Library iris.base_logic.lib.own
From iris.algebra Require Import functions gmap proofmode_classes.
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Export iprop.
From iris.prelude Require Import options.
Import uPred.
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Export iprop.
From iris.prelude Require Import options.
Import uPred.
The class inG Σ A expresses that the CMRA A is in the list of functors
Σ. This class is similar to the subG class, but written down in terms of
individual CMRAs instead of (lists of) CMRA *functors*. This additional class is
needed because Coq is otherwise unable to solve type class constraints due to
higher-order unification problems.
Class inG (Σ : gFunctors) (A : cmra) := InG {
inG_id : gid Σ;
inG_apply := rFunctor_apply (gFunctors_lookup Σ inG_id);
inG_prf : A = inG_apply (iPropO Σ) _;
}.
Global Arguments inG_id {_ _} _.
Global Arguments inG_apply {_ _} _ _ {_}.
inG_id : gid Σ;
inG_apply := rFunctor_apply (gFunctors_lookup Σ inG_id);
inG_prf : A = inG_apply (iPropO Σ) _;
}.
Global Arguments inG_id {_ _} _.
Global Arguments inG_apply {_ _} _ _ {_}.
We use the mode - for Σ since there is always a unique Σ. We use the
mode ! for A since we can have multiple inGs for different As, so we do
not want Coq to pick one arbitrarily.
Global Hint Mode inG - ! : typeclass_instances.
Lemma subG_inG Σ (F : gFunctor) : subG F Σ → inG Σ (rFunctor_apply F (iPropO Σ)).
Proof. move⇒ /(_ 0%fin) /= [j ->]. by ∃ j. Qed.
Lemma subG_inG Σ (F : gFunctor) : subG F Σ → inG Σ (rFunctor_apply F (iPropO Σ)).
Proof. move⇒ /(_ 0%fin) /= [j ->]. by ∃ j. Qed.
This tactic solves the usual obligations "subG ? Σ → {in,?}G ? Σ"
Ltac solve_inG :=
intros;
lazymatch goal with
| H : subG (?xΣ _ _ _ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG (?xΣ _ _ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG (?xΣ _ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG (?xΣ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG ?xΣ _ |- _ ⇒ try unfold xΣ in H
end;
repeat match goal with
| H : subG (gFunctors.app _ _) _ |- _ ⇒ apply subG_inv in H; destruct H
end;
repeat match goal with
| H : subG _ _ |- _ ⇒ move:(H); (apply subG_inG in H || clear H)
end;
intros; simpl in *;
try assumption;
split; (assumption || by apply _).
intros;
lazymatch goal with
| H : subG (?xΣ _ _ _ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG (?xΣ _ _ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG (?xΣ _ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG (?xΣ _) _ |- _ ⇒ try unfold xΣ in H
| H : subG ?xΣ _ |- _ ⇒ try unfold xΣ in H
end;
repeat match goal with
| H : subG (gFunctors.app _ _) _ |- _ ⇒ apply subG_inv in H; destruct H
end;
repeat match goal with
| H : subG _ _ |- _ ⇒ move:(H); (apply subG_inG in H || clear H)
end;
intros; simpl in *;
try assumption;
split; (assumption || by apply _).
Definition of the connective own
Local Definition inG_unfold {Σ A} {i : inG Σ A} :
inG_apply i (iPropO Σ) -n> inG_apply i (iPrePropO Σ) :=
rFunctor_map _ (iProp_fold, iProp_unfold).
Local Definition inG_fold {Σ A} {i : inG Σ A} :
inG_apply i (iPrePropO Σ) -n> inG_apply i (iPropO Σ) :=
rFunctor_map _ (iProp_unfold, iProp_fold).
Local Definition iRes_singleton {Σ A} {i : inG Σ A} (γ : gname) (a : A) : iResUR Σ :=
discrete_fun_singleton (inG_id i)
{[ γ := inG_unfold (cmra_transport inG_prf a) ]}.
Global Instance: Params (@iRes_singleton) 4 := {}.
Local Definition own_def `{!inG Σ A} (γ : gname) (a : A) : iProp Σ :=
uPred_ownM (iRes_singleton γ a).
Local Definition own_aux : seal (@own_def). Proof. by eexists. Qed.
Definition own := own_aux.(unseal).
Global Arguments own {Σ A _} γ a.
Local Definition own_eq : @own = @own_def := own_aux.(seal_eq).
Local Instance: Params (@own) 4 := {}.
inG_apply i (iPropO Σ) -n> inG_apply i (iPrePropO Σ) :=
rFunctor_map _ (iProp_fold, iProp_unfold).
Local Definition inG_fold {Σ A} {i : inG Σ A} :
inG_apply i (iPrePropO Σ) -n> inG_apply i (iPropO Σ) :=
rFunctor_map _ (iProp_unfold, iProp_fold).
Local Definition iRes_singleton {Σ A} {i : inG Σ A} (γ : gname) (a : A) : iResUR Σ :=
discrete_fun_singleton (inG_id i)
{[ γ := inG_unfold (cmra_transport inG_prf a) ]}.
Global Instance: Params (@iRes_singleton) 4 := {}.
Local Definition own_def `{!inG Σ A} (γ : gname) (a : A) : iProp Σ :=
uPred_ownM (iRes_singleton γ a).
Local Definition own_aux : seal (@own_def). Proof. by eexists. Qed.
Definition own := own_aux.(unseal).
Global Arguments own {Σ A _} γ a.
Local Definition own_eq : @own = @own_def := own_aux.(seal_eq).
Local Instance: Params (@own) 4 := {}.
Properties of iRes_singleton
Local Lemma inG_unfold_fold (x : inG_apply i (iPrePropO Σ)) :
inG_unfold (inG_fold x) ≡ x.
Proof.
rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id.
apply (ne_proper (rFunctor_map _)); split⇒ ?; apply iProp_unfold_fold.
Qed.
Local Lemma inG_fold_unfold (x : inG_apply i (iPropO Σ)) :
inG_fold (inG_unfold x) ≡ x.
Proof.
rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id.
apply (ne_proper (rFunctor_map _)); split⇒ ?; apply iProp_fold_unfold.
Qed.
Local Lemma inG_unfold_validN n (x : inG_apply i (iPropO Σ)) :
✓{n} (inG_unfold x) ↔ ✓{n} x.
Proof.
split; [|apply (cmra_morphism_validN _)].
move⇒ /(cmra_morphism_validN inG_fold). by rewrite inG_fold_unfold.
Qed.
Local Instance iRes_singleton_ne γ : NonExpansive (@iRes_singleton Σ A _ γ).
Proof. by intros n a a' Ha; apply discrete_fun_singleton_ne; rewrite Ha. Qed.
Local Lemma iRes_singleton_validI γ a : ✓ (iRes_singleton γ a) ⊢@{iPropI Σ} ✓ a.
