; rewrite ?elem_of_cons; eauto.
Qed.

Global Instance list_omap_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) omap.
Proof.
  intros f1 f2 Hf. induction 1 as [|x1 x2 l1 l2 Hx Hl]; csimpl; [constructor|].
  destruct (Hf _ _ Hx); by repeat f_equiv.
Qed.

Section omap.
  Context {A B : Type} (f : A option B).
  Implicit Types l : list A.

  Lemma list_fmap_omap {C} (g : B C) l :
    g <$> omap f l = omap (λ x, g <$> (f x)) l.
  Proof.
    induction l as [|x y IH]; [done|]. csimpl.
    destruct (f x); csimpl; [|done]. by f_equal.
  Qed.
  Lemma list_omap_ext {A'} (g : A' option B) l1 (l2 : list A') :
    Forall2 (λ a b, f a = g b) l1 l2
    omap f l1 = omap g l2.
  Proof.
    induction 1 as [|x y l l' Hfg ? IH]; [done|].
    csimpl. rewrite Hfg. destruct (g y); [|done]. by f_equal.
  Qed.
  Lemma elem_of_list_omap l y : y omap f l x, x l f x = Some y.
  Proof.
    split.
    - induction l as [|x l]; csimpl; repeat case_match;
        repeat (setoid_rewrite elem_of_nil || setoid_rewrite elem_of_cons);
        naive_solver.
    - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
        simplify_eq; try constructor; auto.
  Qed.
  Global Instance omap_Permutation : Proper ((≡ₚ) ==> (≡ₚ)) (omap f).
  Proof. induction 1; simpl; repeat case_match; econstructor; eauto. Qed.

  Lemma omap_app l1 l2 :
    omap f (l1 ++ l2) = omap f l1 ++ omap f l2.
  Proof. induction l1; csimpl; repeat case_match; naive_solver congruence. Qed.
  Lemma omap_option_list mx :
    omap f (option_list mx) = option_list (mx ≫= f).
  Proof. by destruct mx. Qed.
End omap.

Global Instance list_bind_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) mbind.
Proof. induction 2; csimpl; constructor || f_equiv; auto. Qed.

Section bind.
  Context {A B : Type} (f : A list B).

  Lemma list_bind_ext (g : A list B) l1 l2 :
    ( x, f x = g x) l1 = l2 l1 ≫= f = l2 ≫= g.
  Proof. intros ? <-. by induction l1; f_equal/=. Qed.
  Lemma Forall_bind_ext (g : A list B) (l : list A) :
    Forall (λ x, f x = g x) l l ≫= f = l ≫= g.
  Proof. by induction 1; f_equal/=. Qed.
  Global Instance bind_sublist: Proper (sublist ==> sublist) (mbind f).
  Proof.
    induction 1; simpl; auto;
      [by apply sublist_app|by apply sublist_inserts_l].
  Qed.
  Global Instance bind_submseteq: Proper (submseteq ==> submseteq) (mbind f).
  Proof.
    induction 1; csimpl; auto.
    - by apply submseteq_app.
    - by rewrite !(assoc_L (++)), (comm (++) (f _)).
    - by apply submseteq_inserts_l.
    - etrans; eauto.
  Qed.
  Global Instance bind_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (mbind f).
  Proof.
    induction 1; csimpl; auto.
    - by f_equiv.
    - by rewrite !(assoc_L (++)), (comm (++) (f _)).
    - etrans; eauto.
  Qed.
  Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
  Proof. done. Qed.
  Lemma bind_singleton x : [x] ≫= f = f x.
  Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
  Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
  Proof. by induction l1; csimpl; rewrite <-?(assoc_L (++)); f_equal. Qed.
  Lemma elem_of_list_bind (x : B) (l : list A) :
    x l ≫= f y, x f y y l.
  Proof.
    split.
    - induction l as [|y l IH]; csimpl; [inv 1|].
      rewrite elem_of_app. intros [?|?].
      + y. split; [done | by left].
      + destruct IH as [z [??]]; [done|]. z. split; [done | by right].
    - intros [y [Hx Hy]]. induction Hy; csimpl; rewrite elem_of_app; intuition.
  Qed.
  Lemma Forall_bind (P : B Prop) l :
    Forall P (l ≫= f) Forall (Forall P f) l.
  Proof.
    split.
    - induction l; csimpl; rewrite ?Forall_app; constructor; csimpl; intuition.
    - induction 1; csimpl; rewrite ?Forall_app; auto.
  Qed.
  Lemma Forall2_bind {C D} (g : C list D) (P : B D Prop) l1 l2 :
    Forall2 (λ x1 x2, Forall2 P (f x1) (g x2)) l1 l2
    Forall2 P (l1 ≫= f) (l2 ≫= g).
  Proof. induction 1; csimpl; auto using Forall2_app. Qed.
  Lemma NoDup_bind l :
    ( x1 x2 y, x1 l x2 l y f x1 y f x2 x1 = x2)
    ( x, x l NoDup (f x)) NoDup l NoDup (l ≫= f).
  Proof.
    intros Hinj Hf. induction 1 as [|x l ?? IH]; csimpl; [constructor|].
    apply NoDup_app. split_and!.
    - eauto 10 using elem_of_list_here.
    - intros y ? (x'&?&?)%elem_of_list_bind.
      destruct (Hinj x x' y); auto using elem_of_list_here, elem_of_list_further.
    - eauto 10 using elem_of_list_further.
  Qed.
End bind.

Global Instance list_join_proper `{!Equiv A} :
  Proper ((≡) ==> (≡@{list A})) mjoin.
Proof. induction 1; simpl; [constructor|solve_proper]. Qed.

Section ret_join.
  Context {A : Type}.

  Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id.
  Proof. by induction ls; f_equal/=. Qed.
  Global Instance join_Permutation : Proper ((≡ₚ@{list A}) ==> (≡ₚ)) mjoin.
  Proof. intros ?? E. by rewrite !list_join_bind, E. Qed.
  Lemma elem_of_list_ret (x y : A) : x @mret list _ A y x = y.
  Proof. apply elem_of_list_singleton. Qed.
  Lemma elem_of_list_join (x : A) (ls : list (list A)) :
    x mjoin ls l : list A, x l l ls.
  Proof. by rewrite list_join_bind, elem_of_list_bind. Qed.
  Lemma join_nil (ls : list (list A)) : mjoin ls = [] Forall (.= []) ls.
  Proof.
    split; [|by induction 1 as [|[|??] ?]].
    by induction ls as [|[|??] ?]; constructor; auto.
  Qed.
  Lemma join_nil_1 (ls : list (list A)) : mjoin ls = [] Forall (.= []) ls.
  Proof. by rewrite join_nil. Qed.
  Lemma join_nil_2 (ls : list (list A)) : Forall (.= []) ls mjoin ls = [].
  Proof. by rewrite join_nil. Qed.

  Lemma join_app (l1 l2 : list (list A)) :
    mjoin (l1 ++ l2) = mjoin l1 ++ mjoin l2.
  Proof.
    induction l1 as [|x l1 IH]; simpl; [done|]. by rewrite <-(assoc_L _ _), IH.
  Qed.

