Library stdpp.gmultiset
From stdpp Require Export countable.
From stdpp Require Import gmap.
From stdpp Require ssreflect. From stdpp Require Import options.
From stdpp Require Import gmap.
From stdpp Require ssreflect. From stdpp Require Import options.
Multisets gmultiset A are represented as maps from A to natural numbers,
which represent the multiplicity. To ensure we have canonical representations,
the multiplicity is a positive. Therefore, gmultiset_car !! x = None means
x has multiplicity 0 and gmultiset_car !! x = Some 1 means x has
multiplicity 1.
Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A positive }.
Global Arguments GMultiSet {_ _ _} _ : assert.
Global Arguments gmultiset_car {_ _ _} _ : assert.
Global Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Proof. solve_decision. Defined.
Global Program Instance gmultiset_countable `{Countable A} :
Countable (gmultiset A) := {|
encode X := encode (gmultiset_car X); decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.
Section definitions.
Context `{Countable A}.
Definition multiplicity (x : A) (X : gmultiset A) : nat :=
match gmultiset_car X !! x with Some n ⇒ Pos.to_nat n | None ⇒ 0 end.
Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
0 < multiplicity x X.
Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y, ∀ x,
multiplicity x X ≤ multiplicity x Y.
Global Instance gmultiset_equiv : Equiv (gmultiset A) := λ X Y, ∀ x,
multiplicity x X = multiplicity x Y.
Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
let (X) := X in '(x,n) ← map_to_list X; replicate (Pos.to_nat n) x.
Global Instance gmultiset_size : Size (gmultiset A) := length ∘ elements.
Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet ∅.
Global Instance gmultiset_singleton : SingletonMS A (gmultiset A) := λ x,
GMultiSet {[ x := 1%positive ]}.
Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ union_with (λ x y, Some (x `max` y)%positive) X Y.
Global Instance gmultiset_intersection : Intersection (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ intersection_with (λ x y, Some (x `min` y)%positive) X Y.
Often called the "sum"
Global Instance gmultiset_disj_union : DisjUnion (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ union_with (λ x y, Some (x + y)%positive) X Y.
Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ difference_with (λ x y,
guard (y < x)%positive;; Some (x - y)%positive) X Y.
Global Instance gmultiset_scalar_mul : ScalarMul nat (gmultiset A) := λ n X,
let (X) := X in GMultiSet $
match n with 0 ⇒ ∅ | _ ⇒ fmap (λ m, m × Pos.of_nat n)%positive X end.
Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
let (X) := X in dom X.
Definition gmultiset_map `{Countable B} (f : A → B)
(X : gmultiset A) : gmultiset B :=
GMultiSet $ map_fold
(λ x n, partial_alter (Some ∘ from_option (Pos.add n) n) (f x))
∅
(gmultiset_car X).
End definitions.
Global Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Global Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Global Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
Global Typeclasses Opaque gmultiset_scalar_mul gmultiset_dom gmultiset_map.
Section basic_lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
Lemma gmultiset_eq X Y : X = Y ↔ ∀ x, multiplicity x X = multiplicity x Y.
Proof.
split; [by intros ->|intros HXY].
destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
specialize (HXY x); unfold multiplicity in *; simpl in ×.
repeat case_match; naive_solver lia.
Qed.
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
Global Instance gmultiset_equiv_equivalence : Equivalence (≡@{gmultiset A}).
Proof. constructor; repeat intro; naive_solver. Qed.
Lemma multiplicity_empty x : multiplicity x ∅ = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[+ x +]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x ≠ y → multiplicity x {[+ y +]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_singleton' x y :
multiplicity x {[+ y +]} = if decide (x = y) then 1 else 0.
Proof.
destruct (decide _) as [->|].
- by rewrite multiplicity_singleton.
- by rewrite multiplicity_singleton_ne.
Qed.
Lemma multiplicity_union X Y x :
multiplicity x (X ∪ Y) = multiplicity x X `max` multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_intersection X Y x :
multiplicity x (X ∩ Y) = multiplicity x X `min` multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_intersection_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_disj_union X Y x :
multiplicity x (X ⊎ Y) = multiplicity x X + multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_difference X Y x :
multiplicity x (X ∖ Y) = multiplicity x X - multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_difference_with.
destruct (X !! _), (Y !! _); simplify_option_eq; lia.
Qed.
Lemma multiplicity_scalar_mul n X x :
multiplicity x (n *: X) = n × multiplicity x X.
Proof.
destruct X as [X]; unfold multiplicity; simpl. destruct n as [|n]; [done|].
rewrite lookup_fmap. destruct (X !! _); simpl; lia.
Qed.
Lemma elem_of_multiplicity x X : x ∈ X ↔ 0 < multiplicity x X.
Proof. done. Qed.
Lemma gmultiset_elem_of_empty x : x ∈@{gmultiset A} ∅ ↔ False.
Proof. rewrite elem_of_multiplicity, multiplicity_empty. lia. Qed.
Lemma gmultiset_elem_of_singleton x y : x ∈@{gmultiset A} {[+ y +]} ↔ x = y.
Proof.
rewrite elem_of_multiplicity, multiplicity_singleton'.
case_decide; naive_solver lia.
Qed.
Lemma gmultiset_elem_of_union X Y x : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_union. lia. Qed.
Lemma gmultiset_elem_of_disj_union X Y x : x ∈ X ⊎ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_disj_union. lia. Qed.
Lemma gmultiset_elem_of_intersection X Y x : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_intersection. lia. Qed.
Lemma gmultiset_elem_of_scalar_mul n X x : x ∈ n *: X ↔ n ≠ 0 ∧ x ∈ X.
Proof. rewrite !elem_of_multiplicity, multiplicity_scalar_mul. lia. Qed.
Global Instance gmultiset_elem_of_dec : RelDecision (∈@{gmultiset A}).
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
End basic_lemmas.
let (X) := X in let (Y) := Y in
GMultiSet $ union_with (λ x y, Some (x + y)%positive) X Y.
Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ difference_with (λ x y,
guard (y < x)%positive;; Some (x - y)%positive) X Y.
Global Instance gmultiset_scalar_mul : ScalarMul nat (gmultiset A) := λ n X,
let (X) := X in GMultiSet $
match n with 0 ⇒ ∅ | _ ⇒ fmap (λ m, m × Pos.of_nat n)%positive X end.
Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
let (X) := X in dom X.
Definition gmultiset_map `{Countable B} (f : A → B)
(X : gmultiset A) : gmultiset B :=
GMultiSet $ map_fold
(λ x n, partial_alter (Some ∘ from_option (Pos.add n) n) (f x))
∅
(gmultiset_car X).
End definitions.
Global Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Global Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Global Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
Global Typeclasses Opaque gmultiset_scalar_mul gmultiset_dom gmultiset_map.
Section basic_lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
Lemma gmultiset_eq X Y : X = Y ↔ ∀ x, multiplicity x X = multiplicity x Y.
Proof.
split; [by intros ->|intros HXY].
destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
specialize (HXY x); unfold multiplicity in *; simpl in ×.
repeat case_match; naive_solver lia.
Qed.
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
Global Instance gmultiset_equiv_equivalence : Equivalence (≡@{gmultiset A}).
Proof. constructor; repeat intro; naive_solver. Qed.
Lemma multiplicity_empty x : multiplicity x ∅ = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[+ x +]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x ≠ y → multiplicity x {[+ y +]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_singleton' x y :
multiplicity x {[+ y +]} = if decide (x = y) then 1 else 0.
Proof.
destruct (decide _) as [->|].
- by rewrite multiplicity_singleton.
- by rewrite multiplicity_singleton_ne.
Qed.
