Library iris.algebra.cmra

From stdpp Require Import finite.
From iris.algebra Require Export ofe monoid.
From iris.prelude Require Import options.
Local Set Primitive Projections.

Class PCore (A : Type) := pcore : A option A.
Global Hint Mode PCore ! : typeclass_instances.
Global Instance: Params (@pcore) 2 := {}.

Class Op (A : Type) := op : A A A.
Global Hint Mode Op ! : typeclass_instances.
Global Instance: Params (@op) 2 := {}.
Infix "⋅" := op (at level 50, left associativity) : stdpp_scope.
Notation "(⋅)" := op (only parsing) : stdpp_scope.

Definition included {A} `{!Equiv A, !Op A} (x y : A) := z, y x z.
Infix "≼" := included (at level 70) : stdpp_scope.
Notation "(≼)" := included (only parsing) : stdpp_scope.
Global Hint Extern 0 (_ _) ⇒ reflexivity : core.
Global Instance: Params (@included) 3 := {}.

opM is used in some lemma statements where A has not yet been shown to be a CMRA, so we define it directly in terms of Op.
Definition opM `{!Op A} (x : A) (my : option A) :=
  match my with Some yx y | Nonex end.
Infix "⋅?" := opM (at level 50, left associativity) : stdpp_scope.

Class ValidN (A : Type) := validN : nat A Prop.
Global Hint Mode ValidN ! : typeclass_instances.
Global Instance: Params (@validN) 3 := {}.
Notation "✓{ n } x" := (validN n x)
  (at level 20, n at next level, format "✓{ n } x").

Class Valid (A : Type) := valid : A Prop.
Global Hint Mode Valid ! : typeclass_instances.
Global Instance: Params (@valid) 2 := {}.
Notation "✓ x" := (valid x) (at level 20) : stdpp_scope.

Definition includedN `{!Dist A, !Op A} (n : nat) (x y : A) := z, y ≡{n}≡ x z.
Notation "x ≼{ n } y" := (includedN n x y)
  (at level 70, n at next level, format "x ≼{ n } y") : stdpp_scope.
Global Instance: Params (@includedN) 4 := {}.
Global Hint Extern 0 (_ ≼{_} _) ⇒ reflexivity : core.

Section mixin.
  Record CmraMixin A `{!Dist A, !Equiv A, !PCore A, !Op A, !Valid A, !ValidN A} := {
    
    mixin_cmra_op_ne (x : A) : NonExpansive (op x);
    mixin_cmra_pcore_ne n (x y : A) cx :
      x ≡{n}≡ y pcore x = Some cx cy, pcore y = Some cy cx ≡{n}≡ cy;
    mixin_cmra_validN_ne n : Proper (dist (A := A) n ==> impl) (validN n);
    
    mixin_cmra_valid_validN (x : A) : x n, ✓{n} x;
    mixin_cmra_validN_S n (x : A) : ✓{S n} x ✓{n} x;
    
    mixin_cmra_assoc : Assoc (≡@{A}) (⋅);
    mixin_cmra_comm : Comm (≡@{A}) (⋅);
    mixin_cmra_pcore_l (x : A) cx : pcore x = Some cx cx x x;
    mixin_cmra_pcore_idemp (x : A) cx : pcore x = Some cx pcore cx Some cx;
    mixin_cmra_pcore_mono (x y : A) cx :
      x y pcore x = Some cx cy, pcore y = Some cy cx cy;
    mixin_cmra_validN_op_l n (x y : A) : ✓{n} (x y) ✓{n} x;
    mixin_cmra_extend n (x y1 y2 : A) :
      ✓{n} x x ≡{n}≡ y1 y2
      { z1 : A & { z2 | x z1 z2 z1 ≡{n}≡ y1 z2 ≡{n}≡ y2 } }
  }.
End mixin.

Bundled version
#[projections(primitive=no)]
Structure cmra := Cmra' {
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_pcore : PCore cmra_car;
  cmra_op : Op cmra_car;
  cmra_valid : Valid cmra_car;
  cmra_validN : ValidN cmra_car;
  cmra_ofe_mixin : OfeMixin cmra_car;
  cmra_mixin : CmraMixin cmra_car;
}.
Global Arguments Cmra' _ {_ _ _ _ _ _} _ _.
Notation Cmra A m := (Cmra' A (ofe_mixin_of A%type) m) (only parsing).

Global Arguments cmra_car : simpl never.
Global Arguments cmra_equiv : simpl never.
Global Arguments cmra_dist : simpl never.
Global Arguments cmra_pcore : simpl never.
Global Arguments cmra_op : simpl never.
Global Arguments cmra_valid : simpl never.
Global Arguments cmra_validN : simpl never.
Global Arguments cmra_ofe_mixin : simpl never.
Global Arguments cmra_mixin : simpl never.
Add Printing Constructor cmra.
Global Hint Extern 0 (PCore _) ⇒ refine (cmra_pcore _); shelve : typeclass_instances.
Global Hint Extern 0 (Op _) ⇒ refine (cmra_op _); shelve : typeclass_instances.
Global Hint Extern 0 (Valid _) ⇒ refine (cmra_valid _); shelve : typeclass_instances.
Global Hint Extern 0 (ValidN _) ⇒ refine (cmra_validN _); shelve : typeclass_instances.
Coercion cmra_ofeO (A : cmra) : ofe := Ofe A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeO.

As explained more thoroughly in iris539, Coq can run into trouble when [cmra] combinators (such as [optionUR]) are stacked and combined with coercions like [cmra_ofeO]. To partially address this, we give Coq's type-checker some directions for unfolding, with the Strategy command. For these structures, we instruct Coq to eagerly _expand_ all projections, except for the coercion to type (in this case, [cmra_car]), since that causes problem with canonical structure inference. Additionally, we make Coq eagerly expand the coercions that go from one structure to another, like [cmra_ofeO] in this case.
Global Strategy expand [cmra_ofeO cmra_equiv cmra_dist cmra_pcore cmra_op
                        cmra_valid cmra_validN cmra_ofe_mixin cmra_mixin].

Definition cmra_mixin_of' A {Ac : cmra} (f : Ac A) : CmraMixin Ac := cmra_mixin Ac.
Notation cmra_mixin_of A :=
  ltac:(let H := eval hnf in (cmra_mixin_of' A id) in exact H) (only parsing).

Lifting properties from the mixin
Section cmra_mixin.
  Context {A : cmra}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne (x : A) : NonExpansive (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_ne n x y cx :
    x ≡{n}≡ y pcore x = Some cx cy, pcore y = Some cy cx ≡{n}≡ cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
  Lemma cmra_valid_validN x : x n, ✓{n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
  Lemma cmra_validN_S n x : ✓{S n} x ✓{n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
  Global Instance cmra_assoc : Assoc (≡) (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm (≡) (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_l x cx : pcore x = Some cx cx x x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx pcore cx Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_mono x y cx :
    x y pcore x = Some cx cy, pcore y = Some cy cx cy.
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
  Lemma cmra_validN_op_l n x y : ✓{n} (x y) ✓{n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
  Lemma cmra_extend n x y1 y2 :
    ✓{n} x x ≡{n}≡ y1 y2
    { z1 : A & { z2 | x z1 z2 z1 ≡{n}≡ y1 z2 ≡{n}≡ y2 } }.
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
End cmra_mixin.