Proof.
rewrite /iRes_singleton.
rewrite discrete_fun_validI (forall_elim (inG_id i)) discrete_fun_lookup_singleton.
rewrite singleton_validI.
trans (✓ cmra_transport inG_prf a : iProp Σ)%I; last by destruct inG_prf.
apply valid_entails⇒ n. apply inG_unfold_validN.
Qed.
Local Lemma iRes_singleton_op γ a1 a2 :
iRes_singleton γ (a1 ⋅ a2) ≡ iRes_singleton γ a1 ⋅ iRes_singleton γ a2.
Proof.
rewrite /iRes_singleton discrete_fun_singleton_op singleton_op cmra_transport_op.
f_equiv. apply: singletonM_proper. apply (cmra_morphism_op _).
Qed.
Local Instance iRes_singleton_discrete γ a :
Discrete a → Discrete (iRes_singleton γ a).
Proof.
intros ?. rewrite /iRes_singleton.
apply discrete_fun_singleton_discrete, gmap_singleton_discrete; [apply _|].
intros x Hx. assert (cmra_transport inG_prf a ≡ inG_fold x) as Ha.
{ apply (discrete_0 _). by rewrite -Hx inG_fold_unfold. }
by rewrite Ha inG_unfold_fold.
Qed.
Local Instance iRes_singleton_core_id γ a :
CoreId a → CoreId (iRes_singleton γ a).
Proof.
intros. apply discrete_fun_singleton_core_id, gmap_singleton_core_id.
by rewrite /CoreId -cmra_morphism_pcore core_id.
Qed.
Local Lemma later_internal_eq_iRes_singleton γ a r :
▷ (r ≡ iRes_singleton γ a) ⊢@{iPropI Σ}
◇ ∃ b r', r ≡ iRes_singleton γ b ⋅ r' ∧ ▷ (a ≡ b).
Proof.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). }
rewrite (f_equivI (λ r : iResUR Σ, r (inG_id i) !! γ) r).
rewrite {1}/iRes_singleton discrete_fun_lookup_singleton lookup_singleton.
rewrite option_equivI. case Hb: (r (inG_id _) !! γ)=> [b|]; last first.
{ by rewrite /bi_except_0 -or_intro_l. }
rewrite -except_0_intro.
rewrite -(exist_intro (cmra_transport (eq_sym inG_prf) (inG_fold b))).
rewrite -(exist_intro (discrete_fun_insert (inG_id _) (delete γ (r (inG_id i))) r)).
apply and_intro.
- apply equiv_internal_eq. rewrite /iRes_singleton.
rewrite cmra_transport_trans eq_trans_sym_inv_l /=.
intros i'. rewrite discrete_fun_lookup_op.
destruct (decide (i' = inG_id i)) as [->|?].
+ rewrite discrete_fun_lookup_insert discrete_fun_lookup_singleton.
intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|?].
× by rewrite lookup_singleton lookup_delete Hb inG_unfold_fold.
× by rewrite lookup_singleton_ne // lookup_delete_ne // left_id.
+ rewrite discrete_fun_lookup_insert_ne //.
by rewrite discrete_fun_lookup_singleton_ne // left_id.
- apply later_mono. rewrite (f_equivI inG_fold) inG_fold_unfold.
apply: (internal_eq_rewrite' _ _ (λ b, a ≡ cmra_transport (eq_sym inG_prf) b)%I);
[solve_proper|apply internal_eq_sym|].
rewrite cmra_transport_trans eq_trans_sym_inv_r /=. apply internal_eq_refl.
Qed.
inG_unfold (inG_fold x) ≡ x.
Proof.
rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id.
apply (ne_proper (rFunctor_map _)); split⇒ ?; apply iProp_unfold_fold.
Qed.
Local Lemma inG_fold_unfold (x : inG_apply i (iPropO Σ)) :
inG_fold (inG_unfold x) ≡ x.
Proof.
rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id.
apply (ne_proper (rFunctor_map _)); split⇒ ?; apply iProp_fold_unfold.
Qed.
Local Lemma inG_unfold_validN n (x : inG_apply i (iPropO Σ)) :
✓{n} (inG_unfold x) ↔ ✓{n} x.
Proof.
split; [|apply (cmra_morphism_validN _)].
move⇒ /(cmra_morphism_validN inG_fold). by rewrite inG_fold_unfold.
Qed.
Local Instance iRes_singleton_ne γ : NonExpansive (@iRes_singleton Σ A _ γ).
Proof. by intros n a a' Ha; apply discrete_fun_singleton_ne; rewrite Ha. Qed.
Local Lemma iRes_singleton_validI γ a : ✓ (iRes_singleton γ a) ⊢@{iPropI Σ} ✓ a.
Proof.
rewrite /iRes_singleton.
rewrite discrete_fun_validI (forall_elim (inG_id i)) discrete_fun_lookup_singleton.
rewrite singleton_validI.
trans (✓ cmra_transport inG_prf a : iProp Σ)%I; last by destruct inG_prf.
apply valid_entails⇒ n. apply inG_unfold_validN.
Qed.
Local Lemma iRes_singleton_op γ a1 a2 :
iRes_singleton γ (a1 ⋅ a2) ≡ iRes_singleton γ a1 ⋅ iRes_singleton γ a2.
Proof.
rewrite /iRes_singleton discrete_fun_singleton_op singleton_op cmra_transport_op.
f_equiv. apply: singletonM_proper. apply (cmra_morphism_op _).
Qed.
Local Instance iRes_singleton_discrete γ a :
Discrete a → Discrete (iRes_singleton γ a).
Proof.
intros ?. rewrite /iRes_singleton.
apply discrete_fun_singleton_discrete, gmap_singleton_discrete; [apply _|].
intros x Hx. assert (cmra_transport inG_prf a ≡ inG_fold x) as Ha.
{ apply (discrete_0 _). by rewrite -Hx inG_fold_unfold. }
by rewrite Ha inG_unfold_fold.
Qed.
Local Instance iRes_singleton_core_id γ a :
CoreId a → CoreId (iRes_singleton γ a).
Proof.
intros. apply discrete_fun_singleton_core_id, gmap_singleton_core_id.
by rewrite /CoreId -cmra_morphism_pcore core_id.
Qed.
Local Lemma later_internal_eq_iRes_singleton γ a r :
▷ (r ≡ iRes_singleton γ a) ⊢@{iPropI Σ}
◇ ∃ b r', r ≡ iRes_singleton γ b ⋅ r' ∧ ▷ (a ≡ b).
Proof.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). }
rewrite (f_equivI (λ r : iResUR Σ, r (inG_id i) !! γ) r).
rewrite {1}/iRes_singleton discrete_fun_lookup_singleton lookup_singleton.
rewrite option_equivI. case Hb: (r (inG_id _) !! γ)=> [b|]; last first.
{ by rewrite /bi_except_0 -or_intro_l. }
rewrite -except_0_intro.
rewrite -(exist_intro (cmra_transport (eq_sym inG_prf) (inG_fold b))).
rewrite -(exist_intro (discrete_fun_insert (inG_id _) (delete γ (r (inG_id i))) r)).
apply and_intro.