Lemma multiplicity_union X Y x :
multiplicity x (X ∪ Y) = multiplicity x X `max` multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_intersection X Y x :
multiplicity x (X ∩ Y) = multiplicity x X `min` multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_intersection_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_disj_union X Y x :
multiplicity x (X ⊎ Y) = multiplicity x X + multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_difference X Y x :
multiplicity x (X ∖ Y) = multiplicity x X - multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_difference_with.
destruct (X !! _), (Y !! _); simplify_option_eq; lia.
Qed.
Lemma multiplicity_scalar_mul n X x :
multiplicity x (n *: X) = n × multiplicity x X.
Proof.
destruct X as [X]; unfold multiplicity; simpl. destruct n as [|n]; [done|].
rewrite lookup_fmap. destruct (X !! _); simpl; lia.
Qed.
Lemma elem_of_multiplicity x X : x ∈ X ↔ 0 < multiplicity x X.
Proof. done. Qed.
Lemma gmultiset_elem_of_empty x : x ∈@{gmultiset A} ∅ ↔ False.
Proof. rewrite elem_of_multiplicity, multiplicity_empty. lia. Qed.
Lemma gmultiset_elem_of_singleton x y : x ∈@{gmultiset A} {[+ y +]} ↔ x = y.
Proof.
rewrite elem_of_multiplicity, multiplicity_singleton'.
case_decide; naive_solver lia.
Qed.
Lemma gmultiset_elem_of_union X Y x : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_union. lia. Qed.
Lemma gmultiset_elem_of_disj_union X Y x : x ∈ X ⊎ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_disj_union. lia. Qed.
Lemma gmultiset_elem_of_intersection X Y x : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_intersection. lia. Qed.
Lemma gmultiset_elem_of_scalar_mul n X x : x ∈ n *: X ↔ n ≠ 0 ∧ x ∈ X.
Proof. rewrite !elem_of_multiplicity, multiplicity_scalar_mul. lia. Qed.
Global Instance gmultiset_elem_of_dec : RelDecision (∈@{gmultiset A}).
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
End basic_lemmas.
A solver for multisets
We define a tactic multiset_solver that solves goals involving multisets. The strategy of this tactic is as follows:- If the goal or some hypothesis contains multiplicity y X it adds the hypothesis H y.
- If P contains a multiset singleton {[ y ]} it adds the hypothesis H y. This is needed, for example, to prove ¬ ({[ x ]} ⊆ ∅), which is turned into hypothesis H : ∀ y, multiplicity y {[ x ]} ≤ 0 and goal False. The only way to make progress is to instantiate H with the singleton appearing in H, so variable x.
- First, we try to turn these occurencess into 1 or 0 if either x = y or x ≠ y can be proved using done, respectively.
- Second, we try to turn these occurrences into a fresh z ≤ 1 if y does not occur elsewhere in the hypotheses or goal.
- Finally, we make a case distinction between x = y or x ≠ y. This step is done last so as to avoid needless exponential blow-ups.
Class MultisetUnfold `{Countable A} (x : A) (X : gmultiset A) (n : nat) :=
{ multiset_unfold : multiplicity x X = n }.
Global Arguments multiset_unfold {_ _ _} _ _ _ {_} : assert.
Global Hint Mode MultisetUnfold + + + - + - : typeclass_instances.
Section multiset_unfold.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
Global Instance multiset_unfold_default x X :
MultisetUnfold x X (multiplicity x X) | 1000.
Proof. done. Qed.
Global Instance multiset_unfold_empty x : MultisetUnfold x ∅ 0.
Proof. constructor. by rewrite multiplicity_empty. Qed.
Global Instance multiset_unfold_singleton x :
MultisetUnfold x {[+ x +]} 1.
Proof. constructor. by rewrite multiplicity_singleton. Qed.
Global Instance multiset_unfold_union x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ∪ Y) (n `max` m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_union, HX, HY. Qed.
Global Instance multiset_unfold_intersection x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ∩ Y) (n `min` m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_intersection, HX, HY. Qed.
Global Instance multiset_unfold_disj_union x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ⊎ Y) (n + m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_disj_union, HX, HY. Qed.
Global Instance multiset_unfold_difference x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ∖ Y) (n - m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_difference, HX, HY. Qed.
Global Instance multiset_unfold_scalar_mul x m X n :
MultisetUnfold x X n →
MultisetUnfold x (m *: X) (m × n).
Proof. intros [HX]; constructor. by rewrite multiplicity_scalar_mul, HX. Qed.
Global Instance set_unfold_multiset_equiv X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X ≡ Y) (∀ x, f x = g x) | 0.
Proof.
constructor. apply forall_proper; intros x.
by rewrite (multiset_unfold x X (f x)), (multiset_unfold x Y (g x)).
Qed.
Global Instance set_unfold_multiset_eq X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X = Y) (∀ x, f x = g x) | 0.
Proof. constructor. unfold_leibniz. by apply set_unfold_multiset_equiv. Qed.
Global Instance set_unfold_multiset_subseteq X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X ⊆ Y) (∀ x, f x ≤ g x) | 0.
Proof.
constructor. apply forall_proper; intros x.
by rewrite (multiset_unfold x X (f x)), (multiset_unfold x Y (g x)).
Qed.
Global Instance set_unfold_multiset_subset X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X ⊂ Y) ((∀ x, f x ≤ g x) ∧ (¬∀ x, g x ≤ f x)) | 0.
Proof.
constructor. unfold strict. f_equiv.
- by apply set_unfold_multiset_subseteq.
- f_equiv. by apply set_unfold_multiset_subseteq.
Qed.
Global Instance set_unfold_multiset_elem_of X x n :
MultisetUnfold x X n → SetUnfoldElemOf x X (0 < n) | 100.
Proof. constructor. by rewrite <-(multiset_unfold x X n). Qed.
Global Instance set_unfold_gmultiset_empty x :
SetUnfoldElemOf x (∅ : gmultiset A) False.
Proof. constructor. apply gmultiset_elem_of_empty. Qed.
Global Instance set_unfold_gmultiset_singleton x y :
SetUnfoldElemOf x ({[+ y +]} : gmultiset A) (x = y).
Proof. constructor; apply gmultiset_elem_of_singleton. Qed.
Global Instance set_unfold_gmultiset_union x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∪ Y) (P ∨ Q).
Proof.
intros ??; constructor. by rewrite gmultiset_elem_of_union,
(set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
Global Instance set_unfold_gmultiset_disj_union x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ⊎ Y) (P ∨ Q).
Proof.
intros ??; constructor. rewrite gmultiset_elem_of_disj_union.
by rewrite <-(set_unfold_elem_of x X P), <-(set_unfold_elem_of x Y Q).
Qed.
Global Instance set_unfold_gmultiset_intersection x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∩ Y) (P ∧ Q).
Proof.
intros ??; constructor. rewrite gmultiset_elem_of_intersection.
by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
End multiset_unfold.
Step 3: instantiate hypotheses For these tactics we want to use ssreflect rewrite. ssreflect matching
interacts better with canonical structures (see
<https://gitlab.mpi-sws.org/iris/stdpp/-/issues/195>).
Module Export tactics.
Import ssreflect.
Ltac multiset_instantiate :=
repeat match goal with
| H : (∀ x : ?A, @?P x) |- _ ⇒
let e := mk_evar A in
lazymatch constr:(P e) with
| context [ {[+ ?y +]} ] ⇒ unify y e; learn_hyp (H y)
end
| H : (∀ x : ?A, _), _ : context [multiplicity ?y _] |- _ ⇒ learn_hyp (H y)
| H : (∀ x : ?A, _) |- context [multiplicity ?y _] ⇒ learn_hyp (H y)
end.
Import ssreflect.