CoreId elements

Class CoreId {A : cmra} (x : A) := core_id : pcore x Some x.
Global Arguments core_id {_} _ {_}.
Global Hint Mode CoreId + ! : typeclass_instances.
Global Instance: Params (@CoreId) 1 := {}.

Exclusive elements (i.e., elements that cannot have a frame).

Class Exclusive {A : cmra} (x : A) := exclusive0_l y : ✓{0} (x y) False.
Global Arguments exclusive0_l {_} _ {_} _ _.
Global Hint Mode Exclusive + ! : typeclass_instances.
Global Instance: Params (@Exclusive) 1 := {}.

Cancelable elements.

Class Cancelable {A : cmra} (x : A) :=
  cancelableN n y z : ✓{n}(x y) x y ≡{n}≡ x z y ≡{n}≡ z.
Global Arguments cancelableN {_} _ {_} _ _ _ _.
Global Hint Mode Cancelable + ! : typeclass_instances.
Global Instance: Params (@Cancelable) 1 := {}.

Identity-free elements.

Class IdFree {A : cmra} (x : A) :=
  id_free0_r y : ✓{0}x x y ≡{0}≡ x False.
Global Arguments id_free0_r {_} _ {_} _ _.
Global Hint Mode IdFree + ! : typeclass_instances.
Global Instance: Params (@IdFree) 1 := {}.

CMRAs whose core is total

Class CmraTotal (A : cmra) := cmra_total (x : A) : is_Some (pcore x).
Global Hint Mode CmraTotal ! : typeclass_instances.

The function core returns a dummy when used on CMRAs without total core. We only ever use this for CmraTotal CMRAs, but it is more convenient to not require that proof to be able to call this function.
Definition core {A} `{!PCore A} (x : A) : A := default x (pcore x).
Global Instance: Params (@core) 2 := {}.

CMRAs with a unit element

Class Unit (A : Type) := ε : A.
Global Hint Mode Unit ! : typeclass_instances.
Global Arguments ε {_ _}.

Record UcmraMixin A `{!Dist A, !Equiv A, !PCore A, !Op A, !Valid A, !Unit A} := {
  mixin_ucmra_unit_valid : (ε : A);
  mixin_ucmra_unit_left_id : LeftId (≡@{A}) ε (⋅);
  mixin_ucmra_pcore_unit : pcore ε ≡@{option A} Some ε
}.

#[projections(primitive=no)]
Structure ucmra := Ucmra' {
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_pcore : PCore ucmra_car;
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_unit : Unit ucmra_car;
  ucmra_ofe_mixin : OfeMixin ucmra_car;
  ucmra_cmra_mixin : CmraMixin ucmra_car;
  ucmra_mixin : UcmraMixin ucmra_car;
}.
Global Arguments Ucmra' _ {_ _ _ _ _ _ _} _ _ _.
Notation Ucmra A m :=
  (Ucmra' A (ofe_mixin_of A%type) (cmra_mixin_of A%type) m) (only parsing).
Global Arguments ucmra_car : simpl never.
Global Arguments ucmra_equiv : simpl never.
Global Arguments ucmra_dist : simpl never.
Global Arguments ucmra_pcore : simpl never.
Global Arguments ucmra_op : simpl never.
Global Arguments ucmra_valid : simpl never.
Global Arguments ucmra_validN : simpl never.
Global Arguments ucmra_ofe_mixin : simpl never.
Global Arguments ucmra_cmra_mixin : simpl never.
Global Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmra.
Global Hint Extern 0 (Unit _) ⇒ refine (ucmra_unit _); shelve : typeclass_instances.
Coercion ucmra_ofeO (A : ucmra) : ofe := Ofe A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeO.
Coercion ucmra_cmraR (A : ucmra) : cmra :=
  Cmra' A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

As for CMRAs above, we instruct Coq to eagerly expand all projections, except for the coercion to type (in this case, ucmra_car), since that causes problem with canonical structure inference. Additionally, we make Coq eagerly expand the coercions that go from one structure to another, like ucmra_cmraR and ucmra_ofeO in this case.
Global Strategy expand [ucmra_cmraR ucmra_ofeO ucmra_equiv ucmra_dist ucmra_pcore
                        ucmra_op ucmra_valid ucmra_validN ucmra_unit
                        ucmra_ofe_mixin ucmra_cmra_mixin].

Lifting properties from the mixin
Section ucmra_mixin.
  Context {A : ucmra}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid : (ε : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId (≡) ε (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
  Lemma ucmra_pcore_unit : pcore (ε:A) Some ε.
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
End ucmra_mixin.

Discrete CMRAs

#[projections(primitive=no)]
Class CmraDiscrete (A : cmra) := {
  #[global] cmra_discrete_ofe_discrete :: OfeDiscrete A;
  cmra_discrete_valid (x : A) : ✓{0} x x
}.
Global Hint Mode CmraDiscrete ! : typeclass_instances.

Morphisms

Class CmraMorphism {A B : cmra} (f : A B) := {
  #[global] cmra_morphism_ne :: NonExpansive f;
  cmra_morphism_validN n x : ✓{n} x ✓{n} f x;
  cmra_morphism_pcore x : f <$> pcore x pcore (f x);
  cmra_morphism_op x y : f (x y) f x f y
}.
Global Hint Mode CmraMorphism - - ! : typeclass_instances.
Global Arguments cmra_morphism_validN {_ _} _ {_} _ _ _.
Global Arguments cmra_morphism_pcore {_ _} _ {_} _.
Global Arguments cmra_morphism_op {_ _} _ {_} _ _.

Properties

Section cmra.
Context {A : cmra}.
Implicit Types x y z : A.
Implicit Types xs ys zs : list A.

Setoids

Global Instance cmra_pcore_ne' : NonExpansive (@pcore A _).
Proof.
  intros n x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x y pcore x = Some cx cy, pcore y = Some cy cx cy.
Proof.
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
   cy; split; [done|apply equiv_distn].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
Qed.
Global Instance cmra_pcore_proper' : Proper ((≡) ==> (≡)) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' : NonExpansive2 (@op A _).
Proof. intros n x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
Global Instance cmra_op_proper' : Proper ((≡) ==> (≡) ==> (≡)) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' n : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper n : Proper ((≡) ==> iff) (@validN A _ n) | 1.
Proof. by intros x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper ((≡) ==> iff) (@valid A _).
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split⇒ ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper ((≡) ==> (≡) ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_distHx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper ((≡) ==> (≡) ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_opM_ne : NonExpansive2 (@opM A _).
Proof. destruct 2; by ofe_subst. Qed.
Global Instance cmra_opM_proper : Proper ((≡) ==> (≡) ==> (≡)) (@opM A _).
Proof. destruct 2; by setoid_subst. Qed.

Global Instance CoreId_proper : Proper ((≡) ==> iff) (@CoreId A).
Proof. solve_proper. Qed.
Global Instance Exclusive_proper : Proper ((≡) ==> iff) (@Exclusive A).
Proof. intros x y Hxy. rewrite /Exclusive. by setoid_rewrite Hxy. Qed.
Global Instance Cancelable_proper : Proper ((≡) ==> iff) (@Cancelable A).
Proof. intros x y Hxy. rewrite /Cancelable. by setoid_rewrite Hxy. Qed.
Global Instance IdFree_proper : Proper ((≡) ==> iff) (@IdFree A).
Proof. intros x y Hxy. rewrite /IdFree. by setoid_rewrite Hxy. Qed.