- apply equiv_internal_eq. rewrite /iRes_singleton.
rewrite cmra_transport_trans eq_trans_sym_inv_l /=.
intros i'. rewrite discrete_fun_lookup_op.
destruct (decide (i' = inG_id i)) as [->|?].
+ rewrite discrete_fun_lookup_insert discrete_fun_lookup_singleton.
intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|?].
× by rewrite lookup_singleton lookup_delete Hb inG_unfold_fold.
× by rewrite lookup_singleton_ne // lookup_delete_ne // left_id.
+ rewrite discrete_fun_lookup_insert_ne //.
by rewrite discrete_fun_lookup_singleton_ne // left_id.
- apply later_mono. rewrite (f_equivI inG_fold) inG_fold_unfold.
apply: (internal_eq_rewrite' _ _ (λ b, a ≡ cmra_transport (eq_sym inG_prf) b)%I);
[solve_proper|apply internal_eq_sym|].
rewrite cmra_transport_trans eq_trans_sym_inv_r /=. apply internal_eq_refl.
Qed.
Properties of own
Global Instance own_ne γ : NonExpansive (@own Σ A _ γ).
Proof. rewrite !own_eq. solve_proper. Qed.
Global Instance own_proper γ :
Proper ((≡) ==> (⊣⊢)) (@own Σ A _ γ) := ne_proper _.
Lemma own_op γ a1 a2 : own γ (a1 ⋅ a2) ⊣⊢ own γ a1 ∗ own γ a2.
Proof. by rewrite !own_eq /own_def -ownM_op iRes_singleton_op. Qed.
Lemma own_mono γ a1 a2 : a2 ≼ a1 → own γ a1 ⊢ own γ a2.
Proof. move⇒ [c ->]. by rewrite own_op sep_elim_l. Qed.
Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (@own Σ A _ γ).
Proof. intros a1 a2. apply own_mono. Qed.
Lemma own_valid γ a : own γ a ⊢ ✓ a.
Proof. by rewrite !own_eq /own_def ownM_valid iRes_singleton_validI. Qed.
Lemma own_valid_2 γ a1 a2 : own γ a1 -∗ own γ a2 -∗ ✓ (a1 ⋅ a2).
Proof. apply entails_wand, wand_intro_r. by rewrite -own_op own_valid. Qed.
Lemma own_valid_3 γ a1 a2 a3 : own γ a1 -∗ own γ a2 -∗ own γ a3 -∗ ✓ (a1 ⋅ a2 ⋅ a3).
Proof. apply entails_wand. do 2 apply wand_intro_r. by rewrite -!own_op own_valid. Qed.
Lemma own_valid_r γ a : own γ a ⊢ own γ a ∗ ✓ a.
Proof. apply: bi.persistent_entails_r. apply own_valid. Qed.
Lemma own_valid_l γ a : own γ a ⊢ ✓ a ∗ own γ a.
Proof. by rewrite comm -own_valid_r. Qed.
Global Instance own_timeless γ a : Discrete a → Timeless (own γ a).
Proof. rewrite !own_eq /own_def. apply _. Qed.
Global Instance own_core_persistent γ a : CoreId a → Persistent (own γ a).
Proof. rewrite !own_eq /own_def; apply _. Qed.
Lemma later_own γ a : ▷ own γ a ⊢ ◇ ∃ b, own γ b ∧ ▷ (a ≡ b).
Proof.
rewrite own_eq /own_def later_ownM. apply exist_elim⇒ r.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). }
rewrite internal_eq_sym later_internal_eq_iRes_singleton.
rewrite (except_0_intro (uPred_ownM r)) -except_0_and. f_equiv.
rewrite and_exist_l. f_equiv⇒ b. rewrite and_exist_l. apply exist_elim⇒ r'.
rewrite assoc. apply and_mono_l.
etrans; [|apply ownM_mono, (cmra_included_l _ r')].
eapply (internal_eq_rewrite' _ _ uPred_ownM _); [apply and_elim_r|].
apply and_elim_l.
Qed.
Proof. rewrite !own_eq. solve_proper. Qed.
Global Instance own_proper γ :
Proper ((≡) ==> (⊣⊢)) (@own Σ A _ γ) := ne_proper _.
Lemma own_op γ a1 a2 : own γ (a1 ⋅ a2) ⊣⊢ own γ a1 ∗ own γ a2.
Proof. by rewrite !own_eq /own_def -ownM_op iRes_singleton_op. Qed.
Lemma own_mono γ a1 a2 : a2 ≼ a1 → own γ a1 ⊢ own γ a2.
Proof. move⇒ [c ->]. by rewrite own_op sep_elim_l. Qed.
Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (@own Σ A _ γ).
Proof. intros a1 a2. apply own_mono. Qed.
Lemma own_valid γ a : own γ a ⊢ ✓ a.
Proof. by rewrite !own_eq /own_def ownM_valid iRes_singleton_validI. Qed.
Lemma own_valid_2 γ a1 a2 : own γ a1 -∗ own γ a2 -∗ ✓ (a1 ⋅ a2).
Proof. apply entails_wand, wand_intro_r. by rewrite -own_op own_valid. Qed.
Lemma own_valid_3 γ a1 a2 a3 : own γ a1 -∗ own γ a2 -∗ own γ a3 -∗ ✓ (a1 ⋅ a2 ⋅ a3).
Proof. apply entails_wand. do 2 apply wand_intro_r. by rewrite -!own_op own_valid. Qed.
Lemma own_valid_r γ a : own γ a ⊢ own γ a ∗ ✓ a.
Proof. apply: bi.persistent_entails_r. apply own_valid. Qed.
Lemma own_valid_l γ a : own γ a ⊢ ✓ a ∗ own γ a.
Proof. by rewrite comm -own_valid_r. Qed.
Global Instance own_timeless γ a : Discrete a → Timeless (own γ a).
Proof. rewrite !own_eq /own_def. apply _. Qed.
Global Instance own_core_persistent γ a : CoreId a → Persistent (own γ a).
Proof. rewrite !own_eq /own_def; apply _. Qed.
Lemma later_own γ a : ▷ own γ a ⊢ ◇ ∃ b, own γ b ∧ ▷ (a ≡ b).
Proof.
rewrite own_eq /own_def later_ownM. apply exist_elim⇒ r.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). }
rewrite internal_eq_sym later_internal_eq_iRes_singleton.
rewrite (except_0_intro (uPred_ownM r)) -except_0_and. f_equiv.
rewrite and_exist_l. f_equiv⇒ b. rewrite and_exist_l. apply exist_elim⇒ r'.
rewrite assoc. apply and_mono_l.
etrans; [|apply ownM_mono, (cmra_included_l _ r')].
eapply (internal_eq_rewrite' _ _ uPred_ownM _); [apply and_elim_r|].
apply and_elim_l.
Qed.