Ltac multiset_instantiate :=
repeat match goal with
| H : (∀ x : ?A, @?P x) |- _ ⇒
let e := mk_evar A in
lazymatch constr:(P e) with
| context [ {[+ ?y +]} ] ⇒ unify y e; learn_hyp (H y)
end
| H : (∀ x : ?A, _), _ : context [multiplicity ?y _] |- _ ⇒ learn_hyp (H y)
| H : (∀ x : ?A, _) |- context [multiplicity ?y _] ⇒ learn_hyp (H y)
end.
Step 4: simplify singletons This lemma results in information loss if there are other occurrences of
y in the goal. In the tactic multiset_simplify_singletons we use clear y
to ensure we do not use the lemma if it leads to information loss.
Local Lemma multiplicity_singleton_forget `{Countable A} x y :
∃ n, multiplicity (A:=A) x {[+ y +]} = n ∧ n ≤ 1.
Proof. rewrite multiplicity_singleton'. case_decide; eauto with lia. Qed.
Ltac multiset_simplify_singletons :=
repeat match goal with
| H : context [multiplicity ?x {[+ ?y +]}] |- _ ⇒
first
[progress rewrite ?multiplicity_singleton ?multiplicity_singleton_ne in H; [|done..]
|destruct (multiplicity_singleton_forget x y) as (?&->&?); clear y
|rewrite multiplicity_singleton' in H; destruct (decide (x = y)); simplify_eq/=]
| |- context [multiplicity ?x {[+ ?y +]}] ⇒
first
[progress rewrite ?multiplicity_singleton ?multiplicity_singleton_ne; [|done..]
|destruct (multiplicity_singleton_forget x y) as (?&->&?); clear y
|rewrite multiplicity_singleton'; destruct (decide (x = y)); simplify_eq/=]
end.
End tactics.
∃ n, multiplicity (A:=A) x {[+ y +]} = n ∧ n ≤ 1.
Proof. rewrite multiplicity_singleton'. case_decide; eauto with lia. Qed.
Ltac multiset_simplify_singletons :=
repeat match goal with
| H : context [multiplicity ?x {[+ ?y +]}] |- _ ⇒
first
[progress rewrite ?multiplicity_singleton ?multiplicity_singleton_ne in H; [|done..]
|destruct (multiplicity_singleton_forget x y) as (?&->&?); clear y
|rewrite multiplicity_singleton' in H; destruct (decide (x = y)); simplify_eq/=]
| |- context [multiplicity ?x {[+ ?y +]}] ⇒
first
[progress rewrite ?multiplicity_singleton ?multiplicity_singleton_ne; [|done..]
|destruct (multiplicity_singleton_forget x y) as (?&->&?); clear y
|rewrite multiplicity_singleton'; destruct (decide (x = y)); simplify_eq/=]
end.
End tactics.
Putting it all together Similar to set_solver and naive_solver, multiset_solver has a by
parameter whose default is eauto.
Tactic Notation "multiset_solver" "by" tactic3(tac) :=
set_solver by (multiset_instantiate;
multiset_simplify_singletons;
solve [fast_done|lia|tac]).
Tactic Notation "multiset_solver" := multiset_solver by eauto.
Section more_lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
set_solver by (multiset_instantiate;
multiset_simplify_singletons;
solve [fast_done|lia|tac]).
Tactic Notation "multiset_solver" := multiset_solver by eauto.
Section more_lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
For union
Global Instance gmultiset_union_comm : Comm (=@{gmultiset A}) (∪).
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_union_assoc : Assoc (=@{gmultiset A}) (∪).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_union_left_id : LeftId (=@{gmultiset A}) ∅ (∪).
Proof. unfold LeftId. multiset_solver. Qed.
Global Instance gmultiset_union_right_id : RightId (=@{gmultiset A}) ∅ (∪).
Proof. unfold RightId. multiset_solver. Qed.
Global Instance gmultiset_union_idemp : IdemP (=@{gmultiset A}) (∪).
Proof. unfold IdemP. multiset_solver. Qed.
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_union_assoc : Assoc (=@{gmultiset A}) (∪).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_union_left_id : LeftId (=@{gmultiset A}) ∅ (∪).
Proof. unfold LeftId. multiset_solver. Qed.
Global Instance gmultiset_union_right_id : RightId (=@{gmultiset A}) ∅ (∪).
Proof. unfold RightId. multiset_solver. Qed.
Global Instance gmultiset_union_idemp : IdemP (=@{gmultiset A}) (∪).
Proof. unfold IdemP. multiset_solver. Qed.
For intersection
Global Instance gmultiset_intersection_comm : Comm (=@{gmultiset A}) (∩).
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_intersection_assoc : Assoc (=@{gmultiset A}) (∩).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_intersection_left_absorb : LeftAbsorb (=@{gmultiset A}) ∅ (∩).
Proof. unfold LeftAbsorb. multiset_solver. Qed.
Global Instance gmultiset_intersection_right_absorb : RightAbsorb (=@{gmultiset A}) ∅ (∩).
Proof. unfold RightAbsorb. multiset_solver. Qed.
Global Instance gmultiset_intersection_idemp : IdemP (=@{gmultiset A}) (∩).
Proof. unfold IdemP. multiset_solver. Qed.
Lemma gmultiset_union_intersection_l X Y Z : X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_union_intersection_r X Y Z : (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_intersection_union_l X Y Z : X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_intersection_union_r X Y Z : (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).
Proof. multiset_solver. Qed.
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_intersection_assoc : Assoc (=@{gmultiset A}) (∩).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_intersection_left_absorb : LeftAbsorb (=@{gmultiset A}) ∅ (∩).
Proof. unfold LeftAbsorb. multiset_solver. Qed.
Global Instance gmultiset_intersection_right_absorb : RightAbsorb (=@{gmultiset A}) ∅ (∩).
Proof. unfold RightAbsorb. multiset_solver. Qed.
Global Instance gmultiset_intersection_idemp : IdemP (=@{gmultiset A}) (∩).
Proof. unfold IdemP. multiset_solver. Qed.
Lemma gmultiset_union_intersection_l X Y Z : X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_union_intersection_r X Y Z : (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_intersection_union_l X Y Z : X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_intersection_union_r X Y Z : (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).
Proof. multiset_solver. Qed.
For disjoint union (aka sum)
Global Instance gmultiset_disj_union_comm : Comm (=@{gmultiset A}) (⊎).
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_disj_union_assoc : Assoc (=@{gmultiset A}) (⊎).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_disj_union_left_id : LeftId (=@{gmultiset A}) ∅ (⊎).
Proof. unfold LeftId. multiset_solver. Qed.
Global Instance gmultiset_disj_union_right_id : RightId (=@{gmultiset A}) ∅ (⊎).
Proof. unfold RightId. multiset_solver. Qed.
Global Instance gmultiset_disj_union_inj_1 X : Inj (=) (=) (X ⊎.).
Proof. unfold Inj. multiset_solver. Qed.
Global Instance gmultiset_disj_union_inj_2 X : Inj (=) (=) (.⊎ X).
Proof. unfold Inj. multiset_solver. Qed.
Lemma gmultiset_disj_union_intersection_l X Y Z : X ⊎ (Y ∩ Z) = (X ⊎ Y) ∩ (X ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_intersection_r X Y Z : (X ∩ Y) ⊎ Z = (X ⊎ Z) ∩ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_union_l X Y Z : X ⊎ (Y ∪ Z) = (X ⊎ Y) ∪ (X ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_union_r X Y Z : (X ∪ Y) ⊎ Z = (X ⊎ Z) ∪ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_disj_union_assoc : Assoc (=@{gmultiset A}) (⊎).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_disj_union_left_id : LeftId (=@{gmultiset A}) ∅ (⊎).
Proof. unfold LeftId. multiset_solver. Qed.