Op

Lemma cmra_op_opM_assoc x y mz : (x y) ⋅? mz x (y ⋅? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

Validity

Lemma cmra_validN_le n n' x : ✓{n} x n' n ✓{n'} x.
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y : (x y) x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Lemma cmra_validN_op_r n x y : ✓{n} (x y) ✓{n} y.
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
Lemma cmra_valid_op_r x y : (x y) y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Core

Lemma cmra_pcore_l' x cx : pcore x Some cx cx x x.
Proof. intros (cx'&?&<-)%Some_equiv_eq. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx x cx x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r' x cx : pcore x Some cx x cx x.
Proof. intros (cx'&?&<-)%Some_equiv_eq. by apply cmra_pcore_r. Qed.
Lemma cmra_pcore_idemp' x cx : pcore x Some cx pcore cx Some cx.
Proof. intros (cx'&?&<-)%Some_equiv_eq. eauto using cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup x cx : pcore x = Some cx cx cx cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x Some cx cx cx cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Lemma cmra_pcore_validN n x cx : ✓{n} x pcore x = Some cx ✓{n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx : x pcore x = Some cx cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.

Exclusive elements

Lemma exclusiveN_l n x `{!Exclusive x} y : ✓{n} (x y) False.
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
Lemma exclusiveN_r n x `{!Exclusive x} y : ✓{n} (y x) False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y : (x y) False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y : (y x) False.
Proof. rewrite comm. by apply exclusive_l. Qed.
Lemma exclusiveN_opM n x `{!Exclusive x} my : ✓{n} (x ⋅? my) my = None.
Proof. destruct my as [y|]; last done. move⇒ /(exclusiveN_l _ x) []. Qed.
Lemma exclusive_includedN n x `{!Exclusive x} y : x ≼{n} y ✓{n} y False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x y y False.
Proof. intros [? ->]. by apply exclusive_l. Qed.

Order

Lemma cmra_included_includedN n x y : x y x ≼{n} y.
Proof. intros [z ->]. by z. Qed.
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
Proof.
  intros x y z [z1 Hy] [z2 Hz]; (z1 z2). by rewrite assoc -Hy -Hz.
Qed.
Global Instance cmra_included_trans: Transitive (@included A _ _).
Proof.
  intros x y z [z1 Hy] [z2 Hz]; (z1 z2). by rewrite assoc -Hy -Hz.
Qed.
Lemma cmra_valid_included x y : y x y x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Lemma cmra_validN_includedN n x y : ✓{n} y x ≼{n} y ✓{n} x.
Proof. intros Hyv [z ?]; ofe_subst y; eauto using cmra_validN_op_l. Qed.
Lemma cmra_validN_included n x y : ✓{n} y x y ✓{n} x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.

Lemma cmra_includedN_le n n' x y : x ≼{n} y n' n x ≼{n'} y.
Proof. by intros [z Hz] ?; z; eapply dist_le. Qed.
Lemma cmra_includedN_S n x y : x ≼{S n} y x ≼{n} y.
Proof. intros ?. eapply cmra_includedN_le; [done|lia]. Qed.

Lemma cmra_includedN_l n x y : x ≼{n} x y.
Proof. by y. Qed.
Lemma cmra_included_l x y : x x y.
Proof. by y. Qed.
Lemma cmra_includedN_r n x y : y ≼{n} x y.
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
Lemma cmra_included_r x y : y x y.
Proof. rewrite (comm op); apply cmra_included_l. Qed.

Lemma cmra_pcore_mono' x y cx :
  x y pcore x Some cx cy, pcore y = Some cy cx cy.
Proof.
  intros ? (cx'&?&Hcx)%Some_equiv_eq.
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
   cy; by rewrite -Hcx.
Qed.
Lemma cmra_pcore_monoN' n x y cx :
  x ≼{n} y pcore x ≡{n}≡ Some cx cy, pcore y = Some cy cx ≼{n} cy.
Proof.
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
  destruct (cmra_pcore_mono x (x z) cx')
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y ≡{n}≡ Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
   cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Qed.
Lemma cmra_included_pcore x cx : pcore x = Some cx cx x.
Proof. x. by rewrite cmra_pcore_l. Qed.

Lemma cmra_monoN_l n x y z : x ≼{n} y z x ≼{n} z y.
Proof. by intros [z1 Hz1]; z1; rewrite Hz1 (assoc op). Qed.
Lemma cmra_mono_l x y z : x y z x z y.
Proof. by intros [z1 Hz1]; z1; rewrite Hz1 (assoc op). Qed.
Lemma cmra_monoN_r n x y z : x ≼{n} y x z ≼{n} y z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x y x z y z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
Lemma cmra_monoN n x1 x2 y1 y2 : x1 ≼{n} y1 x2 ≼{n} y2 x1 x2 ≼{n} y1 y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1 y1 x2 y2 x1 x2 y1 y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.

Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Lemma cmra_included_dist_l n x1 x2 x1' :
  x1 x2 x1' ≡{n}≡ x1 x2', x1' x2' x2' ≡{n}≡ x2.
Proof.
  intros [z Hx2] Hx1; (x1' z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Qed.

CoreId elements

Lemma core_id_dup x `{!CoreId x} : x x x.
Proof. by apply cmra_pcore_dup' with x. Qed.

Lemma core_id_extract x y `{!CoreId x} :
  x y y y x.
Proof.
  intros ?.
  destruct (cmra_pcore_mono' x y x) as (cy & Hcy & [x' Hx']); [done|exact: core_id|].
  rewrite -(cmra_pcore_r y) //. rewrite Hx' -!assoc. f_equiv.
  rewrite [x' x]comm assoc -core_id_dup. done.
Qed.

Total core

Section total_core.
  Local Set Default Proof Using "Type*".
  Context `{!CmraTotal A}.

  Lemma cmra_pcore_core x : pcore x = Some (core x).
  Proof.
    rewrite /core. destruct (cmra_total x) as [cx ->]. done.
  Qed.
  Lemma cmra_core_l x : core x x x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x) core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
  Lemma cmra_core_mono x y : x y core x core y.
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne : NonExpansive (@core A _).
  Proof.
    intros n x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper ((≡) ==> (≡)) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x core x x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
  Lemma cmra_core_dup x : core x core x core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
  Lemma cmra_core_validN n x : ✓{n} x ✓{n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x : x core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma core_id_total x : CoreId x core x x.
  Proof.
    split; [intros; by rewrite /core /= (core_id x)|].
    rewrite /CoreId /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma core_id_core x `{!CoreId x} : core x x.
  Proof. by apply core_id_total. Qed.

Not an instance since TC search cannot solve the premise.
  Lemma cmra_pcore_core_id x y : pcore x = Some y CoreId y.
  Proof. rewrite /CoreId. eauto using cmra_pcore_idemp. Qed.

  Global Instance cmra_core_core_id x : CoreId (core x).
  Proof. eapply cmra_pcore_core_id. rewrite cmra_pcore_core. done. Qed.

  Lemma cmra_included_core x : core x x.
  Proof. by x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; (core x); rewrite cmra_core_r.
  Qed.
  Lemma cmra_core_monoN n x y : x ≼{n} y core x ≼{n} core y.
  Proof.
    intros [z ->].
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
  Qed.
End total_core.