Lemma own_alloc_strong_dep (f : gname → A) (P : gname → Prop) :
pred_infinite P →
(∀ γ, P γ → ✓ (f γ)) →
⊢ |==> ∃ γ, ⌜P γ⌝ ∗ own γ (f γ).
Proof.
intros HPinf Hf.
rewrite -(bupd_mono (∃ m, ⌜∃ γ, P γ ∧ m = iRes_singleton γ (f γ)⌝ ∧ uPred_ownM m)%I).
- rewrite /bi_emp_valid (ownM_unit emp).
apply bupd_ownM_updateP, (discrete_fun_singleton_updateP_empty _ (λ m, ∃ γ,
m = {[ γ := inG_unfold (cmra_transport inG_prf (f γ)) ]} ∧ P γ));
[|naive_solver].
apply (alloc_updateP_strong_dep _ P _ (λ γ,
inG_unfold (cmra_transport inG_prf (f γ)))); [done| |naive_solver].
intros γ _ ?.
by apply (cmra_morphism_valid inG_unfold), cmra_transport_valid, Hf.
- apply exist_elim⇒m; apply pure_elim_l=>-[γ [Hfresh ->]].
by rewrite !own_eq /own_def -(exist_intro γ) pure_True // left_id.
Qed.
Lemma own_alloc_cofinite_dep (f : gname → A) (G : gset gname) :
(∀ γ, γ ∉ G → ✓ (f γ)) → ⊢ |==> ∃ γ, ⌜γ ∉ G⌝ ∗ own γ (f γ).
Proof.
intros Ha.
apply (own_alloc_strong_dep f (λ γ, γ ∉ G))=> //.
apply (pred_infinite_set (C:=gset gname)).
intros E. set (γ := fresh (G ∪ E)).
∃ γ. apply not_elem_of_union, is_fresh.
Qed.
Lemma own_alloc_dep (f : gname → A) :
(∀ γ, ✓ (f γ)) → ⊢ |==> ∃ γ, own γ (f γ).
Proof.
intros Ha. rewrite /bi_emp_valid (own_alloc_cofinite_dep f ∅) //; [].
apply bupd_mono, exist_mono=>?. apply: sep_elim_r.
Qed.
Lemma own_alloc_strong a (P : gname → Prop) :
pred_infinite P →
✓ a → ⊢ |==> ∃ γ, ⌜P γ⌝ ∗ own γ a.
Proof. intros HP Ha. eapply (own_alloc_strong_dep (λ _, a)); eauto. Qed.
Lemma own_alloc_cofinite a (G : gset gname) :
✓ a → ⊢ |==> ∃ γ, ⌜γ ∉ G⌝ ∗ own γ a.
Proof. intros Ha. eapply (own_alloc_cofinite_dep (λ _, a)); eauto. Qed.
Lemma own_alloc a : ✓ a → ⊢ |==> ∃ γ, own γ a.
Proof. intros Ha. eapply (own_alloc_dep (λ _, a)); eauto. Qed.
pred_infinite P →
(∀ γ, P γ → ✓ (f γ)) →
⊢ |==> ∃ γ, ⌜P γ⌝ ∗ own γ (f γ).
Proof.
intros HPinf Hf.
rewrite -(bupd_mono (∃ m, ⌜∃ γ, P γ ∧ m = iRes_singleton γ (f γ)⌝ ∧ uPred_ownM m)%I).
- rewrite /bi_emp_valid (ownM_unit emp).
apply bupd_ownM_updateP, (discrete_fun_singleton_updateP_empty _ (λ m, ∃ γ,
m = {[ γ := inG_unfold (cmra_transport inG_prf (f γ)) ]} ∧ P γ));
[|naive_solver].
apply (alloc_updateP_strong_dep _ P _ (λ γ,
inG_unfold (cmra_transport inG_prf (f γ)))); [done| |naive_solver].
intros γ _ ?.
by apply (cmra_morphism_valid inG_unfold), cmra_transport_valid, Hf.
- apply exist_elim⇒m; apply pure_elim_l=>-[γ [Hfresh ->]].
by rewrite !own_eq /own_def -(exist_intro γ) pure_True // left_id.
Qed.
Lemma own_alloc_cofinite_dep (f : gname → A) (G : gset gname) :
(∀ γ, γ ∉ G → ✓ (f γ)) → ⊢ |==> ∃ γ, ⌜γ ∉ G⌝ ∗ own γ (f γ).
Proof.
intros Ha.
apply (own_alloc_strong_dep f (λ γ, γ ∉ G))=> //.
apply (pred_infinite_set (C:=gset gname)).
intros E. set (γ := fresh (G ∪ E)).
∃ γ. apply not_elem_of_union, is_fresh.
Qed.
Lemma own_alloc_dep (f : gname → A) :
(∀ γ, ✓ (f γ)) → ⊢ |==> ∃ γ, own γ (f γ).
Proof.
intros Ha. rewrite /bi_emp_valid (own_alloc_cofinite_dep f ∅) //; [].
apply bupd_mono, exist_mono=>?. apply: sep_elim_r.
Qed.
Lemma own_alloc_strong a (P : gname → Prop) :
pred_infinite P →
✓ a → ⊢ |==> ∃ γ, ⌜P γ⌝ ∗ own γ a.
Proof. intros HP Ha. eapply (own_alloc_strong_dep (λ _, a)); eauto. Qed.
Lemma own_alloc_cofinite a (G : gset gname) :
✓ a → ⊢ |==> ∃ γ, ⌜γ ∉ G⌝ ∗ own γ a.
Proof. intros Ha. eapply (own_alloc_cofinite_dep (λ _, a)); eauto. Qed.
Lemma own_alloc a : ✓ a → ⊢ |==> ∃ γ, own γ a.
Proof. intros Ha. eapply (own_alloc_dep (λ _, a)); eauto. Qed.
Lemma own_updateP P γ a : a ~~>: P → own γ a ⊢ |==> ∃ a', ⌜P a'⌝ ∗ own γ a'.
Proof.
intros Hupd. rewrite !own_eq.
rewrite -(bupd_mono (∃ m,
⌜ ∃ a', m = iRes_singleton γ a' ∧ P a' ⌝ ∧ uPred_ownM m)%I).
- apply bupd_ownM_updateP, (discrete_fun_singleton_updateP _ (λ m, ∃ x,
m = {[ γ := x ]} ∧ ∃ x',
x = inG_unfold x' ∧ ∃ a',
x' = cmra_transport inG_prf a' ∧ P a')); [|naive_solver].
apply singleton_updateP', (iso_cmra_updateP' inG_fold).
{ apply inG_unfold_fold. }
{ apply (cmra_morphism_op _). }
{ apply inG_unfold_validN. }
by apply cmra_transport_updateP'.
- apply exist_elim⇒ m; apply pure_elim_l⇒ -[a' [-> HP]].
rewrite -(exist_intro a'). rewrite -persistent_and_sep.
by apply and_intro; [apply pure_intro|].
Qed.