Global Instance gmultiset_disj_union_right_id : RightId (=@{gmultiset A}) ∅ (⊎).
Proof. unfold RightId. multiset_solver. Qed.
Global Instance gmultiset_disj_union_inj_1 X : Inj (=) (=) (X ⊎.).
Proof. unfold Inj. multiset_solver. Qed.
Global Instance gmultiset_disj_union_inj_2 X : Inj (=) (=) (.⊎ X).
Proof. unfold Inj. multiset_solver. Qed.
Lemma gmultiset_disj_union_intersection_l X Y Z : X ⊎ (Y ∩ Z) = (X ⊎ Y) ∩ (X ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_intersection_r X Y Z : (X ∩ Y) ⊎ Z = (X ⊎ Z) ∩ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_union_l X Y Z : X ⊎ (Y ∪ Z) = (X ⊎ Y) ∪ (X ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_union_r X Y Z : (X ∪ Y) ⊎ Z = (X ⊎ Z) ∪ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Element of operation
Lemma gmultiset_not_elem_of_empty x : x ∉@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_singleton x y : x ∉@{gmultiset A} {[+ y +]} ↔ x ≠ y.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof. multiset_solver. Qed.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_singleton x y : x ∉@{gmultiset A} {[+ y +]} ↔ x ≠ y.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof. multiset_solver. Qed.
Misc
Global Instance gmultiset_singleton_inj : Inj (=) (=@{gmultiset A}) singletonMS.
Proof.
intros x1 x2 Hx. rewrite gmultiset_eq in Hx. specialize (Hx x1).
rewrite multiplicity_singleton, multiplicity_singleton' in Hx.
case_decide; [done|lia].
Qed.
Lemma gmultiset_non_empty_singleton x : {[+ x +]} ≠@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Proof.
intros x1 x2 Hx. rewrite gmultiset_eq in Hx. specialize (Hx x1).
rewrite multiplicity_singleton, multiplicity_singleton' in Hx.
case_decide; [done|lia].
Qed.
Lemma gmultiset_non_empty_singleton x : {[+ x +]} ≠@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Scalar
Lemma gmultiset_scalar_mul_0 X : 0 *: X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_S_l n X : S n *: X = X ⊎ (n *: X).
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_S_r n X : S n *: X = (n *: X) ⊎ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_1 X : 1 *: X = X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_2 X : 2 *: X = X ⊎ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_empty n : n *: ∅ =@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_disj_union n X Y :
n *: (X ⊎ Y) =@{gmultiset A} (n *: X) ⊎ (n *: Y).
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_union n X Y :
n *: (X ∪ Y) =@{gmultiset A} (n *: X) ∪ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_max_distr_l. Qed.
Lemma gmultiset_scalar_mul_intersection n X Y :
n *: (X ∩ Y) =@{gmultiset A} (n *: X) ∩ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_min_distr_l. Qed.
Lemma gmultiset_scalar_mul_difference n X Y :
n *: (X ∖ Y) =@{gmultiset A} (n *: X) ∖ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_sub_distr_l. Qed.
Lemma gmultiset_scalar_mul_inj_ne_0 n X1 X2 :
n ≠ 0 → n *: X1 = n *: X2 → X1 = X2.
Proof. set_unfold. intros ? HX x. apply (Nat.mul_reg_l _ _ n); auto. Qed.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_S_l n X : S n *: X = X ⊎ (n *: X).
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_S_r n X : S n *: X = (n *: X) ⊎ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_1 X : 1 *: X = X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_2 X : 2 *: X = X ⊎ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_empty n : n *: ∅ =@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_disj_union n X Y :
n *: (X ⊎ Y) =@{gmultiset A} (n *: X) ⊎ (n *: Y).
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_union n X Y :
n *: (X ∪ Y) =@{gmultiset A} (n *: X) ∪ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_max_distr_l. Qed.
Lemma gmultiset_scalar_mul_intersection n X Y :
n *: (X ∩ Y) =@{gmultiset A} (n *: X) ∩ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_min_distr_l. Qed.
Lemma gmultiset_scalar_mul_difference n X Y :
n *: (X ∖ Y) =@{gmultiset A} (n *: X) ∖ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_sub_distr_l. Qed.
Lemma gmultiset_scalar_mul_inj_ne_0 n X1 X2 :
n ≠ 0 → n *: X1 = n *: X2 → X1 = X2.
Proof. set_unfold. intros ? HX x. apply (Nat.mul_reg_l _ _ n); auto. Qed.
Global Instance gmultiset_scalar_mul_inj_S n :
Inj (=) (=@{gmultiset A}) (S n *:.).
Proof. intros x1 x2. apply gmultiset_scalar_mul_inj_ne_0. lia. Qed.
Inj (=) (=@{gmultiset A}) (S n *:.).
Proof. intros x1 x2. apply gmultiset_scalar_mul_inj_ne_0. lia. Qed.
Conversion from lists
Lemma list_to_set_disj_nil : list_to_set_disj [] =@{gmultiset A} ∅.
Proof. done. Qed.
Lemma list_to_set_disj_cons x l :
list_to_set_disj (x :: l) =@{gmultiset A} {[+ x +]} ⊎ list_to_set_disj l.
Proof. done. Qed.
Lemma list_to_set_disj_app l1 l2 :
list_to_set_disj (l1 ++ l2) =@{gmultiset A} list_to_set_disj l1 ⊎ list_to_set_disj l2.
Proof. induction l1; multiset_solver. Qed.
Lemma elem_of_list_to_set_disj x l :
x ∈@{gmultiset A} list_to_set_disj l ↔ x ∈ l.
Proof. induction l; set_solver. Qed.
Global Instance list_to_set_disj_perm :
Proper ((≡ₚ) ==> (=)) (list_to_set_disj (C:=gmultiset A)).
Proof. induction 1; multiset_solver. Qed.
Lemma list_to_set_disj_replicate n x :
list_to_set_disj (replicate n x) =@{gmultiset A} n *: {[+ x +]}.
Proof. induction n; multiset_solver. Qed.
Proof. done. Qed.
Lemma list_to_set_disj_cons x l :
list_to_set_disj (x :: l) =@{gmultiset A} {[+ x +]} ⊎ list_to_set_disj l.
Proof. done. Qed.
Lemma list_to_set_disj_app l1 l2 :
list_to_set_disj (l1 ++ l2) =@{gmultiset A} list_to_set_disj l1 ⊎ list_to_set_disj l2.
Proof. induction l1; multiset_solver. Qed.
Lemma elem_of_list_to_set_disj x l :
x ∈@{gmultiset A} list_to_set_disj l ↔ x ∈ l.
Proof. induction l; set_solver. Qed.
Global Instance list_to_set_disj_perm :
Proper ((≡ₚ) ==> (=)) (list_to_set_disj (C:=gmultiset A)).
Proof. induction 1; multiset_solver. Qed.
Lemma list_to_set_disj_replicate n x :
list_to_set_disj (replicate n x) =@{gmultiset A} n *: {[+ x +]}.
Proof. induction n; multiset_solver. Qed.
Properties of the elements operation
Lemma gmultiset_elements_empty : elements (∅ : gmultiset A) = [].
Proof.
unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_iff X : elements X = [] ↔ X = ∅.
Proof.
split; [|intros ->; by rewrite gmultiset_elements_empty].
destruct X as [X]; unfold elements, gmultiset_elements; simpl.
intros; apply (f_equal GMultiSet).
destruct (map_to_list X) as [|[x p]] eqn:?; simpl in ×.
- by apply map_to_list_empty_iff.
- pose proof (Pos2Nat.is_pos p). destruct (Pos.to_nat); naive_solver lia.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = [] → X = ∅.
Proof. apply gmultiset_elements_empty_iff. Qed.