Discrete

Lemma cmra_discrete_included_l x y : Discrete x ✓{0} y x ≼{0} y x y.
Proof.
  intros ?? [x' ?].
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in ×.
  by z'; rewrite Hy (discrete_0 x z).
Qed.
Lemma cmra_discrete_included_r x y : Discrete y x ≼{0} y x y.
Proof. intros ? [x' ?]. x'. by apply (discrete_0 y). Qed.
Lemma cmra_op_discrete x1 x2 :
  ✓{0} (x1 x2) Discrete x1 Discrete x2 Discrete (x1 x2).
Proof.
  intros ??? z Hz.
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in ×.
  { rewrite -?Hz. done. }
  by rewrite Hz' (discrete_0 x1 y1) // (discrete_0 x2 y2).
Qed.

Discrete

Lemma cmra_discrete_valid_iff `{!CmraDiscrete A} n x : x ✓{n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_valid_iff_0 `{!CmraDiscrete A} n x : ✓{0} x ✓{n} x.
Proof. by rewrite -!cmra_discrete_valid_iff. Qed.
Lemma cmra_discrete_included_iff `{!OfeDiscrete A} n x y : x y x ≼{n} y.
Proof.
  split; first by apply cmra_included_includedN.
  intros [z ->%(discrete_iff _ _)]; eauto using cmra_included_l.
Qed.
Lemma cmra_discrete_included_iff_0 `{!OfeDiscrete A} n x y : x ≼{0} y x ≼{n} y.
Proof. by rewrite -!cmra_discrete_included_iff. Qed.

Cancelable elements
Global Instance cancelable_proper : Proper (equiv ==> iff) (@Cancelable A).
Proof. unfold Cancelable. intros x x' EQ. by setoid_rewrite EQ. Qed.
Lemma cancelable x `{!Cancelable x} y z : ✓(x y) x y x z y z.
Proof. rewrite !equiv_dist cmra_valid_validN. intros. by apply (cancelableN x). Qed.
Lemma discrete_cancelable x `{!CmraDiscrete A}:
  ( y z, ✓(x y) x y x z y z) Cancelable x.
Proof. intros ????. rewrite -!discrete_iff -cmra_discrete_valid_iff. auto. Qed.
Global Instance cancelable_op x y :
  Cancelable x Cancelable y Cancelable (x y).
Proof.
  intros ?? n z z' ??. apply (cancelableN y), (cancelableN x).
  - eapply cmra_validN_op_r. by rewrite assoc.
  - by rewrite assoc.
  - by rewrite !assoc.
Qed.
Global Instance exclusive_cancelable (x : A) : Exclusive x Cancelable x.
Proof. intros ? n z z' []%(exclusiveN_l _ x). Qed.

Id-free elements
Global Instance id_free_ne n : Proper (dist n ==> iff) (@IdFree A).
Proof.
  intros x x' EQ%(dist_le _ 0); last lia. rewrite /IdFree.
  splity ?; (rewrite -EQ || rewrite EQ); eauto.
Qed.
Global Instance id_free_proper : Proper (equiv ==> iff) (@IdFree A).
Proof. by moveP Q /equiv_dist /(_ 0)=> →. Qed.
Lemma id_freeN_r n n' x `{!IdFree x} y : ✓{n}x x y ≡{n'}≡ x False.
Proof. eauto using cmra_validN_le, dist_le with lia. Qed.
Lemma id_freeN_l n n' x `{!IdFree x} y : ✓{n}x y x ≡{n'}≡ x False.
Proof. rewrite comm. eauto using id_freeN_r. Qed.
Lemma id_free_r x `{!IdFree x} y : x x y x False.
Proof. move⇒ /cmra_valid_validN ? /equiv_dist. eauto. Qed.
Lemma id_free_l x `{!IdFree x} y : x y x x False.
Proof. rewrite comm. eauto using id_free_r. Qed.
Lemma discrete_id_free x `{!CmraDiscrete A}:
  ( y, x x y x False) IdFree x.
Proof.
  intros Hx y ??. apply (Hx y), (discrete_0 _); eauto using cmra_discrete_valid.
Qed.
Global Instance id_free_op_r x y : IdFree y Cancelable x IdFree (x y).
Proof.
  intros ?? z ? Hid%symmetry. revert Hid. rewrite -assoc=>/(cancelableN x) ?.
  eapply (id_free0_r y); [by eapply cmra_validN_op_r |symmetry; eauto].
Qed.
Global Instance id_free_op_l x y : IdFree x Cancelable y IdFree (x y).
Proof. intros. rewrite comm. apply _. Qed.
Global Instance exclusive_id_free x : Exclusive x IdFree x.
Proof. intros ? z ? Hid. apply (exclusiveN_l 0 x z). by rewrite Hid. Qed.
End cmra.

Global Hint Extern 0 (?a ?a _) ⇒ apply: cmra_included_l : core.
Global Hint Extern 0 (?a _ ?a) ⇒ apply: cmra_included_r : core.

Properties about CMRAs with a unit element

Section ucmra.
  Context {A : ucmra}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : ✓{n} (ε:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x : ε ≼{n} x.
  Proof. by x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x : ε x.
  Proof. by x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId (≡) ε (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_core_id : CoreId (ε:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_cmra_total : CmraTotal A.
  Proof.
    intros x. destruct (cmra_pcore_mono' ε x ε) as (cx&->&?); [..|by eauto].
    - apply ucmra_unit_least.
    - apply (core_id _).
  Qed.
  Global Instance empty_cancelable : Cancelable (ε:A).
  Proof. intros ???. by rewrite !left_id. Qed.

  Global Instance cmra_monoid : Monoid (@op A _) := {| monoid_unit := ε |}.
End ucmra.

Global Hint Immediate cmra_unit_cmra_total : core.
Global Hint Extern 0 (ε _) ⇒ apply: ucmra_unit_least : core.

Properties about CMRAs with Leibniz equality

Section cmra_leibniz.
  Local Set Default Proof Using "Type*".
  Context {A : cmra} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx cx x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_op_opM_assoc_L x y mz : (x y) ⋅? mz = x (y ⋅? mz).
  Proof. unfold_leibniz. apply cmra_op_opM_assoc. Qed.

Core

  Lemma cmra_pcore_r_L x cx : pcore x = Some cx x cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx cx = cx cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

CoreId elements

  Lemma core_id_dup_L x `{!CoreId x} : x = x x.
  Proof. unfold_leibniz. by apply core_id_dup. Qed.

Total core

  Section total_core.
    Context `{!CmraTotal A}.

    Lemma cmra_core_r_L x : x core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma core_id_total_L x : CoreId x core x = x.
    Proof. unfold_leibniz. apply core_id_total. Qed.
    Lemma core_id_core_L x `{!CoreId x} : core x = x.
    Proof. by apply core_id_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
  Local Set Default Proof Using "Type*".
  Context {A : ucmra} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=) ε (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=) ε (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Constructing a CMRA with total core

Section cmra_total.
  Context A `{!Dist A, !Equiv A, !PCore A, !Op A, !Valid A, !ValidN A}.
  Context (total : x : A, is_Some (pcore x)).
  Context (op_ne : x : A, NonExpansive (op x)).
  Context (core_ne : NonExpansive (@core A _)).
  Context (validN_ne : n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN : (x : A), x n, ✓{n} x).
  Context (validN_S : n (x : A), ✓{S n} x ✓{n} x).
  Context (op_assoc : Assoc (≡) (@op A _)).
  Context (op_comm : Comm (≡) (@op A _)).
  Context (core_l : x : A, core x x x).
  Context (core_idemp : x : A, core (core x) core x).
  Context (core_mono : x y : A, x y core x core y).
  Context (validN_op_l : n (x y : A), ✓{n} (x y) ✓{n} x).
  Context (extend : n (x y1 y2 : A),
    ✓{n} x x ≡{n}≡ y1 y2
    { z1 : A & { z2 | x z1 z2 z1 ≡{n}≡ y1 z2 ≡{n}≡ y2 } }).
  Lemma cmra_total_mixin : CmraMixin A.
  Proof using Type×.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.