  Lemma Forall_join (P : A Prop) (ls: list (list A)) :
    Forall (Forall P) ls Forall P (mjoin ls).
  Proof. induction 1; simpl; auto using Forall_app_2. Qed.
  Lemma Forall2_join {B} (P : A B Prop) ls1 ls2 :
    Forall2 (Forall2 P) ls1 ls2 Forall2 P (mjoin ls1) (mjoin ls2).
  Proof. induction 1; simpl; auto using Forall2_app. Qed.
End ret_join.

Global Instance mapM_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{option (list B)})) mapM.
Proof.
  induction 2; csimpl; repeat (f_equiv || constructor || intro || auto).
Qed.

Section mapM.
  Context {A B : Type} (f : A option B).

  Lemma mapM_ext (g : A option B) l : ( x, f x = g x) mapM f l = mapM g l.
  Proof. intros Hfg. by induction l as [|?? IHl]; simpl; rewrite ?Hfg, ?IHl. Qed.

  Lemma Forall2_mapM_ext (g : A option B) l k :
    Forall2 (λ x y, f x = g y) l k mapM f l = mapM g k.
  Proof. induction 1 as [|???? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.
  Lemma Forall_mapM_ext (g : A option B) l :
    Forall (λ x, f x = g x) l mapM f l = mapM g l.
  Proof. induction 1 as [|?? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.

  Lemma mapM_Some_1 l k : mapM f l = Some k Forall2 (λ x y, f x = Some y) l k.
  Proof.
    revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
    - destruct (f x); simpl; [|discriminate]. by destruct (mapM f l).
    - destruct (f x) eqn:?; intros; simplify_option_eq; auto.
  Qed.
  Lemma mapM_Some_2 l k : Forall2 (λ x y, f x = Some y) l k mapM f l = Some k.
  Proof.
    induction 1 as [|???? Hf ? IH]; simpl; [done |].
    rewrite Hf. simpl. by rewrite IH.
  Qed.
  Lemma mapM_Some l k : mapM f l = Some k Forall2 (λ x y, f x = Some y) l k.
  Proof. split; auto using mapM_Some_1, mapM_Some_2. Qed.
  Lemma mapM_length l k : mapM f l = Some k length l = length k.
  Proof. intros. by eapply Forall2_length, mapM_Some_1. Qed.
  Lemma mapM_None_1 l : mapM f l = None Exists (λ x, f x = None) l.
  Proof.
    induction l as [|x l IH]; simpl; [done|].
    destruct (f x) eqn:?; simpl; eauto. by destruct (mapM f l); eauto.
  Qed.
  Lemma mapM_None_2 l : Exists (λ x, f x = None) l mapM f l = None.
  Proof.
    induction 1 as [x l Hx|x l ? IH]; simpl; [by rewrite Hx|].
    by destruct (f x); simpl; rewrite ?IH.
  Qed.
  Lemma mapM_None l : mapM f l = None Exists (λ x, f x = None) l.
  Proof. split; auto using mapM_None_1, mapM_None_2. Qed.
  Lemma mapM_is_Some_1 l : is_Some (mapM f l) Forall (is_Some f) l.
  Proof.
    unfold compose. setoid_rewrite <-not_eq_None_Some.
    rewrite mapM_None. apply (not_Exists_Forall _).
  Qed.
  Lemma mapM_is_Some_2 l : Forall (is_Some f) l is_Some (mapM f l).
  Proof.
    unfold compose. setoid_rewrite <-not_eq_None_Some.
    rewrite mapM_None. apply (Forall_not_Exists _).
  Qed.
  Lemma mapM_is_Some l : is_Some (mapM f l) Forall (is_Some f) l.
  Proof. split; auto using mapM_is_Some_1, mapM_is_Some_2. Qed.

  Lemma mapM_fmap_Forall_Some (g : B A) (l : list B) :
    Forall (λ x, f (g x) = Some x) l mapM f (g <$> l) = Some l.
  Proof. by induction 1; simpl; simplify_option_eq. Qed.
  Lemma mapM_fmap_Some (g : B A) (l : list B) :
    ( x, f (g x) = Some x) mapM f (g <$> l) = Some l.
  Proof. intros. by apply mapM_fmap_Forall_Some, Forall_true. Qed.

  Lemma mapM_fmap_Forall2_Some_inv (g : B A) (l : list A) (k : list B) :
    mapM f l = Some k Forall2 (λ x y, f x = Some y g y = x) l k g <$> k = l.
  Proof. induction 2; simplify_option_eq; naive_solver. Qed.
  Lemma mapM_fmap_Some_inv (g : B A) (l : list A) (k : list B) :
    mapM f l = Some k ( x y, f x = Some y g y = x) g <$> k = l.
  Proof. eauto using mapM_fmap_Forall2_Some_inv, Forall2_true, mapM_length. Qed.
End mapM.

Lemma imap_const {A B} (f : A B) l : imap (const f) l = f <$> l.
Proof. induction l; f_equal/=; auto. Qed.

Global Instance imap_proper `{!Equiv A, !Equiv B} :
  Proper (pointwise_relation _ ((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B}))
         imap.
Proof.
  intros f f' Hf l l' Hl. revert f f' Hf.
  induction Hl as [|x1 x2 l1 l2 ?? IH]; intros f f' Hf; simpl; constructor.
  - by apply Hf.
  - apply IH. intros i y y' ?; simpl. by apply Hf.
Qed.

Section imap.
  Context {A B : Type} (f : nat A B).

  Lemma imap_ext g l :
    ( i x, l !! i = Some x f i x = g i x) imap f l = imap g l.
  Proof. revert f g; induction l as [|x l IH]; intros; f_equal/=; eauto. Qed.

  Lemma imap_nil : imap f [] = [].
  Proof. done. Qed.
  Lemma imap_app l1 l2 :
    imap f (l1 ++ l2) = imap f l1 ++ imap (λ n, f (length l1 + n)) l2.
  Proof.
    revert f. induction l1 as [|x l1 IH]; intros f; f_equal/=.
    by rewrite IH.
  Qed.
  Lemma imap_cons x l : imap f (x :: l) = f 0 x :: imap (f S) l.
  Proof. done. Qed.

  Lemma imap_fmap {C} (g : C A) l : imap f (g <$> l) = imap (λ n, f n g) l.
  Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.
  Lemma fmap_imap {C} (g : B C) l : g <$> imap f l = imap (λ n, g f n) l.
  Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.

  Lemma list_lookup_imap l i : imap f l !! i = f i <$> l !! i.
  Proof.
    revert f i. induction l as [|x l IH]; intros f [|i]; f_equal/=; auto.
    by rewrite IH.
  Qed.
  Lemma list_lookup_imap_Some l i x :
    imap f l !! i = Some x y, l !! i = Some y x = f i y.
  Proof. by rewrite list_lookup_imap, fmap_Some. Qed.
  Lemma list_lookup_total_imap `{!Inhabited A, !Inhabited B} l i :
    i < length l imap f l !!! i = f i (l !!! i).
  Proof.
    intros [x Hx]%lookup_lt_is_Some_2.
    by rewrite !list_lookup_total_alt, list_lookup_imap, Hx.
  Qed.