Lemma own_update γ a a' : a ~~> a' → own γ a ⊢ |==> own γ a'.
Proof.
intros. iIntros "?".
iMod (own_updateP (a' =.) with "[$]") as (a'') "[-> $]".
{ by apply cmra_update_updateP. }
done.
Qed.
Lemma own_update_2 γ a1 a2 a' :
a1 ⋅ a2 ~~> a' → own γ a1 -∗ own γ a2 ==∗ own γ a'.
Proof. intros. apply entails_wand, wand_intro_r. rewrite -own_op. by iApply own_update. Qed.
Lemma own_update_3 γ a1 a2 a3 a' :
a1 ⋅ a2 ⋅ a3 ~~> a' → own γ a1 -∗ own γ a2 -∗ own γ a3 ==∗ own γ a'.
Proof. intros. apply entails_wand. do 2 apply wand_intro_r. rewrite -!own_op. by iApply own_update. Qed.
End global.
Global Arguments own_valid {_ _} [_] _ _.
Global Arguments own_valid_2 {_ _} [_] _ _ _.
Global Arguments own_valid_3 {_ _} [_] _ _ _ _.
Global Arguments own_valid_l {_ _} [_] _ _.
Global Arguments own_valid_r {_ _} [_] _ _.
Global Arguments own_updateP {_ _} [_] _ _ _ _.
Global Arguments own_update {_ _} [_] _ _ _ _.
Global Arguments own_update_2 {_ _} [_] _ _ _ _ _.
Global Arguments own_update_3 {_ _} [_] _ _ _ _ _ _.
Lemma own_unit A `{i : !inG Σ (A:ucmra)} γ : ⊢ |==> own γ (ε:A).
Proof.
rewrite /bi_emp_valid (ownM_unit emp) !own_eq /own_def.
apply bupd_ownM_update, discrete_fun_singleton_update_empty.
apply (alloc_unit_singleton_update (inG_unfold (cmra_transport inG_prf ε))).
- apply (cmra_morphism_valid _), cmra_transport_valid, ucmra_unit_valid.
- intros x. rewrite -(inG_unfold_fold x) -(cmra_morphism_op inG_unfold).
f_equiv. generalize (inG_fold x)=> x'.
destruct inG_prf⇒ /=. by rewrite left_id.
- done.
Qed.
Proof.
intros Hupd. rewrite !own_eq.
rewrite -(bupd_mono (∃ m,
⌜ ∃ a', m = iRes_singleton γ a' ∧ P a' ⌝ ∧ uPred_ownM m)%I).
- apply bupd_ownM_updateP, (discrete_fun_singleton_updateP _ (λ m, ∃ x,
m = {[ γ := x ]} ∧ ∃ x',
x = inG_unfold x' ∧ ∃ a',
x' = cmra_transport inG_prf a' ∧ P a')); [|naive_solver].
apply singleton_updateP', (iso_cmra_updateP' inG_fold).
{ apply inG_unfold_fold. }
{ apply (cmra_morphism_op _). }
{ apply inG_unfold_validN. }
by apply cmra_transport_updateP'.
- apply exist_elim⇒ m; apply pure_elim_l⇒ -[a' [-> HP]].
rewrite -(exist_intro a'). rewrite -persistent_and_sep.
by apply and_intro; [apply pure_intro|].
Qed.
Lemma own_update γ a a' : a ~~> a' → own γ a ⊢ |==> own γ a'.
Proof.
intros. iIntros "?".
iMod (own_updateP (a' =.) with "[$]") as (a'') "[-> $]".
{ by apply cmra_update_updateP. }
done.
Qed.
Lemma own_update_2 γ a1 a2 a' :
a1 ⋅ a2 ~~> a' → own γ a1 -∗ own γ a2 ==∗ own γ a'.
Proof. intros. apply entails_wand, wand_intro_r. rewrite -own_op. by iApply own_update. Qed.
Lemma own_update_3 γ a1 a2 a3 a' :
a1 ⋅ a2 ⋅ a3 ~~> a' → own γ a1 -∗ own γ a2 -∗ own γ a3 ==∗ own γ a'.
Proof. intros. apply entails_wand. do 2 apply wand_intro_r. rewrite -!own_op. by iApply own_update. Qed.
End global.
Global Arguments own_valid {_ _} [_] _ _.
Global Arguments own_valid_2 {_ _} [_] _ _ _.
Global Arguments own_valid_3 {_ _} [_] _ _ _ _.
Global Arguments own_valid_l {_ _} [_] _ _.
Global Arguments own_valid_r {_ _} [_] _ _.
Global Arguments own_updateP {_ _} [_] _ _ _ _.
Global Arguments own_update {_ _} [_] _ _ _ _.
Global Arguments own_update_2 {_ _} [_] _ _ _ _ _.
Global Arguments own_update_3 {_ _} [_] _ _ _ _ _ _.
Lemma own_unit A `{i : !inG Σ (A:ucmra)} γ : ⊢ |==> own γ (ε:A).
Proof.
rewrite /bi_emp_valid (ownM_unit emp) !own_eq /own_def.
apply bupd_ownM_update, discrete_fun_singleton_update_empty.
apply (alloc_unit_singleton_update (inG_unfold (cmra_transport inG_prf ε))).
- apply (cmra_morphism_valid _), cmra_transport_valid, ucmra_unit_valid.
- intros x. rewrite -(inG_unfold_fold x) -(cmra_morphism_op inG_unfold).
f_equiv. generalize (inG_fold x)=> x'.
destruct inG_prf⇒ /=. by rewrite left_id.
- done.
Qed.
Big op class instances
Section big_op_instances.
Context `{!inG Σ (A:ucmra)}.
Global Instance own_cmra_sep_homomorphism γ :
WeakMonoidHomomorphism op uPred_sep (≡) (own γ).
Proof. split; try apply _. apply own_op. Qed.
Lemma big_opL_own {B} γ (f : nat → B → A) (l : list B) :
l ≠ [] →
own γ ([^op list] k↦x ∈ l, f k x) ⊣⊢ [∗ list] k↦x ∈ l, own γ (f k x).
Proof. apply (big_opL_commute1 _). Qed.
Lemma big_opM_own `{Countable K} {B} γ (g : K → B → A) (m : gmap K B) :
m ≠ ∅ →
own γ ([^op map] k↦x ∈ m, g k x) ⊣⊢ [∗ map] k↦x ∈ m, own γ (g k x).
Proof. apply (big_opM_commute1 _). Qed.
Lemma big_opS_own `{Countable B} γ (g : B → A) (X : gset B) :
X ≠ ∅ →
own γ ([^op set] x ∈ X, g x) ⊣⊢ [∗ set] x ∈ X, own γ (g x).
Proof. apply (big_opS_commute1 _). Qed.
Lemma big_opMS_own `{Countable B} γ (g : B → A) (X : gmultiset B) :
X ≠ ∅ →
own γ ([^op mset] x ∈ X, g x) ⊣⊢ [∗ mset] x ∈ X, own γ (g x).