Properties about morphisms

Global Instance cmra_morphism_id {A : cmra} : CmraMorphism (@id A).
Proof.
  split ⇒ /=.
  - apply _.
  - done.
  - intros. by rewrite option_fmap_id.
  - done.
Qed.
Global Instance cmra_morphism_proper {A B : cmra} (f : A B) `{!CmraMorphism f} :
  Proper ((≡) ==> (≡)) f := ne_proper _.
Global Instance cmra_morphism_compose {A B C : cmra} (f : A B) (g : B C) :
  CmraMorphism f CmraMorphism g CmraMorphism (g f).
Proof.
  split.
  - apply _.
  - moven x Hx /=. by apply cmra_morphism_validN, cmra_morphism_validN.
  - movex /=. by rewrite option_fmap_compose !cmra_morphism_pcore.
  - movex y /=. by rewrite !cmra_morphism_op.
Qed.

Section cmra_morphism.
  Local Set Default Proof Using "Type*".
  Context {A B : cmra} (f : A B) `{!CmraMorphism f}.
  Lemma cmra_morphism_core x : f (core x) core (f x).
  Proof. unfold core. rewrite -cmra_morphism_pcore. by destruct (pcore x). Qed.
  Lemma cmra_morphism_monotone x y : x y f x f y.
  Proof. intros [z ->]. (f z). by rewrite cmra_morphism_op. Qed.
  Lemma cmra_morphism_monotoneN n x y : x ≼{n} y f x ≼{n} f y.
  Proof. intros [z ->]. (f z). by rewrite cmra_morphism_op. Qed.
  Lemma cmra_morphism_valid x : x f x.
  Proof. rewrite !cmra_valid_validN; eauto using cmra_morphism_validN. Qed.
End cmra_morphism.

COFE → CMRA Functors
Record rFunctor := RFunctor {
  rFunctor_car : A `{!Cofe A} B `{!Cofe B}, cmra;
  rFunctor_map `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} :
    ((A2 -n> A1) × (B1 -n> B2)) rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_map_ne `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} :
    NonExpansive (@rFunctor_map A1 _ A2 _ B1 _ B2 _);
  rFunctor_map_id `{!Cofe A, !Cofe B} (x : rFunctor_car A B) :
    rFunctor_map (cid,cid) x x;
  rFunctor_map_compose `{!Cofe A1, !Cofe A2, !Cofe A3, !Cofe B1, !Cofe B2, !Cofe B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mor `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2}
      (fg : (A2 -n> A1) × (B1 -n> B2)) :
    CmraMorphism (rFunctor_map fg)
}.
Global Existing Instances rFunctor_map_ne rFunctor_mor.
Global Instance: Params (@rFunctor_map) 9 := {}.

Declare Scope rFunctor_scope.
Delimit Scope rFunctor_scope with RF.
Bind Scope rFunctor_scope with rFunctor.

Class rFunctorContractive (F : rFunctor) :=
  #[global] rFunctor_map_contractive `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} ::
    Contractive (@rFunctor_map F A1 _ A2 _ B1 _ B2 _).
Global Hint Mode rFunctorContractive ! : typeclass_instances.

Definition rFunctor_apply (F: rFunctor) (A: ofe) `{!Cofe A} : cmra :=
  rFunctor_car F A A.

Program Definition rFunctor_to_oFunctor (F: rFunctor) : oFunctor := {|
  oFunctor_car A _ B _ := rFunctor_car F A B;
  oFunctor_map A1 _ A2 _ B1 _ B2 _ fg := rFunctor_map F fg
|}.
Next Obligation.
  intros F A ? B ? x. simpl in ×. apply rFunctor_map_id.
Qed.
Next Obligation.
  intros F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x. simpl in ×.
  apply rFunctor_map_compose.
Qed.

Global Instance rFunctor_to_oFunctor_contractive F :
  rFunctorContractive F oFunctorContractive (rFunctor_to_oFunctor F).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n f g Hfg. apply rFunctor_map_contractive. done.
Qed.

Program Definition rFunctor_oFunctor_compose (F1 : rFunctor) (F2 : oFunctor)
  `{!∀ `{Cofe A, Cofe B}, Cofe (oFunctor_car F2 A B)} : rFunctor := {|
  rFunctor_car A _ B _ := rFunctor_car F1 (oFunctor_car F2 B A) (oFunctor_car F2 A B);
  rFunctor_map A1 _ A2 _ B1 _ B2 _ 'fg :=
    rFunctor_map F1 (oFunctor_map F2 (fg.2,fg.1),oFunctor_map F2 fg)
|}.
Next Obligation.
  intros F1 F2 ? A1 ? A2 ? B1 ? B2 ? n [f1 g1] [f2 g2] [??]; simpl in ×.
  apply rFunctor_map_ne; split; apply oFunctor_map_ne; by split.
Qed.
Next Obligation.
  intros F1 F2 ? A ? B ? x; simpl in ×. rewrite -{2}(rFunctor_map_id F1 x).
  apply equiv_distn. apply rFunctor_map_ne.
  splity /=; by rewrite !oFunctor_map_id.
Qed.
Next Obligation.
  intros F1 F2 ? A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x; simpl in ×.
  rewrite -rFunctor_map_compose. apply equiv_distn. apply rFunctor_map_ne.
  splity /=; by rewrite !oFunctor_map_compose.
Qed.
Global Instance rFunctor_oFunctor_compose_contractive_1
    (F1 : rFunctor) (F2 : oFunctor)
    `{!∀ `{Cofe A, Cofe B}, Cofe (oFunctor_car F2 A B)} :
  rFunctorContractive F1 rFunctorContractive (rFunctor_oFunctor_compose F1 F2).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n [f1 g1] [f2 g2] Hfg; simpl in ×.
  f_contractive; destruct Hfg; split; simpl in *; apply oFunctor_map_ne; by split.
Qed.
Global Instance rFunctor_oFunctor_compose_contractive_2
    (F1 : rFunctor) (F2 : oFunctor)
    `{!∀ `{Cofe A, Cofe B}, Cofe (oFunctor_car F2 A B)} :
  oFunctorContractive F2 rFunctorContractive (rFunctor_oFunctor_compose F1 F2).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n [f1 g1] [f2 g2] Hfg; simpl in ×.
  f_equiv; split; simpl in *; f_contractive; destruct Hfg; by split.
Qed.

Program Definition constRF (B : cmra) : rFunctor :=
  {| rFunctor_car A1 _ A2 _ := B; rFunctor_map A1 _ A2 _ B1 _ B2 _ f := cid |}.
Solve Obligations with done.
Coercion constRF : cmra >-> rFunctor.