  Lemma imap_length l : length (imap f l) = length l.
  Proof. revert f. induction l; simpl; eauto. Qed.

  Lemma elem_of_lookup_imap_1 l x :
    x imap f l i y, x = f i y l !! i = Some y.
  Proof.
    intros [i Hin]%elem_of_list_lookup. rewrite list_lookup_imap in Hin.
    simplify_option_eq; naive_solver.
  Qed.
  Lemma elem_of_lookup_imap_2 l x i : l !! i = Some x f i x imap f l.
  Proof.
    intros Hl. rewrite elem_of_list_lookup.
     i. by rewrite list_lookup_imap, Hl.
  Qed.
  Lemma elem_of_lookup_imap l x :
    x imap f l i y, x = f i y l !! i = Some y.
  Proof. naive_solver eauto using elem_of_lookup_imap_1, elem_of_lookup_imap_2. Qed.
End imap.

Properties of the permutations function

Section permutations.
  Context {A : Type}.
  Implicit Types x y z : A.
  Implicit Types l : list A.

  Lemma interleave_cons x l : x :: l interleave x l.
  Proof. destruct l; simpl; rewrite elem_of_cons; auto. Qed.
  Lemma interleave_Permutation x l l' : l' interleave x l l' ≡ₚ x :: l.
  Proof.
    revert l'. induction l as [|y l IH]; intros l'; simpl.
    - rewrite elem_of_list_singleton. by intros →.
    - rewrite elem_of_cons, elem_of_list_fmap. intros [->|[? [-> H]]]; [done|].
      rewrite (IH _ H). constructor.
  Qed.
  Lemma permutations_refl l : l permutations l.
  Proof.
    induction l; simpl; [by apply elem_of_list_singleton|].
    apply elem_of_list_bind. eauto using interleave_cons.
  Qed.
  Lemma permutations_skip x l l' :
    l permutations l' x :: l permutations (x :: l').
  Proof. intro. apply elem_of_list_bind; eauto using interleave_cons. Qed.
  Lemma permutations_swap x y l : y :: x :: l permutations (x :: y :: l).
  Proof.
    simpl. apply elem_of_list_bind. (y :: l). split; simpl.
    - destruct l; csimpl; rewrite !elem_of_cons; auto.
    - apply elem_of_list_bind. simpl.
      eauto using interleave_cons, permutations_refl.
  Qed.
  Lemma permutations_nil l : l permutations [] l = [].
  Proof. simpl. by rewrite elem_of_list_singleton. Qed.
  Lemma interleave_interleave_toggle x1 x2 l1 l2 l3 :
    l1 interleave x1 l2 l2 interleave x2 l3 l4,
      l1 interleave x2 l4 l4 interleave x1 l3.
  Proof.
    revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
    { rewrite !elem_of_list_singleton. intros ? →. [x1].
      change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
      by rewrite (comm (++)), elem_of_list_singleton. }
    rewrite elem_of_cons, elem_of_list_fmap.
    intros Hl1 [? | [l2' [??]]]; simplify_eq/=.
    - rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
      destruct Hl1 as [? | [? | [l4 [??]]]]; subst.
      + (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
      + (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
      + l4. simpl. rewrite elem_of_cons. auto using interleave_cons.
    - rewrite elem_of_cons, elem_of_list_fmap in Hl1.
      destruct Hl1 as [? | [l1' [??]]]; subst.
      + (x1 :: y :: l3). csimpl.
        rewrite !elem_of_cons, !elem_of_list_fmap.
        split; [| by auto]. right. right. (y :: l2').
        rewrite elem_of_list_fmap. naive_solver.
      + destruct (IH l1' l2') as [l4 [??]]; auto. (y :: l4). simpl.
        rewrite !elem_of_cons, !elem_of_list_fmap. naive_solver.
  Qed.
  Lemma permutations_interleave_toggle x l1 l2 l3 :
    l1 permutations l2 l2 interleave x l3 l4,
      l1 interleave x l4 l4 permutations l3.
  Proof.
    revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
    { rewrite elem_of_list_singleton. intros Hl1 →. eexists [].
      by rewrite elem_of_list_singleton. }
    rewrite elem_of_cons, elem_of_list_fmap.
    intros Hl1 [? | [l2' [? Hl2']]]; simplify_eq/=.
    - rewrite elem_of_list_bind in Hl1.
      destruct Hl1 as [l1' [??]]. by l1'.
    - rewrite elem_of_list_bind in Hl1. setoid_rewrite elem_of_list_bind.
      destruct Hl1 as [l1' [??]]. destruct (IH l1' l2') as (l1''&?&?); auto.
      destruct (interleave_interleave_toggle y x l1 l1' l1'') as (?&?&?); eauto.
  Qed.
  Lemma permutations_trans l1 l2 l3 :
    l1 permutations l2 l2 permutations l3 l1 permutations l3.
  Proof.
    revert l1 l2. induction l3 as [|x l3 IH]; intros l1 l2; simpl.
    - rewrite !elem_of_list_singleton. intros Hl1 ->; simpl in ×.
      by rewrite elem_of_list_singleton in Hl1.
    - rewrite !elem_of_list_bind. intros Hl1 [l2' [Hl2 Hl2']].
      destruct (permutations_interleave_toggle x l1 l2 l2') as [? [??]]; eauto.
  Qed.
  Lemma permutations_Permutation l l' : l' permutations l l ≡ₚ l'.
  Proof.
    split.
    - revert l'. induction l; simpl; intros l''.
      + rewrite elem_of_list_singleton. by intros →.
      + rewrite elem_of_list_bind. intros [l' [Hl'' ?]].
        rewrite (interleave_Permutation _ _ _ Hl''). constructor; auto.
    - induction 1; eauto using permutations_refl,
        permutations_skip, permutations_swap, permutations_trans.
  Qed.
End permutations.

Properties of the folding functions

Note that foldr has much better support, so when in doubt, it should be preferred over foldl.
Definition foldr_app := @fold_right_app.

Lemma foldr_cons {A B} (f : B A A) (a : A) l x :
  foldr f a (x :: l) = f x (foldr f a l).
Proof. done. Qed.
Lemma foldr_snoc {A B} (f : B A A) (a : A) l x :
  foldr f a (l ++ [x]) = foldr f (f x a) l.
Proof. rewrite foldr_app. done. Qed.

Lemma foldr_fmap {A B C} (f : B A A) x (l : list C) g :
  foldr f x (g <$> l) = foldr (λ b a, f (g b) a) x l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma foldr_ext {A B} (f1 f2 : B A A) x1 x2 l1 l2 :
  ( b a, f1 b a = f2 b a) l1 = l2 x1 = x2 foldr f1 x1 l1 = foldr f2 x2 l2.
Proof. intros Hf → →. induction l2 as [|x l2 IH]; f_equal/=; by rewrite Hf, IH. Qed.