Proof. apply (big_opMS_commute1 _). Qed.
Global Instance own_cmra_sep_entails_homomorphism γ :
MonoidHomomorphism op uPred_sep (⊢) (own γ).
Proof.
split; [split|]; try apply _.
- intros. by rewrite own_op.
- apply (affine _).
Qed.
Lemma big_opL_own_1 {B} γ (f : nat → B → A) (l : list B) :
own γ ([^op list] k↦x ∈ l, f k x) ⊢ [∗ list] k↦x ∈ l, own γ (f k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_opM_own_1 `{Countable K} {B} γ (g : K → B → A) (m : gmap K B) :
own γ ([^op map] k↦x ∈ m, g k x) ⊢ [∗ map] k↦x ∈ m, own γ (g k x).
Proof. apply (big_opM_commute _). Qed.
Lemma big_opS_own_1 `{Countable B} γ (g : B → A) (X : gset B) :
own γ ([^op set] x ∈ X, g x) ⊢ [∗ set] x ∈ X, own γ (g x).
Proof. apply (big_opS_commute _). Qed.
Lemma big_opMS_own_1 `{Countable B} γ (g : B → A) (X : gmultiset B) :
own γ ([^op mset] x ∈ X, g x) ⊢ [∗ mset] x ∈ X, own γ (g x).
Proof. apply (big_opMS_commute _). Qed.
End big_op_instances.
Context `{!inG Σ (A:ucmra)}.
Global Instance own_cmra_sep_homomorphism γ :
WeakMonoidHomomorphism op uPred_sep (≡) (own γ).
Proof. split; try apply _. apply own_op. Qed.
Lemma big_opL_own {B} γ (f : nat → B → A) (l : list B) :
l ≠ [] →
own γ ([^op list] k↦x ∈ l, f k x) ⊣⊢ [∗ list] k↦x ∈ l, own γ (f k x).
Proof. apply (big_opL_commute1 _). Qed.
Lemma big_opM_own `{Countable K} {B} γ (g : K → B → A) (m : gmap K B) :
m ≠ ∅ →
own γ ([^op map] k↦x ∈ m, g k x) ⊣⊢ [∗ map] k↦x ∈ m, own γ (g k x).
Proof. apply (big_opM_commute1 _). Qed.
Lemma big_opS_own `{Countable B} γ (g : B → A) (X : gset B) :
X ≠ ∅ →
own γ ([^op set] x ∈ X, g x) ⊣⊢ [∗ set] x ∈ X, own γ (g x).
Proof. apply (big_opS_commute1 _). Qed.
Lemma big_opMS_own `{Countable B} γ (g : B → A) (X : gmultiset B) :
X ≠ ∅ →
own γ ([^op mset] x ∈ X, g x) ⊣⊢ [∗ mset] x ∈ X, own γ (g x).
Proof. apply (big_opMS_commute1 _). Qed.
Global Instance own_cmra_sep_entails_homomorphism γ :
MonoidHomomorphism op uPred_sep (⊢) (own γ).
Proof.
split; [split|]; try apply _.
- intros. by rewrite own_op.
- apply (affine _).
Qed.
Lemma big_opL_own_1 {B} γ (f : nat → B → A) (l : list B) :
own γ ([^op list] k↦x ∈ l, f k x) ⊢ [∗ list] k↦x ∈ l, own γ (f k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_opM_own_1 `{Countable K} {B} γ (g : K → B → A) (m : gmap K B) :
own γ ([^op map] k↦x ∈ m, g k x) ⊢ [∗ map] k↦x ∈ m, own γ (g k x).
Proof. apply (big_opM_commute _). Qed.
Lemma big_opS_own_1 `{Countable B} γ (g : B → A) (X : gset B) :
own γ ([^op set] x ∈ X, g x) ⊢ [∗ set] x ∈ X, own γ (g x).
Proof. apply (big_opS_commute _). Qed.
Lemma big_opMS_own_1 `{Countable B} γ (g : B → A) (X : gmultiset B) :
own γ ([^op mset] x ∈ X, g x) ⊢ [∗ mset] x ∈ X, own γ (g x).
Proof. apply (big_opMS_commute _). Qed.
End big_op_instances.
Proofmode class instances
Section proofmode_instances.
Context `{!inG Σ A}.
Implicit Types a b : A.
Global Instance into_sep_own γ a b1 b2 :
IsOp a b1 b2 → IntoSep (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /IntoSep (is_op a) own_op. Qed.
Global Instance into_and_own p γ a b1 b2 :
IsOp a b1 b2 → IntoAnd p (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /IntoAnd (is_op a) own_op sep_and. Qed.
Global Instance from_sep_own γ a b1 b2 :
IsOp a b1 b2 → FromSep (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /FromSep -own_op -is_op. Qed.
Global Instance combine_sep_as_own γ a b1 b2 :
IsOp a b1 b2 → CombineSepAs (own γ b1) (own γ b2) (own γ a) | 60.
Proof. intros. by rewrite /CombineSepAs -own_op -is_op. Qed.
Global Instance combine_sep_gives_own γ b1 b2 :
CombineSepGives (own γ b1) (own γ b2) (✓ (b1 ⋅ b2)).
Proof.
intros. rewrite /CombineSepGives -own_op own_valid.
by apply: bi.persistently_intro.
Qed.
Global Instance from_and_own_persistent γ a b1 b2 :
IsOp a b1 b2 → TCOr (CoreId b1) (CoreId b2) →
FromAnd (own γ a) (own γ b1) (own γ b2).
Proof.
intros ? Hb. rewrite /FromAnd (is_op a) own_op.
destruct Hb; by rewrite persistent_and_sep.
Qed.
End proofmode_instances.
Section own_forall.
Context `{i : !inG Σ A}.
Implicit Types a c : A.
Implicit Types x z : iResUR Σ.
Context `{!inG Σ A}.
Implicit Types a b : A.
Global Instance into_sep_own γ a b1 b2 :
IsOp a b1 b2 → IntoSep (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /IntoSep (is_op a) own_op. Qed.
Global Instance into_and_own p γ a b1 b2 :
IsOp a b1 b2 → IntoAnd p (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /IntoAnd (is_op a) own_op sep_and. Qed.
Global Instance from_sep_own γ a b1 b2 :
IsOp a b1 b2 → FromSep (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /FromSep -own_op -is_op. Qed.
Global Instance combine_sep_as_own γ a b1 b2 :
IsOp a b1 b2 → CombineSepAs (own γ b1) (own γ b2) (own γ a) | 60.
Proof. intros. by rewrite /CombineSepAs -own_op -is_op. Qed.
Global Instance combine_sep_gives_own γ b1 b2 :
CombineSepGives (own γ b1) (own γ b2) (✓ (b1 ⋅ b2)).
Proof.
intros. rewrite /CombineSepGives -own_op own_valid.
by apply: bi.persistently_intro.
Qed.