Lemma gmultiset_elements_singleton x : elements ({[+ x +]} : gmultiset A) = [ x ].
Proof.
unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
Lemma gmultiset_elements_disj_union X Y :
elements (X ⊎ Y) ≡ₚ elements X ++ elements Y.
Proof.
destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
set (f xn := let '(x, n) := xn in replicate (Pos.to_nat n) x); simpl.
revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
{ by rewrite (left_id_L _ _ Y), map_to_list_empty. }
destruct (Y !! x) as [n'|] eqn:HY.
- rewrite <-(insert_delete Y x n') by done.
erewrite <-insert_union_with by done.
rewrite !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
rewrite (assoc_L _). f_equiv.
rewrite (comm _); simpl. by rewrite Pos2Nat.inj_add, replicate_add.
- rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?HX, ?HY).
by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elements_scalar_mul n X :
elements (n *: X) ≡ₚ mjoin (replicate n (elements X)).
Proof.
induction n as [|n IH]; simpl.
- by rewrite gmultiset_scalar_mul_0, gmultiset_elements_empty.
- by rewrite gmultiset_scalar_mul_S_l, gmultiset_elements_disj_union, IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x ∈ elements X ↔ x ∈ X.
Proof.
destruct X as [X]. unfold elements, gmultiset_elements.
set (f xn := let '(x, n) := xn in replicate (Pos.to_nat n) x); simpl.
unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
rewrite elem_of_list_bind. split.
- intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
- intros. destruct (X !! x) as [n|] eqn:Hx; [|lia].
∃ (x,n); split; [|by apply elem_of_map_to_list].
apply elem_of_replicate; auto with lia.
Qed.
Lemma gmultiset_elem_of_dom x X : x ∈ dom X ↔ x ∈ X.
Proof.
unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
destruct (X !! x); naive_solver lia.
Qed.
Proof.
unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_iff X : elements X = [] ↔ X = ∅.
Proof.
split; [|intros ->; by rewrite gmultiset_elements_empty].
destruct X as [X]; unfold elements, gmultiset_elements; simpl.
intros; apply (f_equal GMultiSet).
destruct (map_to_list X) as [|[x p]] eqn:?; simpl in ×.
- by apply map_to_list_empty_iff.
- pose proof (Pos2Nat.is_pos p). destruct (Pos.to_nat); naive_solver lia.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = [] → X = ∅.
Proof. apply gmultiset_elements_empty_iff. Qed.
Lemma gmultiset_elements_singleton x : elements ({[+ x +]} : gmultiset A) = [ x ].
Proof.
unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
Lemma gmultiset_elements_disj_union X Y :
elements (X ⊎ Y) ≡ₚ elements X ++ elements Y.
Proof.
destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
set (f xn := let '(x, n) := xn in replicate (Pos.to_nat n) x); simpl.
revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
{ by rewrite (left_id_L _ _ Y), map_to_list_empty. }
destruct (Y !! x) as [n'|] eqn:HY.
- rewrite <-(insert_delete Y x n') by done.
erewrite <-insert_union_with by done.
rewrite !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
rewrite (assoc_L _). f_equiv.
rewrite (comm _); simpl. by rewrite Pos2Nat.inj_add, replicate_add.
- rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?HX, ?HY).
by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elements_scalar_mul n X :
elements (n *: X) ≡ₚ mjoin (replicate n (elements X)).
Proof.
induction n as [|n IH]; simpl.
- by rewrite gmultiset_scalar_mul_0, gmultiset_elements_empty.
- by rewrite gmultiset_scalar_mul_S_l, gmultiset_elements_disj_union, IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x ∈ elements X ↔ x ∈ X.
Proof.
destruct X as [X]. unfold elements, gmultiset_elements.
set (f xn := let '(x, n) := xn in replicate (Pos.to_nat n) x); simpl.
unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
rewrite elem_of_list_bind. split.
- intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
- intros. destruct (X !! x) as [n|] eqn:Hx; [|lia].
∃ (x,n); split; [|by apply elem_of_map_to_list].
apply elem_of_replicate; auto with lia.
Qed.
Lemma gmultiset_elem_of_dom x X : x ∈ dom X ↔ x ∈ X.
Proof.
unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
destruct (X !! x); naive_solver lia.
Qed.
Properties of the set_fold operation
Lemma gmultiset_set_fold_empty {B} (f : A → B → B) (b : B) :
set_fold f b (∅ : gmultiset A) = b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_empty. Qed.
Lemma gmultiset_set_fold_singleton {B} (f : A → B → B) (b : B) (a : A) :
set_fold f b ({[+ a +]} : gmultiset A) = f a b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_singleton. Qed.
Lemma gmultiset_set_fold_disj_union_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) X Y :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x1 x2 c, x1 ∈ X ⊎ Y → x2 ∈ X ⊎ Y → R (f x1 (f x2 c)) (f x2 (f x1 c))) →
R (set_fold f b (X ⊎ Y)) (set_fold f (set_fold f b X) Y).
Proof.
intros ? Hf. unfold set_fold; simpl.
rewrite <-foldr_app. apply (foldr_permutation R f b).
- intros j1 a1 j2 a2 c ? Ha1%elem_of_list_lookup_2 Ha2%elem_of_list_lookup_2.
rewrite gmultiset_elem_of_elements in Ha1, Ha2. eauto.
- rewrite (comm (++)). apply gmultiset_elements_disj_union.
Qed.
Lemma gmultiset_set_fold_disj_union (f : A → A → A) (b : A) X Y :
Comm (=) f →
Assoc (=) f →
set_fold f b (X ⊎ Y) = set_fold f (set_fold f b X) Y.
Proof.
intros ??; apply gmultiset_set_fold_disj_union_strong; [apply _..|].
intros x1 x2 ? _ _. by rewrite 2!assoc, (comm f x1 x2).
Qed.
Lemma gmultiset_set_fold_scalar_mul (f : A → A → A) (b : A) n X :
Comm (=) f →
Assoc (=) f →
set_fold f b (n *: X) = Nat.iter n (flip (set_fold f) X) b.
Proof.
intros Hcomm Hassoc. induction n as [|n IH]; simpl.
- by rewrite gmultiset_scalar_mul_0, gmultiset_set_fold_empty.
- rewrite gmultiset_scalar_mul_S_r.
by rewrite (gmultiset_set_fold_disj_union _ _ _ _ _ _), IH.
Qed.
Lemma gmultiset_set_fold_comm_acc_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (g : B → B) b X :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x (y : B), x ∈ X → R (f x (g y)) (g (f x y))) →
R (set_fold f (g b) X) (g (set_fold f b X)).
Proof.
intros ? Hfg. unfold set_fold; simpl.
apply foldr_comm_acc_strong; [done|solve_proper|].
intros. by apply Hfg, gmultiset_elem_of_elements.
Qed.
Lemma gmultiset_set_fold_comm_acc {B} (f : A → B → B) (g : B → B) (b : B) X :
(∀ x c, g (f x c) = f x (g c)) →
set_fold f (g b) X = g (set_fold f b X).
Proof.
intros. apply (gmultiset_set_fold_comm_acc_strong _); [solve_proper|done].
Qed.
set_fold f b (∅ : gmultiset A) = b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_empty. Qed.
Lemma gmultiset_set_fold_singleton {B} (f : A → B → B) (b : B) (a : A) :
set_fold f b ({[+ a +]} : gmultiset A) = f a b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_singleton. Qed.
Lemma gmultiset_set_fold_disj_union_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) X Y :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x1 x2 c, x1 ∈ X ⊎ Y → x2 ∈ X ⊎ Y → R (f x1 (f x2 c)) (f x2 (f x1 c))) →
R (set_fold f b (X ⊎ Y)) (set_fold f (set_fold f b X) Y).