Lemma foldr_permutation {A B} (R : relation B) `{!PreOrder R}
    (f : A B B) (b : B) `{Hf : ! x, Proper (R ==> R) (f x)} (l1 l2 : list A) :
  ( j1 a1 j2 a2 b,
    j1 j2 l1 !! j1 = Some a1 l1 !! j2 = Some a2
    R (f a1 (f a2 b)) (f a2 (f a1 b)))
  l1 ≡ₚ l2 R (foldr f b l1) (foldr f b l2).
Proof.
  intros Hf'. induction 1 as [|x l1 l2 _ IH|x y l|l1 l2 l3 Hl12 IH _ IH']; simpl.
  - done.
  - apply Hf, IH; eauto.
  - apply (Hf' 0 _ 1); eauto.
  - etrans; [eapply IH, Hf'|].
    apply IH'; intros j1 a1 j2 a2 b' ???.
    symmetry in Hl12; apply Permutation_inj in Hl12 as [_ (g&?&Hg)].
    apply (Hf' (g j1) _ (g j2)); [naive_solver|by rewrite <-Hg..].
Qed.
Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
    (f : A B B) (b : B) `{!∀ x, Proper (R ==> R) (f x)}
    (Hf : a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
  Proper ((≡ₚ) ==> R) (foldr f b).
Proof. intros l1 l2 Hl. apply foldr_permutation; auto. Qed.
Global Instance foldr_permutation_proper' {A} (R : relation A) `{!PreOrder R}
    (f : A A A) (a : A) `{!∀ a, Proper (R ==> R) (f a), !Assoc R f, !Comm R f} :
  Proper ((≡ₚ) ==> R) (foldr f a).
Proof.
  apply (foldr_permutation_proper R f); [solve_proper|].
  assert (Proper (R ==> R ==> R) f).
  { intros a1 a2 Ha b1 b2 Hb. by rewrite Hb, (comm f a1), Ha, (comm f). }
  intros a1 a2 b.
  by rewrite (assoc f), (comm f _ b), (assoc f), (comm f b), (comm f _ a2).
Qed.
Lemma foldr_cons_permute {A} (R : relation A) `{!PreOrder R}
    (f : A A A) (a : A)
    `{!∀ a, Proper (R ==> R) (f a), !Assoc R f, !Comm R f} x l :
  R (foldr f a (x :: l)) (foldr f (f x a) l).
Proof.
  rewrite <-foldr_snoc.
  eapply foldr_permutation_proper'; [done..|].
  rewrite Permutation_app_comm. done.
Qed.
Lemma foldr_cons_permute_eq {A} (f : A A A) (a : A)
    `{!Assoc (=) f, !Comm (=) f} x l :
  foldr f a (x :: l) = foldr f (f x a) l.
Proof. eapply (foldr_cons_permute eq); apply _. Qed.

Lemma foldr_comm_acc_strong {A B} (R : relation B) `{!PreOrder R}
    (f : A B B) (g : B B) b l :
  ( x, Proper (R ==> R) (f x))
  ( x y, x l R (f x (g y)) (g (f x y)))
  R (foldr f (g b) l) (g (foldr f b l)).
Proof.
  intros ? Hcomm. induction l as [|x l IH]; simpl; [done|].
  rewrite <-Hcomm by eauto using elem_of_list_here.
  by rewrite IH by eauto using elem_of_list_further.
Qed.
Lemma foldr_comm_acc {A} (f : A A A) (g : A A) (a : A) l :
  ( x y, f x (g y) = g (f x y))
  foldr f (g a) l = g (foldr f a l).
Proof. intros. apply (foldr_comm_acc_strong _); [solve_proper|done]. Qed.

Lemma foldl_app {A B} (f : A B A) (l k : list B) (a : A) :
  foldl f a (l ++ k) = foldl f (foldl f a l) k.
Proof. revert a. induction l; simpl; auto. Qed.
Lemma foldl_snoc {A B} (f : A B A) (a : A) l x :
  foldl f a (l ++ [x]) = f (foldl f a l) x.
Proof. rewrite foldl_app. done. Qed.
Lemma foldl_fmap {A B C} (f : A B A) x (l : list C) g :
  foldl f x (g <$> l) = foldl (λ a b, f a (g b)) x l.
Proof. revert x. induction l; f_equal/=; auto. Qed.

Properties of the zip_with and zip functions

Global Instance zip_with_proper `{!Equiv A, !Equiv B, !Equiv C} :
  Proper (((≡) ==> (≡) ==> (≡)) ==>
          (≡@{list A}) ==> (≡@{list B}) ==> (≡@{list C})) zip_with.
Proof.
  intros f1 f2 Hf. induction 1; destruct 1; simpl; [constructor..|].
  f_equiv; [|by auto]. by apply Hf.
Qed.