Global Instance from_and_own_persistent γ a b1 b2 :
IsOp a b1 b2 → TCOr (CoreId b1) (CoreId b2) →
FromAnd (own γ a) (own γ b1) (own γ b2).
Proof.
intros ? Hb. rewrite /FromAnd (is_op a) own_op.
destruct Hb; by rewrite persistent_and_sep.
Qed.
End proofmode_instances.
Section own_forall.
Context `{i : !inG Σ A}.
Implicit Types a c : A.
Implicit Types x z : iResUR Σ.
Our main goal in this section is to prove own_forall:
(∀ b, own γ (f b)) ⊢ ∃ c : A, own γ c ∗ (∀ b, Some (f b) ≼ Some c)
We have the analogue in the global ucmra, from ownM_forall:
(∀ a, uPred_ownM (f a)) ⊢ ∃ z : iRes Σ, uPred_ownM z ∧ (∀ a, f a ≼ z)
We need to relate uPred_ownM (iRes_singleton γ _) to own γ _ so that we
can bring this theorem from the global ucmra world to the A world.
In particular, ownM_forall gives us some z in the ucmra world, but to prove
the theorem in the end, we need to supply a witness z' in the A world.
We start by defining the iRes_project function to map from the ucmra world
to the A world, basically an inverse of iRes_singleton:
Local Definition iRes_project (γ : gname) (x : iResUR Σ) : option A :=
cmra_transport (eq_sym inG_prf) ∘ inG_fold <$> x (inG_id i) !! γ.
Local Lemma iRes_project_op γ x y :
iRes_project γ (x ⋅ y) ≡@{option A} iRes_project γ x ⋅ iRes_project γ y.
Proof.
rewrite /iRes_project lookup_op.
case: (x (inG_id i) !! γ)=> [x1|]; case: (y (inG_id i) !! γ)=> [y1|] //=.
rewrite -Some_op -cmra_transport_op. do 2 f_equiv. apply: cmra_morphism_op.
Qed.
Local Instance iRes_project_ne γ : NonExpansive (iRes_project γ).
Proof. intros n x1 x2 Hx. rewrite /iRes_project. do 2 f_equiv. apply Hx. Qed.
Local Lemma iRes_project_singleton γ a :
iRes_project γ (iRes_singleton γ a) ≡ Some a.
Proof.
rewrite /iRes_project /iRes_singleton discrete_fun_lookup_singleton.
rewrite lookup_singleton /= inG_fold_unfold.
by rewrite cmra_transport_trans eq_trans_sym_inv_r.
Qed.
Local Lemma iRes_project_below γ z c :
iRes_project γ z = Some c → iRes_singleton γ c ≼ z.
Proof.
rewrite /iRes_project /iRes_singleton fmap_Some.
intros (a' & Hγ & ->). rewrite cmra_transport_trans eq_trans_sym_inv_l /=.
∃ (discrete_fun_insert (inG_id i) (delete γ (z (inG_id i))) z).
intros j. rewrite discrete_fun_lookup_op.
destruct (decide (j = inG_id i)) as [->|]; last first.
{ rewrite discrete_fun_lookup_singleton_ne //.
rewrite discrete_fun_lookup_insert_ne //. by rewrite left_id. }
rewrite discrete_fun_lookup_singleton discrete_fun_lookup_insert.
intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|].
- by rewrite lookup_singleton lookup_delete Hγ inG_unfold_fold.
- by rewrite lookup_singleton_ne // lookup_delete_ne // left_id.
Qed.
iRes_project γ z = Some c → iRes_singleton γ c ≼ z.
Proof.
rewrite /iRes_project /iRes_singleton fmap_Some.
intros (a' & Hγ & ->). rewrite cmra_transport_trans eq_trans_sym_inv_l /=.
∃ (discrete_fun_insert (inG_id i) (delete γ (z (inG_id i))) z).
intros j. rewrite discrete_fun_lookup_op.
destruct (decide (j = inG_id i)) as [->|]; last first.
{ rewrite discrete_fun_lookup_singleton_ne //.
rewrite discrete_fun_lookup_insert_ne //. by rewrite left_id. }
rewrite discrete_fun_lookup_singleton discrete_fun_lookup_insert.
intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|].
- by rewrite lookup_singleton lookup_delete Hγ inG_unfold_fold.
- by rewrite lookup_singleton_ne // lookup_delete_ne // left_id.
Qed.
Local Lemma iRes_project_above γ z c :
iRes_singleton γ c ≼ z ⊢@{iProp Σ} Some c ≼ iRes_project γ z.
Proof.
iIntros "#[%x Hincl]". iExists (iRes_project γ x).
rewrite -(iRes_project_singleton γ) -iRes_project_op.
by iRewrite "Hincl".
Qed.
iRes_singleton γ c ≼ z ⊢@{iProp Σ} Some c ≼ iRes_project γ z.
Proof.
iIntros "#[%x Hincl]". iExists (iRes_project γ x).
rewrite -(iRes_project_singleton γ) -iRes_project_op.
by iRewrite "Hincl".
Qed.
Finally we tie it all together.
As usual, we use Some a ≼ Some c for the reflexive closure of a ≼ c.
Lemma own_forall `{!Inhabited B} γ (f : B → A) :
(∀ b, own γ (f b)) ⊢ ∃ c, own γ c ∗ (∀ b, Some (f b) ≼ Some c).
Proof.
rewrite own_eq /own_def. iIntros "Hown".
iDestruct (ownM_forall with "Hown") as (z) "[Hown Hincl]".
destruct (iRes_project γ z) as [c|] eqn:Hc.
- iExists c. iSplitL "Hown".
{ iApply (ownM_mono with "Hown"). by apply iRes_project_below. }
iIntros (b). rewrite -Hc. by iApply iRes_project_above.
- iDestruct ("Hincl" $! inhabitant) as "Hincl".
iDestruct (iRes_project_above with "Hincl") as "Hincl".
rewrite Hc. iDestruct "Hincl" as (mx) "H".
rewrite option_equivI. by destruct mx.
Qed.
(∀ b, own γ (f b)) ⊢ ∃ c, own γ c ∗ (∀ b, Some (f b) ≼ Some c).
Proof.
rewrite own_eq /own_def. iIntros "Hown".
iDestruct (ownM_forall with "Hown") as (z) "[Hown Hincl]".
destruct (iRes_project γ z) as [c|] eqn:Hc.
- iExists c. iSplitL "Hown".
{ iApply (ownM_mono with "Hown"). by apply iRes_project_below. }
iIntros (b). rewrite -Hc. by iApply iRes_project_above.
- iDestruct ("Hincl" $! inhabitant) as "Hincl".
iDestruct (iRes_project_above with "Hincl") as "Hincl".
rewrite Hc. iDestruct "Hincl" as (mx) "H".
rewrite option_equivI. by destruct mx.
Qed.
Now some corollaries.