Global Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

COFE → UCMRA Functors
Record urFunctor := URFunctor {
  urFunctor_car : A `{!Cofe A} B `{!Cofe B}, ucmra;
  urFunctor_map `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} :
    ((A2 -n> A1) × (B1 -n> B2)) urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_map_ne `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} :
    NonExpansive (@urFunctor_map A1 _ A2 _ B1 _ B2 _);
  urFunctor_map_id `{!Cofe A, !Cofe B} (x : urFunctor_car A B) :
    urFunctor_map (cid,cid) x x;
  urFunctor_map_compose `{!Cofe A1, !Cofe A2, !Cofe A3, !Cofe B1, !Cofe B2, !Cofe B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mor `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2}
      (fg : (A2 -n> A1) × (B1 -n> B2)) :
    CmraMorphism (urFunctor_map fg)
}.
Global Existing Instances urFunctor_map_ne urFunctor_mor.
Global Instance: Params (@urFunctor_map) 9 := {}.

Declare Scope urFunctor_scope.
Delimit Scope urFunctor_scope with URF.
Bind Scope urFunctor_scope with urFunctor.

Class urFunctorContractive (F : urFunctor) :=
  #[global] urFunctor_map_contractive `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} ::
    Contractive (@urFunctor_map F A1 _ A2 _ B1 _ B2 _).
Global Hint Mode urFunctorContractive ! : typeclass_instances.

Definition urFunctor_apply (F: urFunctor) (A: ofe) `{!Cofe A} : ucmra :=
  urFunctor_car F A A.

Program Definition urFunctor_to_rFunctor (F: urFunctor) : rFunctor := {|
  rFunctor_car A _ B _ := urFunctor_car F A B;
  rFunctor_map A1 _ A2 _ B1 _ B2 _ fg := urFunctor_map F fg
|}.
Next Obligation.
  intros F A ? B ? x. simpl in ×. apply urFunctor_map_id.
Qed.
Next Obligation.
  intros F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x. simpl in ×.
  apply urFunctor_map_compose.
Qed.

Global Instance urFunctor_to_rFunctor_contractive F :
  urFunctorContractive F rFunctorContractive (urFunctor_to_rFunctor F).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n f g Hfg. apply urFunctor_map_contractive. done.
Qed.

Program Definition urFunctor_oFunctor_compose (F1 : urFunctor) (F2 : oFunctor)
  `{!∀ `{Cofe A, Cofe B}, Cofe (oFunctor_car F2 A B)} : urFunctor := {|
  urFunctor_car A _ B _ := urFunctor_car F1 (oFunctor_car F2 B A) (oFunctor_car F2 A B);
  urFunctor_map A1 _ A2 _ B1 _ B2 _ 'fg :=
    urFunctor_map F1 (oFunctor_map F2 (fg.2,fg.1),oFunctor_map F2 fg)
|}.
Next Obligation.
  intros F1 F2 ? A1 ? A2 ? B1 ? B2 ? n [f1 g1] [f2 g2] [??]; simpl in ×.
  apply urFunctor_map_ne; split; apply oFunctor_map_ne; by split.
Qed.
Next Obligation.
  intros F1 F2 ? A ? B ? x; simpl in ×. rewrite -{2}(urFunctor_map_id F1 x).
  apply equiv_distn. apply urFunctor_map_ne.
  splity /=; by rewrite !oFunctor_map_id.
Qed.
Next Obligation.
  intros F1 F2 ? A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x; simpl in ×.
  rewrite -urFunctor_map_compose. apply equiv_distn. apply urFunctor_map_ne.
  splity /=; by rewrite !oFunctor_map_compose.
Qed.
Global Instance urFunctor_oFunctor_compose_contractive_1
    (F1 : urFunctor) (F2 : oFunctor)
    `{!∀ `{Cofe A, Cofe B}, Cofe (oFunctor_car F2 A B)} :
  urFunctorContractive F1 urFunctorContractive (urFunctor_oFunctor_compose F1 F2).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n [f1 g1] [f2 g2] Hfg; simpl in ×.
  f_contractive; destruct Hfg; split; simpl in *; apply oFunctor_map_ne; by split.
Qed.
Global Instance urFunctor_oFunctor_compose_contractive_2
    (F1 : urFunctor) (F2 : oFunctor)
    `{!∀ `{Cofe A, Cofe B}, Cofe (oFunctor_car F2 A B)} :
  oFunctorContractive F2 urFunctorContractive (urFunctor_oFunctor_compose F1 F2).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n [f1 g1] [f2 g2] Hfg; simpl in ×.
  f_equiv; split; simpl in *; f_contractive; destruct Hfg; by split.
Qed.

Program Definition constURF (B : ucmra) : urFunctor :=
  {| urFunctor_car A1 _ A2 _ := B; urFunctor_map A1 _ A2 _ B1 _ B2 _ f := cid |}.
Solve Obligations with done.
Coercion constURF : ucmra >-> urFunctor.

Global Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

Transporting a CMRA equality

Definition cmra_transport {A B : cmra} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Lemma cmra_transport_trans {A B C : cmra} (H1 : A = B) (H2 : B = C) x :
  cmra_transport H2 (cmra_transport H1 x) = cmra_transport (eq_trans H1 H2) x.
Proof. by destruct H2. Qed.

Section cmra_transport.
  Context {A B : cmra} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne : NonExpansive T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper ((≡) ==> (≡)) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x y) = T x T y.
  Proof. by destruct H. Qed.
  Lemma cmra_transport_core x : T (core x) = core (T x).
  Proof. by destruct H. Qed.
  Lemma cmra_transport_validN n x : ✓{n} T x ✓{n} x.
  Proof. by destruct H. Qed.
  Lemma cmra_transport_valid x : T x x.
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_discrete x : Discrete x Discrete (T x).
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_core_id x : CoreId x CoreId (T x).
  Proof. by destruct H. Qed.
End cmra_transport.

Instances

Discrete CMRA

Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
  
  ra_op_proper (x : A) : Proper ((≡) ==> (≡)) (op x);
  ra_core_proper (x y : A) cx :
    x y pcore x = Some cx cy, pcore y = Some cy cx cy;
  ra_validN_proper : Proper ((≡@{A}) ==> impl) valid;
  
  ra_assoc : Assoc (≡@{A}) (⋅);
  ra_comm : Comm (≡@{A}) (⋅);
  ra_pcore_l (x : A) cx : pcore x = Some cx cx x x;
  ra_pcore_idemp (x : A) cx : pcore x = Some cx pcore cx Some cx;
  ra_pcore_mono (x y : A) cx :
    x y pcore x = Some cx cy, pcore y = Some cy cx cy;
  ra_valid_op_l (x y : A) : (x y) x
}.

Section discrete.
  Local Set Default Proof Using "Type*".
  Context `{!Equiv A, !PCore A, !Op A, !Valid A} (Heq : @Equivalence A (≡)).
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist.

  Local Instance discrete_validN_instance : ValidN A := λ n x, x.
  Definition discrete_cmra_mixin : CmraMixin A.
  Proof.
    destruct ra_mix; split; try done.
    - intros x; split; first done. by move⇒ /(_ 0).
    - intros n x y1 y2 ??; by y1, y2.
  Qed.

  Local Instance discrete_cmra_discrete :
    CmraDiscrete (Cmra' A (discrete_ofe_mixin Heq) discrete_cmra_mixin).
  Proof. split; first apply _. done. Qed.
End discrete.