Proof.
intros ? Hf. unfold set_fold; simpl.
rewrite <-foldr_app. apply (foldr_permutation R f b).
- intros j1 a1 j2 a2 c ? Ha1%elem_of_list_lookup_2 Ha2%elem_of_list_lookup_2.
rewrite gmultiset_elem_of_elements in Ha1, Ha2. eauto.
- rewrite (comm (++)). apply gmultiset_elements_disj_union.
Qed.
Lemma gmultiset_set_fold_disj_union (f : A → A → A) (b : A) X Y :
Comm (=) f →
Assoc (=) f →
set_fold f b (X ⊎ Y) = set_fold f (set_fold f b X) Y.
Proof.
intros ??; apply gmultiset_set_fold_disj_union_strong; [apply _..|].
intros x1 x2 ? _ _. by rewrite 2!assoc, (comm f x1 x2).
Qed.
Lemma gmultiset_set_fold_scalar_mul (f : A → A → A) (b : A) n X :
Comm (=) f →
Assoc (=) f →
set_fold f b (n *: X) = Nat.iter n (flip (set_fold f) X) b.
Proof.
intros Hcomm Hassoc. induction n as [|n IH]; simpl.
- by rewrite gmultiset_scalar_mul_0, gmultiset_set_fold_empty.
- rewrite gmultiset_scalar_mul_S_r.
by rewrite (gmultiset_set_fold_disj_union _ _ _ _ _ _), IH.
Qed.
Lemma gmultiset_set_fold_comm_acc_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (g : B → B) b X :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x (y : B), x ∈ X → R (f x (g y)) (g (f x y))) →
R (set_fold f (g b) X) (g (set_fold f b X)).
Proof.
intros ? Hfg. unfold set_fold; simpl.
apply foldr_comm_acc_strong; [done|solve_proper|].
intros. by apply Hfg, gmultiset_elem_of_elements.
Qed.
Lemma gmultiset_set_fold_comm_acc {B} (f : A → B → B) (g : B → B) (b : B) X :
(∀ x c, g (f x c) = f x (g c)) →
set_fold f (g b) X = g (set_fold f b X).
Proof.
intros. apply (gmultiset_set_fold_comm_acc_strong _); [solve_proper|done].
Qed.
Properties of the size operation
Lemma gmultiset_size_empty : size (∅ : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_iff X : size X = 0 ↔ X = ∅.
Proof.
unfold size, gmultiset_size; simpl.
by rewrite length_zero_iff_nil, gmultiset_elements_empty_iff.
Qed.
Lemma gmultiset_size_empty_inv X : size X = 0 → X = ∅.
Proof. apply gmultiset_size_empty_iff. Qed.
Lemma gmultiset_size_non_empty_iff X : size X ≠ 0 ↔ X ≠ ∅.
Proof. by rewrite gmultiset_size_empty_iff. Qed.
Lemma gmultiset_choose_or_empty X : (∃ x, x ∈ X) ∨ X = ∅.
Proof.
destruct (elements X) as [|x l] eqn:HX; [right|left].
- by apply gmultiset_elements_empty_iff.
- ∃ x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X ≠ ∅ → ∃ x, x ∈ X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X → ∃ x, x ∈ X.
Proof.
intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.
Lemma gmultiset_size_singleton x : size ({[+ x +]} : gmultiset A) = 1.
Proof.
unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
Lemma gmultiset_size_disj_union X Y : size (X ⊎ Y) = size X + size Y.
Proof.
unfold size, gmultiset_size; simpl.
by rewrite gmultiset_elements_disj_union, length_app.
Qed.
Lemma gmultiset_size_scalar_mul n X : size (n *: X) = n × size X.
Proof.
induction n as [|n IH].
- by rewrite gmultiset_scalar_mul_0, gmultiset_size_empty.
- rewrite gmultiset_scalar_mul_S_l, gmultiset_size_disj_union, IH. lia.
Qed.
Proof. done. Qed.
Lemma gmultiset_size_empty_iff X : size X = 0 ↔ X = ∅.
Proof.
unfold size, gmultiset_size; simpl.
by rewrite length_zero_iff_nil, gmultiset_elements_empty_iff.
Qed.
Lemma gmultiset_size_empty_inv X : size X = 0 → X = ∅.
Proof. apply gmultiset_size_empty_iff. Qed.
Lemma gmultiset_size_non_empty_iff X : size X ≠ 0 ↔ X ≠ ∅.
Proof. by rewrite gmultiset_size_empty_iff. Qed.
Lemma gmultiset_choose_or_empty X : (∃ x, x ∈ X) ∨ X = ∅.
Proof.
destruct (elements X) as [|x l] eqn:HX; [right|left].
- by apply gmultiset_elements_empty_iff.
- ∃ x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X ≠ ∅ → ∃ x, x ∈ X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X → ∃ x, x ∈ X.
Proof.
intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.
Lemma gmultiset_size_singleton x : size ({[+ x +]} : gmultiset A) = 1.
Proof.
unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
Lemma gmultiset_size_disj_union X Y : size (X ⊎ Y) = size X + size Y.
Proof.
unfold size, gmultiset_size; simpl.
by rewrite gmultiset_elements_disj_union, length_app.
Qed.
Lemma gmultiset_size_scalar_mul n X : size (n *: X) = n × size X.
Proof.
induction n as [|n IH].
- by rewrite gmultiset_scalar_mul_0, gmultiset_size_empty.
- rewrite gmultiset_scalar_mul_S_l, gmultiset_size_disj_union, IH. lia.
Qed.
Order stuff
Global Instance gmultiset_po : PartialOrder (⊆@{gmultiset A}).
Proof. repeat split; repeat intro; multiset_solver. Qed.
Local Lemma gmultiset_subseteq_alt X Y :
X ⊆ Y ↔
map_relation (λ _, Pos.le) (λ _ _, False) (λ _ _, True)
(gmultiset_car X) (gmultiset_car Y).
Proof.
apply forall_proper; intros x. unfold multiplicity.
destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver lia.
Qed.
Global Instance gmultiset_subseteq_dec : RelDecision (⊆@{gmultiset A}).
Proof.
refine (λ X Y, cast_if (decide (map_relation
(λ _, Pos.le) (λ _ _, False) (λ _ _, True)
(gmultiset_car X) (gmultiset_car Y))));
by rewrite gmultiset_subseteq_alt.
Defined.
Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_empty_subseteq X : ∅ ⊆ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subseteq_l X Y : X ⊆ X ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subseteq_r X Y : Y ⊆ X ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∪ Y1 ⊆ X2 ∪ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∪ Y1 ⊆ X ∪ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∪ Y ⊆ X2 ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_subseteq_l X Y : X ⊆ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_subseteq_r X Y : Y ⊆ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ⊎ Y1 ⊆ X2 ⊎ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ⊎ Y1 ⊆ X ⊎ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ⊎ Y ⊆ X2 ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_subset X Y : X ⊆ Y → size X < size Y → X ⊂ Y.
Proof. intros. apply strict_spec_alt; split; naive_solver auto with lia. Qed.
Lemma gmultiset_disj_union_subset_l X Y : Y ≠ ∅ → X ⊂ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subset_r X Y : X ≠ ∅ → Y ⊂ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq_l x X : {[+ x +]} ⊆ X ↔ x ∈ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq x y :
{[+ x +]} ⊆@{gmultiset A} {[+ y +]} ↔ x = y.
Proof. multiset_solver. Qed.
Lemma gmultiset_elem_of_subseteq X1 X2 x : x ∈ X1 → X1 ⊆ X2 → x ∈ X2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_difference X Y : X ⊆ Y → Y = X ⊎ Y ∖ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_difference' x Y :
x ∈ Y → Y = {[+ x +]} ⊎ Y ∖ {[+ x +]}.