Section zip_with.
  Context {A B C : Type} (f : A B C).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma zip_with_nil_r l : zip_with f l [] = [].
  Proof. by destruct l. Qed.
  Lemma zip_with_app l1 l2 k1 k2 :
    length l1 = length k1
    zip_with f (l1 ++ l2) (k1 ++ k2) = zip_with f l1 k1 ++ zip_with f l2 k2.
  Proof. rewrite <-Forall2_same_length. induction 1; f_equal/=; auto. Qed.
  Lemma zip_with_app_l l1 l2 k :
    zip_with f (l1 ++ l2) k
    = zip_with f l1 (take (length l1) k) ++ zip_with f l2 (drop (length l1) k).
  Proof.
    revert k. induction l1; intros [|??]; f_equal/=; auto. by destruct l2.
  Qed.
  Lemma zip_with_app_r l k1 k2 :
    zip_with f l (k1 ++ k2)
    = zip_with f (take (length k1) l) k1 ++ zip_with f (drop (length k1) l) k2.
  Proof. revert l. induction k1; intros [|??]; f_equal/=; auto. Qed.
  Lemma zip_with_flip l k : zip_with (flip f) k l = zip_with f l k.
  Proof. revert k. induction l; intros [|??]; f_equal/=; auto. Qed.
  Lemma zip_with_ext (g : A B C) l1 l2 k1 k2 :
    ( x y, f x y = g x y) l1 = l2 k1 = k2
    zip_with f l1 k1 = zip_with g l2 k2.
  Proof. intros ? <-<-. revert k1. by induction l1; intros [|??]; f_equal/=. Qed.
  Lemma Forall_zip_with_ext_l (g : A B C) l k1 k2 :
    Forall (λ x, y, f x y = g x y) l k1 = k2
    zip_with f l k1 = zip_with g l k2.
  Proof. intros Hl <-. revert k1. by induction Hl; intros [|??]; f_equal/=. Qed.
  Lemma Forall_zip_with_ext_r (g : A B C) l1 l2 k :
    l1 = l2 Forall (λ y, x, f x y = g x y) k
    zip_with f l1 k = zip_with g l2 k.
  Proof. intros <- Hk. revert l1. by induction Hk; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fmap_l {D} (g : D A) lD k :
    zip_with f (g <$> lD) k = zip_with (λ z, f (g z)) lD k.
  Proof. revert k. by induction lD; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fmap_r {D} (g : D B) l kD :
    zip_with f l (g <$> kD) = zip_with (λ x z, f x (g z)) l kD.
  Proof. revert kD. by induction l; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_nil_inv l k : zip_with f l k = [] l = [] k = [].
  Proof. destruct l, k; intros; simplify_eq/=; auto. Qed.
  Lemma zip_with_cons_inv l k z lC :
    zip_with f l k = z :: lC
     x y l' k', z = f x y lC = zip_with f l' k' l = x :: l' k = y :: k'.
  Proof. intros. destruct l, k; simplify_eq/=; repeat eexists. Qed.
  Lemma zip_with_app_inv l k lC1 lC2 :
    zip_with f l k = lC1 ++ lC2
     l1 k1 l2 k2, lC1 = zip_with f l1 k1 lC2 = zip_with f l2 k2
      l = l1 ++ l2 k = k1 ++ k2 length l1 = length k1.
  Proof.
    revert l k. induction lC1 as [|z lC1 IH]; simpl.
    { intros l k ?. by eexists [], [], l, k. }
    intros [|x l] [|y k] ?; simplify_eq/=.
    destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
     (x :: l1), (y :: k1), l2, k2; simpl; auto with congruence.
  Qed.
  Lemma zip_with_inj `{!Inj2 (=) (=) (=) f} l1 l2 k1 k2 :
    length l1 = length k1 length l2 = length k2
    zip_with f l1 k1 = zip_with f l2 k2 l1 = l2 k1 = k2.
  Proof.
    rewrite <-!Forall2_same_length. intros Hl. revert l2 k2.
    induction Hl; intros ?? [] ?; f_equal; naive_solver.
  Qed.
  Lemma zip_with_length l k :
    length (zip_with f l k) = min (length l) (length k).
  Proof. revert k. induction l; intros [|??]; simpl; auto with lia. Qed.
  Lemma zip_with_length_l l k :
    length l length k length (zip_with f l k) = length l.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_l_eq l k :
    length l = length k length (zip_with f l k) = length l.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_r l k :
    length k length l length (zip_with f l k) = length k.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_r_eq l k :
    length k = length l length (zip_with f l k) = length k.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_same_l P l k :
    Forall2 P l k length (zip_with f l k) = length l.
  Proof. induction 1; simpl; auto. Qed.
  Lemma zip_with_length_same_r P l k :
    Forall2 P l k length (zip_with f l k) = length k.
  Proof. induction 1; simpl; auto. Qed.
  Lemma lookup_zip_with l k i :
    zip_with f l k !! i = (x l !! i; y k !! i; Some (f x y)).
  Proof.
    revert k i. induction l; intros [|??] [|?]; f_equal/=; auto.
    by destruct (_ !! _).
  Qed.
  Lemma lookup_total_zip_with `{!Inhabited A, !Inhabited B, !Inhabited C} l k i :
    i < length l i < length k zip_with f l k !!! i = f (l !!! i) (k !!! i).
  Proof.
    intros [x Hx]%lookup_lt_is_Some_2 [y Hy]%lookup_lt_is_Some_2.
    by rewrite !list_lookup_total_alt, lookup_zip_with, Hx, Hy.
  Qed.
  Lemma lookup_zip_with_Some l k i z :
    zip_with f l k !! i = Some z
     x y, z = f x y l !! i = Some x k !! i = Some y.
  Proof. rewrite lookup_zip_with. destruct (l !! i), (k !! i); naive_solver. Qed.
  Lemma insert_zip_with l k i x y :
    <[i:=f x y]>(zip_with f l k) = zip_with f (<[i:=x]>l) (<[i:=y]>k).
  Proof. revert i k. induction l; intros [|?] [|??]; f_equal/=; auto. Qed.
  Lemma fmap_zip_with_l (g : C A) l k :
    ( x y, g (f x y) = x) length l length k g <$> zip_with f l k = l.
  Proof. revert k. induction l; intros [|??] ??; f_equal/=; auto with lia. Qed.
  Lemma fmap_zip_with_r (g : C B) l k :
    ( x y, g (f x y) = y) length k length l g <$> zip_with f l k = k.
  Proof. revert l. induction k; intros [|??] ??; f_equal/=; auto with lia. Qed.
  Lemma zip_with_zip l k : zip_with f l k = uncurry f <$> zip l k.
  Proof. revert k. by induction l; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fst_snd lk : zip_with f (lk.*1) (lk.*2) = uncurry f <$> lk.
  Proof. by induction lk as [|[]]; f_equal/=. Qed.
  Lemma zip_with_replicate n x y :
    zip_with f (replicate n x) (replicate n y) = replicate n (f x y).
  Proof. by induction n; f_equal/=. Qed.
  Lemma zip_with_replicate_l n x k :
    length k n zip_with f (replicate n x) k = f x <$> k.
  Proof. revert n. induction k; intros [|?] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_replicate_r n y l :
    length l n zip_with f l (replicate n y) = flip f y <$> l.
  Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_replicate_r_eq n y l :
    length l = n zip_with f l (replicate n y) = flip f y <$> l.
  Proof. intros; apply zip_with_replicate_r; lia. Qed.
  Lemma zip_with_take n l k :
    take n (zip_with f l k) = zip_with f (take n l) (take n k).
  Proof. revert n k. by induction l; intros [|?] [|??]; f_equal/=. Qed.
  Lemma zip_with_drop n l k :
    drop n (zip_with f l k) = zip_with f (drop n l) (drop n k).
  Proof.
    revert n k. induction l; intros [] []; f_equal/=; auto using zip_with_nil_r.
  Qed.
  Lemma zip_with_take_l' n l k :
    length l `min` length k n zip_with f (take n l) k = zip_with f l k.
  Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_take_l l k :
    zip_with f (take (length k) l) k = zip_with f l k.
  Proof. apply zip_with_take_l'; lia. Qed.
  Lemma zip_with_take_r' n l k :
    length l `min` length k n zip_with f l (take n k) = zip_with f l k.
  Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_take_r l k :
    zip_with f l (take (length l) k) = zip_with f l k.
  Proof. apply zip_with_take_r'; lia. Qed.
  Lemma zip_with_take_both' n1 n2 l k :
    length l `min` length k n1 length l `min` length k n2
    zip_with f (take n1 l) (take n2 k) = zip_with f l k.
  Proof.
    intros.
    rewrite zip_with_take_l'; [apply zip_with_take_r' | rewrite take_length]; lia.
  Qed.
  Lemma zip_with_take_both l k :
    zip_with f (take (length k) l) (take (length l) k) = zip_with f l k.
  Proof. apply zip_with_take_both'; lia. Qed.
  Lemma Forall_zip_with_fst (P : A Prop) (Q : C Prop) l k :
    Forall P l Forall (λ y, x, P x Q (f x y)) k
    Forall Q (zip_with f l k).
  Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
  Lemma Forall_zip_with_snd (P : B Prop) (Q : C Prop) l k :
    Forall (λ x, y, P y Q (f x y)) l Forall P k
    Forall Q (zip_with f l k).
  Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.

  Lemma elem_of_lookup_zip_with_1 l k (z : C) :
    z zip_with f l k i x y, z = f x y l !! i = Some x k !! i = Some y.
  Proof.
    intros [i Hin]%elem_of_list_lookup. rewrite lookup_zip_with in Hin.
    simplify_option_eq; naive_solver.
  Qed.