A smart constructor for the discrete RA over a carrier A. It uses ofe_discrete_equivalence_of A to make sure the same Equivalence proof is used as when constructing the OFE.
Notation discreteR A ra_mix :=
  (Cmra A (discrete_cmra_mixin (discrete_ofe_equivalence_of A%type) ra_mix))
  (only parsing).

Section ra_total.
  Local Set Default Proof Using "Type*".
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total : x : A, is_Some (pcore x)).
  Context (op_proper : x : A, Proper ((≡) ==> (≡)) (op x)).
  Context (core_proper: Proper ((≡) ==> (≡)) (@core A _)).
  Context (valid_proper : Proper ((≡) ==> impl) (@valid A _)).
  Context (op_assoc : Assoc (≡) (@op A _)).
  Context (op_comm : Comm (≡) (@op A _)).
  Context (core_l : x : A, core x x x).
  Context (core_idemp : x : A, core (core x) core x).
  Context (core_mono : x y : A, x y core x core y).
  Context (valid_op_l : x y : A, (x y) x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

CMRA for the unit type

Section unit.
  Local Instance unit_valid_instance : Valid () := λ x, True.
  Local Instance unit_validN_instance : ValidN () := λ n x, True.
  Local Instance unit_pcore_instance : PCore () := λ x, Some x.
  Local Instance unit_op_instance : Op () := λ x y, ().
  Lemma unit_cmra_mixin : CmraMixin ().
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed.
  Canonical Structure unitR : cmra := Cmra unit unit_cmra_mixin.

  Local Instance unit_unit_instance : Unit () := ().
  Lemma unit_ucmra_mixin : UcmraMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmra := Ucmra unit unit_ucmra_mixin.

  Global Instance unit_cmra_discrete : CmraDiscrete unitR.
  Proof. done. Qed.
  Global Instance unit_core_id (x : ()) : CoreId x.
  Proof. by constructor. Qed.
  Global Instance unit_cancelable (x : ()) : Cancelable x.
  Proof. by constructor. Qed.
End unit.

CMRA for the empty type

Section empty.
  Local Instance Empty_set_valid_instance : Valid Empty_set := λ x, False.
  Local Instance Empty_set_validN_instance : ValidN Empty_set := λ n x, False.
  Local Instance Empty_set_pcore_instance : PCore Empty_set := λ x, Some x.
  Local Instance Empty_set_op_instance : Op Empty_set := λ x y, x.
  Lemma Empty_set_cmra_mixin : CmraMixin Empty_set.
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by (intros [] || done). Qed.
  Canonical Structure Empty_setR : cmra := Cmra Empty_set Empty_set_cmra_mixin.

  Global Instance Empty_set_cmra_discrete : CmraDiscrete Empty_setR.
  Proof. done. Qed.
  Global Instance Empty_set_core_id (x : Empty_set) : CoreId x.
  Proof. by constructor. Qed.
  Global Instance Empty_set_cancelable (x : Empty_set) : Cancelable x.
  Proof. by constructor. Qed.
End empty.

Product

Section prod.
  Context {A B : cmra}.
  Local Arguments pcore _ _ !_ /.
  Local Arguments cmra_pcore _ !_/.

  Local Instance prod_op_instance : Op (A × B) := λ x y, (x.1 y.1, x.2 y.2).
  Local Instance prod_pcore_instance : PCore (A × B) := λ x,
    c1 pcore (x.1); c2 pcore (x.2); Some (c1, c2).
  Local Arguments prod_pcore_instance !_ /.
  Local Instance prod_valid_instance : Valid (A × B) := λ x, x.1 x.2.
  Local Instance prod_validN_instance : ValidN (A × B) := λ n x, ✓{n} x.1 ✓{n} x.2.

  Lemma prod_pcore_Some (x cx : A × B) :
    pcore x = Some cx pcore (x.1) = Some (cx.1) pcore (x.2) = Some (cx.2).
  Proof. destruct x, cx; by intuition simplify_option_eq. Qed.
  Lemma prod_pcore_Some' (x cx : A × B) :
    pcore x Some cx pcore (x.1) Some (cx.1) pcore (x.2) Some (cx.2).
  Proof.
    split; [by intros (cx'&[-> ->]%prod_pcore_Some&<-)%Some_equiv_eq|].
    rewrite {3}/pcore /prod_pcore_instance.     intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2.
    by constructor.
  Qed.

  Lemma prod_included (x y : A × B) : x y x.1 y.1 x.2 y.2.
  Proof.
    split; [intros [z Hz]; split; [ (z.1)| (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; (z1,z2); split; auto.
  Qed.
  Lemma prod_includedN (x y : A × B) n : x ≼{n} y x.1 ≼{n} y.1 x.2 ≼{n} y.2.
  Proof.
    split; [intros [z Hz]; split; [ (z.1)| (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; (z1,z2); split; auto.
  Qed.

  Definition prod_cmra_mixin : CmraMixin (A × B).
  Proof.
    split; try apply _.
    - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
    - intros n x y cx; setoid_rewrite prod_pcore_Some⇒ -[??] [??].
      destruct (cmra_pcore_ne n (x.1) (y.1) (cx.1)) as (z1&->&?); auto.
      destruct (cmra_pcore_ne n (x.2) (y.2) (cx.2)) as (z2&->&?); auto.
       (z1,z2); repeat constructor; auto.
    - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2.
    - intros x; split.
      + intros [??] n; split; by apply cmra_valid_validN.
      + intros Hxy; split; apply cmra_valid_validNn; apply Hxy.
    - by intros n x [??]; split; apply cmra_validN_S.
    - by split; rewrite /= assoc.
    - by split; rewrite /= comm.
    - intros x y [??]%prod_pcore_Some;
        constructor; simpl; eauto using cmra_pcore_l.
    - intros x y; rewrite prod_pcore_Some prod_pcore_Some'.
      naive_solver eauto using cmra_pcore_idemp.
    - intros x y cx; rewrite prod_included prod_pcore_Some⇒ -[??] [??].
      destruct (cmra_pcore_mono (x.1) (y.1) (cx.1)) as (z1&?&?); auto.
      destruct (cmra_pcore_mono (x.2) (y.2) (cx.2)) as (z2&?&?); auto.
       (z1,z2). by rewrite prod_included prod_pcore_Some.
    - intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l.
    - intros n x y1 y2 [??] [??]; simpl in ×.
      destruct (cmra_extend n (x.1) (y1.1) (y2.1)) as (z11&z12&?&?&?); auto.
      destruct (cmra_extend n (x.2) (y1.2) (y2.2)) as (z21&z22&?&?&?); auto.
      by (z11,z21), (z12,z22).
  Qed.
  Canonical Structure prodR := Cmra (prod A B) prod_cmra_mixin.