Lemma own_forall_total `{!CmraTotal A, !Inhabited B} γ (f : B → A) :
(∀ b, own γ (f b)) ⊢ ∃ c, own γ c ∗ (∀ b, f b ≼ c).
Proof. setoid_rewrite <-Some_included_totalI. apply own_forall. Qed.
Lemma own_and γ a1 a2 :
own γ a1 ∧ own γ a2 ⊢ ∃ c, own γ c ∗ Some a1 ≼ Some c ∗ Some a2 ≼ Some c.
Proof.
iIntros "Hown". iDestruct (own_forall γ (λ b, if b : bool then a1 else a2)
with "[Hown]") as (c) "[$ Hincl]".
{ rewrite and_alt.
iIntros ([]); [iApply ("Hown" $! true)|iApply ("Hown" $! false)]. }
iSplit; [iApply ("Hincl" $! true)|iApply ("Hincl" $! false)].
Qed.
Lemma own_and_total `{!CmraTotal A} γ a1 a2 :
own γ a1 ∧ own γ a2 ⊢ ∃ c, own γ c ∗ a1 ≼ c ∗ a2 ≼ c.
Proof. setoid_rewrite <-Some_included_totalI. apply own_and. Qed.
(∀ b, own γ (f b)) ⊢ ∃ c, own γ c ∗ (∀ b, f b ≼ c).
Proof. setoid_rewrite <-Some_included_totalI. apply own_forall. Qed.
Lemma own_and γ a1 a2 :
own γ a1 ∧ own γ a2 ⊢ ∃ c, own γ c ∗ Some a1 ≼ Some c ∗ Some a2 ≼ Some c.
Proof.
iIntros "Hown". iDestruct (own_forall γ (λ b, if b : bool then a1 else a2)
with "[Hown]") as (c) "[$ Hincl]".
{ rewrite and_alt.
iIntros ([]); [iApply ("Hown" $! true)|iApply ("Hown" $! false)]. }
iSplit; [iApply ("Hincl" $! true)|iApply ("Hincl" $! false)].
Qed.
Lemma own_and_total `{!CmraTotal A} γ a1 a2 :
own γ a1 ∧ own γ a2 ⊢ ∃ c, own γ c ∗ a1 ≼ c ∗ a2 ≼ c.
Proof. setoid_rewrite <-Some_included_totalI. apply own_and. Qed.
A version of own_forall for bounded quantification. Here φ : B → Prop
is a pure predicate that restricts the elements of B.
Lemma own_forall_pred {B} γ (φ : B → Prop) (f : B → A) :
(∃ b, φ b) →
(∀ b, ⌜ φ b ⌝ -∗ own γ (f b)) ⊢
∃ c, own γ c ∗ (∀ b, ⌜ φ b ⌝ -∗ Some (f b) ≼ Some c).
Proof.
iIntros ([b0 pb0]) "Hown".
iAssert (∀ b : { b | φ b }, own γ (f (`b)))%I with "[Hown]" as "Hown".
{ iIntros ([b pb]). by iApply ("Hown" $! b). }
iDestruct (@own_forall _ with "Hown") as (c) "[$ Hincl]".
{ split. apply (b0 ↾ pb0). }
iIntros (b pb). iApply ("Hincl" $! (b ↾ pb)).
Qed.
Lemma own_forall_pred_total `{!CmraTotal A} {B} γ (φ : B → Prop) (f : B → A) :
(∃ b, φ b) →
(∀ b, ⌜ φ b ⌝ -∗ own γ (f b)) ⊢ ∃ c, own γ c ∗ (∀ b, ⌜ φ b ⌝ -∗ f b ≼ c).
Proof. setoid_rewrite <-Some_included_totalI. apply own_forall_pred. Qed.
Lemma own_and_discrete_total `{!CmraDiscrete A, !CmraTotal A} γ a1 a2 c :
(∀ c', ✓ c' → a1 ≼ c' → a2 ≼ c' → c ≼ c') →
own γ a1 ∧ own γ a2 ⊢ own γ c.
Proof.
iIntros (Hvalid) "Hown".
iDestruct (own_and_total with "Hown") as (c') "[Hown [%Ha1 %Ha2]]".
iDestruct (own_valid with "Hown") as %?.
iApply (own_mono with "Hown"); eauto.
Qed.
Lemma own_and_discrete_total_False `{!CmraDiscrete A, !CmraTotal A} γ a1 a2 :
(∀ c', ✓ c' → a1 ≼ c' → a2 ≼ c' → False) →
own γ a1 ∧ own γ a2 ⊢ False.
Proof.
iIntros (Hvalid) "Hown".
iDestruct (own_and_total with "Hown") as (c) "[Hown [%Ha1 %Ha2]]".
iDestruct (own_valid with "Hown") as %?; eauto.
Qed.
End own_forall.
(∃ b, φ b) →
(∀ b, ⌜ φ b ⌝ -∗ own γ (f b)) ⊢
∃ c, own γ c ∗ (∀ b, ⌜ φ b ⌝ -∗ Some (f b) ≼ Some c).
Proof.
iIntros ([b0 pb0]) "Hown".
iAssert (∀ b : { b | φ b }, own γ (f (`b)))%I with "[Hown]" as "Hown".
{ iIntros ([b pb]). by iApply ("Hown" $! b). }
iDestruct (@own_forall _ with "Hown") as (c) "[$ Hincl]".
{ split. apply (b0 ↾ pb0). }
iIntros (b pb). iApply ("Hincl" $! (b ↾ pb)).
Qed.
Lemma own_forall_pred_total `{!CmraTotal A} {B} γ (φ : B → Prop) (f : B → A) :
(∃ b, φ b) →
(∀ b, ⌜ φ b ⌝ -∗ own γ (f b)) ⊢ ∃ c, own γ c ∗ (∀ b, ⌜ φ b ⌝ -∗ f b ≼ c).
Proof. setoid_rewrite <-Some_included_totalI. apply own_forall_pred. Qed.
Lemma own_and_discrete_total `{!CmraDiscrete A, !CmraTotal A} γ a1 a2 c :
(∀ c', ✓ c' → a1 ≼ c' → a2 ≼ c' → c ≼ c') →
own γ a1 ∧ own γ a2 ⊢ own γ c.
Proof.
iIntros (Hvalid) "Hown".
iDestruct (own_and_total with "Hown") as (c') "[Hown [%Ha1 %Ha2]]".
iDestruct (own_valid with "Hown") as %?.
iApply (own_mono with "Hown"); eauto.
Qed.
Lemma own_and_discrete_total_False `{!CmraDiscrete A, !CmraTotal A} γ a1 a2 :
(∀ c', ✓ c' → a1 ≼ c' → a2 ≼ c' → False) →
own γ a1 ∧ own γ a2 ⊢ False.
Proof.
iIntros (Hvalid) "Hown".
iDestruct (own_and_total with "Hown") as (c) "[Hown [%Ha1 %Ha2]]".
iDestruct (own_valid with "Hown") as %?; eauto.
Qed.
End own_forall.