Proof. multiset_solver. Qed.
Lemma gmultiset_size_difference X Y : Y ⊆ X → size (X ∖ Y) = size X - size Y.
Proof.
intros HX%gmultiset_disj_union_difference.
rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Qed.
Lemma gmultiset_empty_difference X Y : Y ⊆ X → Y ∖ X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_non_empty_difference X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_diag X : X ∖ X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_subset X Y : X ≠ ∅ → X ⊆ Y → Y ∖ X ⊂ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_disj_union_r X Y Z : X ∖ Y = (X ⊎ Z) ∖ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_disj_union_l X Y Z : X ∖ Y = (Z ⊎ X) ∖ (Z ⊎ Y).
Proof. multiset_solver. Qed.
Proof. repeat split; repeat intro; multiset_solver. Qed.
Local Lemma gmultiset_subseteq_alt X Y :
X ⊆ Y ↔
map_relation (λ _, Pos.le) (λ _ _, False) (λ _ _, True)
(gmultiset_car X) (gmultiset_car Y).
Proof.
apply forall_proper; intros x. unfold multiplicity.
destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver lia.
Qed.
Global Instance gmultiset_subseteq_dec : RelDecision (⊆@{gmultiset A}).
Proof.
refine (λ X Y, cast_if (decide (map_relation
(λ _, Pos.le) (λ _ _, False) (λ _ _, True)
(gmultiset_car X) (gmultiset_car Y))));
by rewrite gmultiset_subseteq_alt.
Defined.
Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_empty_subseteq X : ∅ ⊆ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subseteq_l X Y : X ⊆ X ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subseteq_r X Y : Y ⊆ X ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∪ Y1 ⊆ X2 ∪ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∪ Y1 ⊆ X ∪ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∪ Y ⊆ X2 ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_subseteq_l X Y : X ⊆ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_subseteq_r X Y : Y ⊆ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ⊎ Y1 ⊆ X2 ⊎ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ⊎ Y1 ⊆ X ⊎ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ⊎ Y ⊆ X2 ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_subset X Y : X ⊆ Y → size X < size Y → X ⊂ Y.
Proof. intros. apply strict_spec_alt; split; naive_solver auto with lia. Qed.
Lemma gmultiset_disj_union_subset_l X Y : Y ≠ ∅ → X ⊂ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subset_r X Y : X ≠ ∅ → Y ⊂ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq_l x X : {[+ x +]} ⊆ X ↔ x ∈ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq x y :
{[+ x +]} ⊆@{gmultiset A} {[+ y +]} ↔ x = y.
Proof. multiset_solver. Qed.
Lemma gmultiset_elem_of_subseteq X1 X2 x : x ∈ X1 → X1 ⊆ X2 → x ∈ X2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_difference X Y : X ⊆ Y → Y = X ⊎ Y ∖ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_difference' x Y :
x ∈ Y → Y = {[+ x +]} ⊎ Y ∖ {[+ x +]}.
Proof. multiset_solver. Qed.
Lemma gmultiset_size_difference X Y : Y ⊆ X → size (X ∖ Y) = size X - size Y.
Proof.
intros HX%gmultiset_disj_union_difference.
rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Qed.
Lemma gmultiset_empty_difference X Y : Y ⊆ X → Y ∖ X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_non_empty_difference X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_diag X : X ∖ X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_subset X Y : X ≠ ∅ → X ⊆ Y → Y ∖ X ⊂ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_disj_union_r X Y Z : X ∖ Y = (X ⊎ Z) ∖ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_disj_union_l X Y Z : X ∖ Y = (Z ⊎ X) ∖ (Z ⊎ Y).
Proof. multiset_solver. Qed.
Mononicity
Lemma gmultiset_elements_submseteq X Y : X ⊆ Y → elements X ⊆+ elements Y.
Proof.
intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
by apply submseteq_inserts_r.
Qed.
Lemma gmultiset_subseteq_size X Y : X ⊆ Y → size X ≤ size Y.
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Lemma gmultiset_subset_size X Y : X ⊂ Y → size X < size Y.
Proof.
intros HXY. assert (size (Y ∖ X) ≠ 0).
{ by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
rewrite (gmultiset_disj_union_difference X Y),
gmultiset_size_disj_union by auto using gmultiset_subset_subseteq. lia.
Qed.
Proof.
intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
by apply submseteq_inserts_r.
Qed.
Lemma gmultiset_subseteq_size X Y : X ⊆ Y → size X ≤ size Y.
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Lemma gmultiset_subset_size X Y : X ⊂ Y → size X < size Y.
Proof.
intros HXY. assert (size (Y ∖ X) ≠ 0).
{ by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
rewrite (gmultiset_disj_union_difference X Y),
gmultiset_size_disj_union by auto using gmultiset_subset_subseteq. lia.
Qed.
Well-foundedness
Lemma gmultiset_wf : well_founded (⊂@{gmultiset A}).
Proof.
apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Lemma gmultiset_ind (P : gmultiset A → Prop) :
P ∅ → (∀ x X, P X → P ({[+ x +]} ⊎ X)) → ∀ X, P X.
Proof.
intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
rewrite (gmultiset_disj_union_difference' x X) by done.
apply Hinsert, IH; multiset_solver.
Qed.
End more_lemmas.
Proof.
apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Lemma gmultiset_ind (P : gmultiset A → Prop) :
P ∅ → (∀ x X, P X → P ({[+ x +]} ⊎ X)) → ∀ X, P X.
Proof.
intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
rewrite (gmultiset_disj_union_difference' x X) by done.
apply Hinsert, IH; multiset_solver.
Qed.
End more_lemmas.
Section map.
Context `{Countable A, Countable B}.
Context (f : A → B).
Lemma gmultiset_map_alt X :
gmultiset_map f X = list_to_set_disj (f <$> elements X).
Proof.
destruct X as [m]. unfold elements, gmultiset_map. simpl.
induction m as [|x n m ?? IH] using map_first_key_ind; [done|].
rewrite map_to_list_insert_first_key, map_fold_insert_first_key by done.
csimpl. rewrite fmap_app, fmap_replicate, list_to_set_disj_app, <-IH.
apply gmultiset_eq; intros y.
rewrite multiplicity_disj_union, list_to_set_disj_replicate.
rewrite multiplicity_scalar_mul, multiplicity_singleton'.
unfold multiplicity; simpl. destruct (decide (y = f x)) as [->|].
- rewrite lookup_partial_alter; simpl. destruct (_ !! f x); simpl; lia.
- rewrite lookup_partial_alter_ne by done. lia.
Qed.
Lemma gmultiset_map_empty : gmultiset_map f ∅ = ∅.
Proof. done. Qed.
Lemma gmultiset_map_disj_union X Y :
gmultiset_map f (X ⊎ Y) = gmultiset_map f X ⊎ gmultiset_map f Y.
Proof.
apply gmultiset_eq; intros x.
rewrite !gmultiset_map_alt, gmultiset_elements_disj_union, fmap_app.
by rewrite list_to_set_disj_app.
Qed.
Lemma gmultiset_map_singleton x :
gmultiset_map f {[+ x +]} = {[+ f x +]}.
Proof.
rewrite gmultiset_map_alt, gmultiset_elements_singleton.
multiset_solver.
Qed.
Lemma elem_of_gmultiset_map X y :
y ∈ gmultiset_map f X ↔ ∃ x, y = f x ∧ x ∈ X.
Proof.
rewrite gmultiset_map_alt, elem_of_list_to_set_disj, elem_of_list_fmap.
by setoid_rewrite gmultiset_elem_of_elements.
Qed.
Lemma multiplicity_gmultiset_map X x :
Inj (=) (=) f →
multiplicity (f x) (gmultiset_map f X) = multiplicity x X.