  Lemma elem_of_lookup_zip_with_2 l k x y (z : C) i :
    l !! i = Some x k !! i = Some y f x y zip_with f l k.
  Proof.
    intros Hl Hk. rewrite elem_of_list_lookup.
     i. by rewrite lookup_zip_with, Hl, Hk.
  Qed.

  Lemma elem_of_lookup_zip_with l k (z : C) :
    z zip_with f l k i x y, z = f x y l !! i = Some x k !! i = Some y.
  Proof.
    naive_solver eauto using
                 elem_of_lookup_zip_with_1, elem_of_lookup_zip_with_2.
  Qed.

  Lemma elem_of_zip_with l k (z : C) :
    z zip_with f l k x y, z = f x y x l y k.
  Proof.
    intros ?%elem_of_lookup_zip_with.
    naive_solver eauto using elem_of_list_lookup_2.
  Qed.

End zip_with.

Lemma zip_with_diag {A C} (f : A A C) l :
  zip_with f l l = (λ x, f x x) <$> l.
Proof. induction l as [|?? IH]; [done|]. simpl. rewrite IH. done. Qed.

Lemma zip_with_sublist_alter {A B} (f : A B A) g l k i n l' k' :
  length l = length k
  sublist_lookup i n l = Some l' sublist_lookup i n k = Some k'
  length (g l') = length k' zip_with f (g l') k' = g (zip_with f l' k')
  zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
  unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
  intros ?? Hl' Hk'. simplify_option_eq.
  by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
    !take_length_le, Hk' by (rewrite ?drop_length; auto with lia).
Qed.

Section zip.
  Context {A B : Type}.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma fst_zip l k : length l length k (zip l k).*1 = l.
  Proof. by apply fmap_zip_with_l. Qed.
  Lemma snd_zip l k : length k length l (zip l k).*2 = k.
  Proof. by apply fmap_zip_with_r. Qed.
  Lemma zip_fst_snd (lk : list (A × B)) : zip (lk.*1) (lk.*2) = lk.
  Proof. by induction lk as [|[]]; f_equal/=. Qed.
  Lemma Forall2_fst P l1 l2 k1 k2 :
    length l2 = length k2 Forall2 P l1 k1
    Forall2 (λ x y, P (x.1) (y.1)) (zip l1 l2) (zip k1 k2).
  Proof.
    rewrite <-Forall2_same_length. intros Hlk2 Hlk1. revert l2 k2 Hlk2.
    induction Hlk1; intros ?? [|??????]; simpl; auto.
  Qed.
  Lemma Forall2_snd P l1 l2 k1 k2 :
    length l1 = length k1 Forall2 P l2 k2
    Forall2 (λ x y, P (x.2) (y.2)) (zip l1 l2) (zip k1 k2).
  Proof.
    rewrite <-Forall2_same_length. intros Hlk1 Hlk2. revert l1 k1 Hlk1.
    induction Hlk2; intros ?? [|??????]; simpl; auto.
  Qed.

  Lemma elem_of_zip_l x1 x2 l k :
    (x1, x2) zip l k x1 l.
  Proof. intros ?%elem_of_zip_with. naive_solver. Qed.

  Lemma elem_of_zip_r x1 x2 l k :
    (x1, x2) zip l k x2 k.
  Proof. intros ?%elem_of_zip_with. naive_solver. Qed.
End zip.

Lemma zip_diag {A} (l : list A) :
  zip l l = (λ x, (x, x)) <$> l.
Proof. apply zip_with_diag. Qed.

Lemma elem_of_zipped_map {A B} (f : list A list A A B) l k x :
  x zipped_map f l k
     k' k'' y, k = k' ++ [y] ++ k'' x = f (reverse k' ++ l) k'' y.
Proof.
  split.
  - revert l. induction k as [|z k IH]; simpl; intros l; inv 1.
    { by eexists [], k, z. }
    destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
    eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(assoc_L (++)).
  - intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
    intros l; right. by rewrite reverse_cons, <-!(assoc_L (++)).
Qed.
Section zipped_list_ind.
  Context {A} (P : list A list A Prop).
  Context (Pnil : l, P l []) (Pcons : l k x, P (x :: l) k P l (x :: k)).
  Fixpoint zipped_list_ind l k : P l k :=
    match k with
    | []Pnil _ | x :: kPcons _ _ _ (zipped_list_ind (x :: l) k)
    end.
End zipped_list_ind.
Lemma zipped_Forall_app {A} (P : list A list A A Prop) l k k' :
  zipped_Forall P l (k ++ k') zipped_Forall P (reverse k ++ l) k'.
Proof.
  revert l. induction k as [|x k IH]; simpl; [done |].
  inv 1. rewrite reverse_cons, <-(assoc_L (++)). by apply IH.
Qed.

Lemma TCForall_Forall {A} (P : A Prop) xs : TCForall P xs Forall P xs.
Proof. split; induction 1; constructor; auto. Qed.

Global Instance TCForall_app {A} (P : A Prop) xs ys :
  TCForall P xs TCForall P ys TCForall P (xs ++ ys).
Proof. rewrite !TCForall_Forall. apply Forall_app_2. Qed.

Lemma TCForall2_Forall2 {A B} (P : A B Prop) xs ys :
  TCForall2 P xs ys Forall2 P xs ys.
Proof. split; induction 1; constructor; auto. Qed.

Lemma TCExists_Exists {A} (P : A Prop) l : TCExists P l Exists P l.
Proof. split; induction 1; constructor; solve [auto]. Qed.

Section positives_flatten_unflatten.
  Local Open Scope positive_scope.

  Lemma positives_flatten_go_app xs acc :
    positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
  Proof.
    revert acc.
    induction xs as [|x xs IH]; intros acc; simpl.
    - reflexivity.
    - rewrite IH.
      rewrite (IH (6 ++ _)).
      rewrite 2!(assoc_L (++)).
      reflexivity.
  Qed.

  Lemma positives_unflatten_go_app p suffix xs acc :
    positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
    positives_unflatten_go suffix xs (acc ++ p).
  Proof.
    revert suffix acc.
    induction p as [p IH|p IH|]; intros acc suffix; simpl.
    - rewrite 2!Pos.reverse_xI.
      rewrite 2!(assoc_L (++)).
      rewrite IH.
      reflexivity.
    - rewrite 2!Pos.reverse_xO.
      rewrite 2!(assoc_L (++)).
      rewrite IH.
      reflexivity.
    - reflexivity.
  Qed.

  Lemma positives_unflatten_flatten_go suffix xs acc :
    positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
    positives_unflatten_go suffix (xs ++ acc) 1.
  Proof.
    revert suffix acc.
    induction xs as [|x xs IH]; intros suffix acc; simpl.
    - reflexivity.
    - rewrite positives_flatten_go_app.
      rewrite (assoc_L (++)).
      rewrite IH.
      rewrite (assoc_L (++)).
      rewrite positives_unflatten_go_app.
      simpl.
      rewrite (left_id_L 1 (++)).
      reflexivity.
  Qed.