Proof.
intros. induction X as [|y X IH] using gmultiset_ind; [multiset_solver|].
rewrite gmultiset_map_disj_union, gmultiset_map_singleton,
!multiplicity_disj_union.
multiset_solver.
Qed.
Global Instance gmultiset_map_inj :
Inj (=) (=) f → Inj (=) (=) (gmultiset_map f).
Proof.
intros ? X Y HXY. apply gmultiset_eq; intros x.
by rewrite <-!(multiplicity_gmultiset_map _ _ _), HXY.
Qed.
Global Instance set_unfold_gmultiset_map X (P : A → Prop) y :
(∀ x, SetUnfoldElemOf x X (P x)) →
SetUnfoldElemOf y (gmultiset_map f X) (∃ x, y = f x ∧ P x).
Proof. constructor. rewrite elem_of_gmultiset_map; naive_solver. Qed.
Global Instance multiset_unfold_map x X n :
Inj (=) (=) f →
MultisetUnfold x X n →
MultisetUnfold (f x) (gmultiset_map f X) n.
Proof.
intros ? [HX]; constructor. by rewrite multiplicity_gmultiset_map, HX.
Qed.
End map.
Context `{Countable A, Countable B}.
Context (f : A → B).
Lemma gmultiset_map_alt X :
gmultiset_map f X = list_to_set_disj (f <$> elements X).
Proof.
destruct X as [m]. unfold elements, gmultiset_map. simpl.
induction m as [|x n m ?? IH] using map_first_key_ind; [done|].
rewrite map_to_list_insert_first_key, map_fold_insert_first_key by done.
csimpl. rewrite fmap_app, fmap_replicate, list_to_set_disj_app, <-IH.
apply gmultiset_eq; intros y.
rewrite multiplicity_disj_union, list_to_set_disj_replicate.
rewrite multiplicity_scalar_mul, multiplicity_singleton'.
unfold multiplicity; simpl. destruct (decide (y = f x)) as [->|].
- rewrite lookup_partial_alter; simpl. destruct (_ !! f x); simpl; lia.
- rewrite lookup_partial_alter_ne by done. lia.
Qed.
Lemma gmultiset_map_empty : gmultiset_map f ∅ = ∅.
Proof. done. Qed.
Lemma gmultiset_map_disj_union X Y :
gmultiset_map f (X ⊎ Y) = gmultiset_map f X ⊎ gmultiset_map f Y.
Proof.
apply gmultiset_eq; intros x.
rewrite !gmultiset_map_alt, gmultiset_elements_disj_union, fmap_app.
by rewrite list_to_set_disj_app.
Qed.
Lemma gmultiset_map_singleton x :
gmultiset_map f {[+ x +]} = {[+ f x +]}.
Proof.
rewrite gmultiset_map_alt, gmultiset_elements_singleton.
multiset_solver.
Qed.
Lemma elem_of_gmultiset_map X y :
y ∈ gmultiset_map f X ↔ ∃ x, y = f x ∧ x ∈ X.
Proof.
rewrite gmultiset_map_alt, elem_of_list_to_set_disj, elem_of_list_fmap.
by setoid_rewrite gmultiset_elem_of_elements.
Qed.
Lemma multiplicity_gmultiset_map X x :
Inj (=) (=) f →
multiplicity (f x) (gmultiset_map f X) = multiplicity x X.
Proof.
intros. induction X as [|y X IH] using gmultiset_ind; [multiset_solver|].
rewrite gmultiset_map_disj_union, gmultiset_map_singleton,
!multiplicity_disj_union.
multiset_solver.
Qed.
Global Instance gmultiset_map_inj :
Inj (=) (=) f → Inj (=) (=) (gmultiset_map f).
Proof.
intros ? X Y HXY. apply gmultiset_eq; intros x.
by rewrite <-!(multiplicity_gmultiset_map _ _ _), HXY.
Qed.
Global Instance set_unfold_gmultiset_map X (P : A → Prop) y :
(∀ x, SetUnfoldElemOf x X (P x)) →
SetUnfoldElemOf y (gmultiset_map f X) (∃ x, y = f x ∧ P x).
Proof. constructor. rewrite elem_of_gmultiset_map; naive_solver. Qed.
Global Instance multiset_unfold_map x X n :
Inj (=) (=) f →
MultisetUnfold x X n →
MultisetUnfold (f x) (gmultiset_map f X) n.
Proof.
intros ? [HX]; constructor. by rewrite multiplicity_gmultiset_map, HX.
Qed.
End map.
Section disj_union_list.
Context `{Countable A}.
Implicit Types X Y : gmultiset A.
Implicit Types Xs Ys : list (gmultiset A).
Lemma gmultiset_disj_union_list_nil :
⋃+ (@nil (gmultiset A)) = ∅.
Proof. done. Qed.
Lemma gmultiset_disj_union_list_cons X Xs :
⋃+ (X :: Xs) = X ⊎ ⋃+ Xs.
Proof. done. Qed.
Lemma gmultiset_disj_union_list_singleton X :
⋃+ [X] = X.
Proof. simpl. by rewrite (right_id_L ∅ _). Qed.
Lemma gmultiset_disj_union_list_app Xs1 Xs2 :
⋃+ (Xs1 ++ Xs2) = ⋃+ Xs1 ⊎ ⋃+ Xs2.
Proof.
induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id_L ∅ _)|].
by rewrite IH, (assoc_L _).
Qed.
Lemma elem_of_gmultiset_disj_union_list Xs x :
x ∈ ⋃+ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X.
Proof. induction Xs; multiset_solver. Qed.
Lemma multiplicity_gmultiset_disj_union_list x Xs :
multiplicity x (⋃+ Xs) = sum_list (multiplicity x <$> Xs).
Proof.
induction Xs as [|X Xs IH]; [done|]; simpl.
by rewrite multiplicity_disj_union, IH.
Qed.
Global Instance gmultiset_disj_union_list_proper :
Proper ((≡ₚ) ==> (=)) (@disj_union_list (gmultiset A) _ _).
Proof. induction 1; multiset_solver. Qed.
End disj_union_list.
Context `{Countable A}.
Implicit Types X Y : gmultiset A.
Implicit Types Xs Ys : list (gmultiset A).
Lemma gmultiset_disj_union_list_nil :
⋃+ (@nil (gmultiset A)) = ∅.
Proof. done. Qed.
Lemma gmultiset_disj_union_list_cons X Xs :
⋃+ (X :: Xs) = X ⊎ ⋃+ Xs.
Proof. done. Qed.
Lemma gmultiset_disj_union_list_singleton X :
⋃+ [X] = X.
Proof. simpl. by rewrite (right_id_L ∅ _). Qed.
Lemma gmultiset_disj_union_list_app Xs1 Xs2 :
⋃+ (Xs1 ++ Xs2) = ⋃+ Xs1 ⊎ ⋃+ Xs2.
Proof.
induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id_L ∅ _)|].
by rewrite IH, (assoc_L _).
Qed.
Lemma elem_of_gmultiset_disj_union_list Xs x :
x ∈ ⋃+ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X.
Proof. induction Xs; multiset_solver. Qed.
Lemma multiplicity_gmultiset_disj_union_list x Xs :
multiplicity x (⋃+ Xs) = sum_list (multiplicity x <$> Xs).
Proof.
induction Xs as [|X Xs IH]; [done|]; simpl.
by rewrite multiplicity_disj_union, IH.
Qed.
Global Instance gmultiset_disj_union_list_proper :
Proper ((≡ₚ) ==> (=)) (@disj_union_list (gmultiset A) _ _).
Proof. induction 1; multiset_solver. Qed.
End disj_union_list.