  Lemma positives_unflatten_flatten xs :
    positives_unflatten (positives_flatten xs) = Some xs.
  Proof.
    unfold positives_flatten, positives_unflatten.
    replace (positives_flatten_go xs 1)
      with (1 ++ positives_flatten_go xs 1)
      by apply (left_id_L 1 (++)).
    rewrite positives_unflatten_flatten_go.
    simpl.
    rewrite (right_id_L [] (++)%list).
    reflexivity.
  Qed.

  Lemma positives_flatten_app xs ys :
    positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
  Proof.
    unfold positives_flatten.
    revert ys.
    induction xs as [|x xs IH]; intros ys; simpl.
    - rewrite (left_id_L 1 (++)).
      reflexivity.
    - rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
      rewrite IH.
      rewrite (assoc_L (++)).
      reflexivity.
  Qed.

  Lemma positives_flatten_cons x xs :
    positives_flatten (x :: xs)
    = 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
  Proof.
    change (x :: xs) with ([x] ++ xs)%list.
    rewrite positives_flatten_app.
    rewrite (assoc_L (++)).
    reflexivity.
  Qed.

  Lemma positives_flatten_suffix (l k : list positive) :
    l `suffix_of` k q, positives_flatten k = q ++ positives_flatten l.
  Proof.
    intros [l' ->].
     (positives_flatten l').
    apply positives_flatten_app.
  Qed.

  Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
    length xs = length ys
    p1 ++ positives_flatten xs = p2 ++ positives_flatten ys
    xs = ys.
  Proof.
    revert p1 p2 ys; induction xs as [|x xs IH];
      intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
    rewrite !positives_flatten_cons, !(assoc _); intros Hl.
    assert (xs = ys) as <- by eauto; clear IH; f_equal.
    apply (inj (.++ positives_flatten xs)) in Hl.
    rewrite 2!Pos.reverse_dup in Hl.
    apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
    by apply (inj Pos.reverse).
  Qed.
End positives_flatten_unflatten.

Reflection over lists

We define a simple data structure rlist to capture a syntactic representation of lists consisting of constants, applications and the nil list. Note that we represent (x ::.) as rapp (rnode [x]). For now, we abstract over the type of constants, but later we use nats and a list representing a corresponding environment.
Inductive rlist (A : Type) :=
  rnil : rlist A | rnode : A rlist A | rapp : rlist A rlist A rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.

Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
  match t with
  | rnil[] | rnode l[l] | rapp t1 t2to_list t1 ++ to_list t2
  end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat list A :=
  fix go t :=
  match t with
  | rnil[]
  | rnode idefault [] (E !! i)
  | rapp t1 t2go t1 ++ go t2
  end.

A simple quoting mechanism using type classes. QuoteLookup E1 E2 x i means: starting in environment E1, look up the index i corresponding to the constant x. In case x has a corresponding index i in E1, the original environment is given back as E2. Otherwise, the environment E2 is extended with a binding i for x.
Section quote_lookup.
  Context {A : Type}.
  Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
  Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
  Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
  Global Instance quote_lookup_further E1 E2 x i y :
    QuoteLookup E1 E2 x i QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.

Section quote.
  Context {A : Type}.
  Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
  Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
  Global Instance quote_node E1 E2 l i:
    QuoteLookup E1 E2 l i Quote E1 E2 l (rnode i) | 1000 := {}.
  Global Instance quote_cons E1 E2 E3 x l i t :
    QuoteLookup E1 E2 [x] i
    Quote E2 E3 l t Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
  Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
    Quote E1 E2 l1 t1 Quote E2 E3 l2 t2 Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.

Section eval.
  Context {A} (E : env A).

  Lemma eval_alt t : eval E t = to_list t ≫= default [] (E !!.).
  Proof.
    induction t; csimpl.
    - done.
    - by rewrite (right_id_L [] (++)).
    - rewrite bind_app. by f_equal.
  Qed.
  Lemma eval_eq t1 t2 : to_list t1 = to_list t2 eval E t1 = eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_Permutation t1 t2 :
    to_list t1 ≡ₚ to_list t2 eval E t1 ≡ₚ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_submseteq t1 t2 :
    to_list t1 ⊆+ to_list t2 eval E t1 ⊆+ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.

Tactics

Ltac quote_Permutation :=
  match goal with
  | |- ?l1 ≡ₚ ?l2
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2
      change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
    end end
  end.
Ltac solve_Permutation :=
  quote_Permutation; apply rlist.eval_Permutation;
  compute_done.

Ltac quote_submseteq :=
  match goal with
  | |- ?l1 ⊆+ ?l2
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2
      change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
    end end
  end.
Ltac solve_submseteq :=
  quote_submseteq; apply rlist.eval_submseteq;
  compute_done.

Ltac decompose_elem_of_list := repeat
  match goal with
  | H : ?x [] |- _by destruct (not_elem_of_nil x)
  | H : _ _ :: _ |- _apply elem_of_cons in H; destruct H
  | H : _ _ ++ _ |- _apply elem_of_app in H; destruct H
  end.
Ltac solve_length :=
  simplify_eq/=;
  repeat (rewrite fmap_length || rewrite app_length);
  repeat match goal with
  | H : _ =@{list _} _ |- _apply (f_equal length) in H
  | H : Forall2 _ _ _ |- _apply Forall2_length in H
  | H : context[length (_ <$> _)] |- _rewrite fmap_length in H
  end; done || congruence.
Ltac simplify_list_eq ::= repeat
  match goal with
  | _progress simplify_eq/=
  | H : [?x] !! ?i = Some ?y |- _
    destruct i; [change (Some x = Some y) in H | discriminate]
  | H : _ <$> _ = [] |- _apply fmap_nil_inv in H
  | H : [] = _ <$> _ |- _symmetry in H; apply fmap_nil_inv in H
  | H : zip_with _ _ _ = [] |- _apply zip_with_nil_inv in H; destruct H
  | H : [] = zip_with _ _ _ |- _symmetry in H
  | |- context [(_ ++ _) ++ _] ⇒ rewrite <-(assoc_L (++))
  | H : context [(_ ++ _) ++ _] |- _rewrite <-(assoc_L (++)) in H
  | H : context [_ <$> (_ ++ _)] |- _rewrite fmap_app in H
  | |- context [_ <$> (_ ++ _)] ⇒ rewrite fmap_app
  | |- context [_ ++ []] ⇒ rewrite (right_id_L [] (++))
  | H : context [_ ++ []] |- _rewrite (right_id_L [] (++)) in H
  | |- context [take _ (_ <$> _)] ⇒ rewrite <-fmap_take
  | H : context [take _ (_ <$> _)] |- _rewrite <-fmap_take in H
  | |- context [drop _ (_ <$> _)] ⇒ rewrite <-fmap_drop
  | H : context [drop _ (_ <$> _)] |- _rewrite <-fmap_drop in H
  | H : _ ++ _ = _ ++ _ |- _
    repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
    apply app_inj_1 in H; [destruct H|solve_length]
  | H : _ ++ _ = _ ++ _ |- _
    repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
    apply app_inj_2 in H; [destruct H|solve_length]
  | |- context [zip_with _ (_ ++ _) (_ ++ _)] ⇒
    rewrite zip_with_app by solve_length
  | |- context [take _ (_ ++ _)] ⇒ rewrite take_app_length' by solve_length
  | |- context [drop _ (_ ++ _)] ⇒ rewrite drop_app_length' by solve_length
  | H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _
    rewrite zip_with_app in H by solve_length
  | H : context [take _ (_ ++ _)] |- _
    rewrite take_app_length' in H by solve_length
  | H : context [drop _ (_ ++ _)] |- _
    rewrite drop_app_length' in H by solve_length
  | H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _
     rewrite list_lookup_fmap, H in H2
  end.
Ltac decompose_Forall_hyps :=
  repeat match goal with
  | H : Forall _ [] |- _clear H
  | H : Forall _ (_ :: _) |- _rewrite Forall_cons in H; destruct H
  | H : Forall _ (_ ++ _) |- _rewrite Forall_app in H; destruct H
  | H : Forall2 _ [] [] |- _clear H
  | H : Forall2 _ (_ :: _) [] |- _destruct (Forall2_cons_nil_inv _ _ _ H)
  | H : Forall2 _ [] (_ :: _) |- _destruct (Forall2_nil_cons_inv _ _ _ H)
  | H : Forall2 _ [] ?k |- _apply Forall2_nil_inv_l in H
  | H : Forall2 _ ?l [] |- _apply Forall2_nil_inv_r in H
  | H : Forall2 _ (_ :: _) (_ :: _) |- _
    apply Forall2_cons_1 in H; destruct H
  | H : Forall2 _ (_ :: _) ?k |- _
    let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
    apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
    rename k_tl into k
  | H : Forall2 _ ?l (_ :: _) |- _
    let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
    apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
    rename l_tl into l
  | H : Forall2 _ (_ ++ _) ?k |- _
    let k1 := fresh k "_1" in let k2 := fresh k "_2" in
    apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
  | H : Forall2 _ ?l (_ ++ _) |- _
    let l1 := fresh l "_1" in let l2 := fresh l "_2" in
    apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
  | _progress simplify_eq/=
  | H : Forall3 _ _ (_ :: _) _ |- _
    apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall2 _ (_ :: _) ?k |- _
    apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ ?l (_ :: _) |- _
    apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) (_ ++ _) |- _
    apply Forall2_app_inv in H; [destruct H|solve_length]
  | H : Forall2 _ ?l (_ ++ _) |- _
    apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) ?k |- _
    apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall3 _ _ (_ ++ _) _ |- _
    apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _
    
    unless (P x) by auto using Forall_app_2, Forall_nil_2;
    let E := fresh in
    assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
  | H : Forall2 ?P ?l ?k |- _
    match goal with
    | H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _
      unless (P x y) by done; let E := fresh in
      assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
      lazy beta in E
    | H1 : l !! ?i = Some ?x |- _
      try (match goal with _ : k !! i = Some _ |- _fail 2 end);
      destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
    | H2 : k !! ?i = Some ?y |- _
      try (match goal with _ : l !! i = Some _ |- _fail 2 end);
      destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
    end
  | H : Forall3 ?P ?l ?l' ?k |- _
    lazymatch goal with
    | H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _
      unless (P x y z) by done; let E := fresh in
      assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
      lazy beta in E
    | H1 : l !! _ = Some ?x |- _
      destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
    | H2 : l' !! _ = Some ?y |- _
      destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
    | H3 : k !! _ = Some ?z |- _
      destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
    end
  end.
Ltac list_simplifier :=
  simplify_eq/=;
  repeat match goal with
  | _progress decompose_Forall_hyps
  | _progress simplify_list_eq
  | H : _ <$> _ = _ :: _ |- _
    apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
  | H : _ :: _ = _ <$> _ |- _symmetry in H
  | H : _ <$> _ = _ ++ _ |- _
    apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
  | H : _ ++ _ = _ <$> _ |- _symmetry in H
  | H : zip_with _ _ _ = _ :: _ |- _
    apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : _ :: _ = zip_with _ _ _ |- _symmetry in H
  | H : zip_with _ _ _ = _ ++ _ |- _
    apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
  | H : _ ++ _ = zip_with _ _ _ |- _symmetry in H
  end.
Ltac decompose_Forall := repeat
  match goal with
  | |- Forall _ _by apply Forall_true
  | |- Forall _ []constructor
  | |- Forall _ (_ :: _) ⇒ constructor
  | |- Forall _ (_ ++ _) ⇒ apply Forall_app_2
  | |- Forall _ (_ <$> _) ⇒ apply Forall_fmap
  | |- Forall _ (_ ≫= _) ⇒ apply Forall_bind
  | |- Forall2 _ _ _apply Forall_Forall2_diag
  | |- Forall2 _ [] []constructor
  | |- Forall2 _ (_ :: _) (_ :: _) ⇒ constructor
  | |- Forall2 _ (_ ++ _) (_ ++ _) ⇒ first
    [ apply Forall2_app; [by decompose_Forall |]
    | apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _apply Forall2_fmap_l
  | |- Forall2 _ _ (_ <$> _) ⇒ apply Forall2_fmap_r
  | _progress decompose_Forall_hyps
  | H : Forall _ (_ <$> _) |- _rewrite Forall_fmap in H
  | H : Forall _ (_ ≫= _) |- _rewrite Forall_bind in H
  | |- Forall _ _
    apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
  | |- Forall2 _ _ _
    apply Forall2_same_length_lookup_2; [solve_length|];
    intros ?????; progress decompose_Forall_hyps
  end.

The simplify_suffix tactic removes suffix hypotheses that are tautologies, and simplifies suffix hypotheses involving (::) and (++).
Ltac simplify_suffix := repeat
  match goal with
  | H : suffix (_ :: _) _ |- _destruct (suffix_cons_not _ _ H)
  | H : suffix (_ :: _) [] |- _apply suffix_nil_inv in H
  | H : suffix (_ ++ _) (_ ++ _) |- _apply suffix_app_inv in H
  | H : suffix (_ :: _) (_ :: _) |- _
    destruct (suffix_cons_inv _ _ _ _ H); clear H
  | H : suffix ?x ?x |- _clear H
  | H : suffix ?x (_ :: ?x) |- _clear H
  | H : suffix ?x (_ ++ ?x) |- _clear H
  | _progress simplify_eq/=
  end.

The solve_suffix tactic tries to solve goals involving suffix. It uses simplify_suffix to simplify hypotheses and tries to solve suffix conclusions. This tactic either fails or proves the goal.
Ltac solve_suffix := by intuition (repeat
  match goal with
  | _done
  | _progress simplify_suffix
  | |- suffix [] _apply suffix_nil
  | |- suffix _ _reflexivity
  | |- suffix _ (_ :: _) ⇒ apply suffix_cons_r
  | |- suffix _ (_ ++ _) ⇒ apply suffix_app_r
  | H : suffix _ _ False |- _destruct H
  end).