  Lemma pair_op (a a' : A) (b b' : B) : (a a', b b') = (a, b) (a', b').
  Proof. done. Qed.
  Lemma pair_valid (a : A) (b : B) : (a, b) a b.
  Proof. done. Qed.
  Lemma pair_validN (a : A) (b : B) n : ✓{n} (a, b) ✓{n} a ✓{n} b.
  Proof. done. Qed.
  Lemma pair_included (a a' : A) (b b' : B) :
    (a, b) (a', b') a a' b b'.
  Proof. apply prod_included. Qed.
  Lemma pair_includedN (a a' : A) (b b' : B) n :
    (a, b) ≼{n} (a', b') a ≼{n} a' b ≼{n} b'.
  Proof. apply prod_includedN. Qed.
  Lemma pair_pcore (a : A) (b : B) :
    pcore (a, b) = c1 pcore a; c2 pcore b; Some (c1, c2).
  Proof. done. Qed.
  Lemma pair_core `{!CmraTotal A, !CmraTotal B} (a : A) (b : B) :
    core (a, b) = (core a, core b).
  Proof.
    rewrite /core {1}/pcore /=.
    rewrite (cmra_pcore_core a) /= (cmra_pcore_core b). done.
  Qed.

  Global Instance prod_cmra_total : CmraTotal A CmraTotal B CmraTotal prodR.
  Proof.
    intros H1 H2 [a b]. destruct (H1 a) as [ca ?], (H2 b) as [cb ?].
     (ca,cb); by simplify_option_eq.
  Qed.

  Global Instance prod_cmra_discrete :
    CmraDiscrete A CmraDiscrete B CmraDiscrete prodR.
  Proof. split; [apply _|]. by intros ? []; split; apply cmra_discrete_valid. Qed.

  Lemma pair_core_id x y :
    CoreId x CoreId y CoreId (x,y).
  Proof. by rewrite /CoreId prod_pcore_Some'. Qed.

  Global Instance pair_exclusive_l x y : Exclusive x Exclusive (x,y).
  Proof. by intros ?[][?%exclusive0_l]. Qed.
  Global Instance pair_exclusive_r x y : Exclusive y Exclusive (x,y).
  Proof. by intros ?[][??%exclusive0_l]. Qed.

  Global Instance pair_cancelable x y :
    Cancelable x Cancelable y Cancelable (x,y).
  Proof. intros ???[][][][]. constructor; simpl in *; by eapply cancelableN. Qed.

  Global Instance pair_id_free_l x y : IdFree x IdFree (x,y).
  Proof. moveHx [a b] [? _] [/=? _]. apply (Hx a); eauto. Qed.
  Global Instance pair_id_free_r x y : IdFree y IdFree (x,y).
  Proof. moveHy [a b] [_ ?] [_ /=?]. apply (Hy b); eauto. Qed.
End prod.

Global Hint Extern 4 (CoreId _) ⇒
  notypeclasses refine (pair_core_id _ _ _ _) : typeclass_instances.

Global Arguments prodR : clear implicits.

Section prod_unit.
  Context {A B : ucmra}.

  Local Instance prod_unit_instance `{Unit A, Unit B} : Unit (A × B) := (ε, ε).
  Lemma prod_ucmra_mixin : UcmraMixin (A × B).
  Proof.
    split.
    - split; apply ucmra_unit_valid.
    - by split; rewrite /=left_id.
    - rewrite prod_pcore_Some'; split; apply (core_id _).
  Qed.
  Canonical Structure prodUR := Ucmra (prod A B) prod_ucmra_mixin.

  Lemma pair_split (a : A) (b : B) : (a, b) (a, ε) (ε, b).
  Proof. by rewrite -pair_op left_id right_id. Qed.

  Lemma pair_split_L `{!LeibnizEquiv A, !LeibnizEquiv B} (x : A) (y : B) :
    (x, y) = (x, ε) (ε, y).
  Proof. unfold_leibniz. apply pair_split. Qed.

  Lemma pair_op_1 (a a': A) : (a a', ε) ≡@{A×B} (a, ε) (a', ε).
  Proof. by rewrite -pair_op ucmra_unit_left_id. Qed.

  Lemma pair_op_1_L `{!LeibnizEquiv A, !LeibnizEquiv B} (a a': A) :
    (a a', ε) =@{A×B} (a, ε) (a', ε).
  Proof. unfold_leibniz. apply pair_op_1. Qed.

  Lemma pair_op_2 (b b': B) : (ε, b b') ≡@{A×B} (ε, b) (ε, b').
  Proof. by rewrite -pair_op ucmra_unit_left_id. Qed.

  Lemma pair_op_2_L `{!LeibnizEquiv A, !LeibnizEquiv B} (b b': B) :
    (ε, b b') =@{A×B} (ε, b) (ε, b').
  Proof. unfold_leibniz. apply pair_op_2. Qed.
End prod_unit.

Global Arguments prodUR : clear implicits.

Global Instance prod_map_cmra_morphism {A A' B B' : cmra} (f : A A') (g : B B') :
  CmraMorphism f CmraMorphism g CmraMorphism (prod_map f g).
Proof.
  split; first apply _.
  - by intros n x [??]; split; simpl; apply cmra_morphism_validN.
  - intros x. etrans; last apply (reflexivity (mbind _ _)).
    etrans; first apply (reflexivity (_ <$> mbind _ _)). simpl.
    assert (Hf := cmra_morphism_pcore f (x.1)).
    destruct (pcore (f (x.1))), (pcore (x.1)); inversion_clear Hf=>//=.
    assert (Hg := cmra_morphism_pcore g (x.2)).
    destruct (pcore (g (x.2))), (pcore (x.2)); inversion_clear Hg=>//=.
    by setoid_subst.
  - intros. by rewrite /prod_map /= !cmra_morphism_op.
Qed.

Program Definition prodRF (F1 F2 : rFunctor) : rFunctor := {|
  rFunctor_car A _ B _ := prodR (rFunctor_car F1 A B) (rFunctor_car F2 A B);
  rFunctor_map A1 _ A2 _ B1 _ B2 _ fg :=
    prodO_map (rFunctor_map F1 fg) (rFunctor_map F2 fg)
|}.
Next Obligation.
  intros F1 F2 A1 ? A2 ? B1 ? B2 ? n ???.
  by apply prodO_map_ne; apply rFunctor_map_ne.
Qed.
Next Obligation. by intros F1 F2 A ? B ? [??]; rewrite /= !rFunctor_map_id. Qed.
Next Obligation.
  intros F1 F2 A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' [??]; simpl.
  by rewrite !rFunctor_map_compose.
Qed.
Notation "F1 * F2" := (prodRF F1%RF F2%RF) : rFunctor_scope.

Global Instance prodRF_contractive F1 F2 :
  rFunctorContractive F1 rFunctorContractive F2
  rFunctorContractive (prodRF F1 F2).
Proof.
  intros ?? A1 ? A2 ? B1 ? B2 ? n ???;
    by apply prodO_map_ne; apply rFunctor_map_contractive.
Qed.

Program Definition prodURF (F1 F2 : urFunctor) : urFunctor := {|
  urFunctor_car A _ B _ := prodUR (urFunctor_car F1 A B) (urFunctor_car F2 A B);
  urFunctor_map A1 _ A2 _ B1 _ B2 _ fg :=
    prodO_map (urFunctor_map F1 fg) (urFunctor_map F2 fg)
|}.
Next Obligation.
  intros F1 F2 A1 ? A2 ? B1 ? B2 ? n ???.
  by apply prodO_map_ne; apply urFunctor_map_ne.
Qed.
Next Obligation. by intros F1 F2 A ? B ? [??]; rewrite /= !urFunctor_map_id. Qed.
Next Obligation.
  intros F1 F2 A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' [??]; simpl.
  by rewrite !urFunctor_map_compose.
Qed.
Notation "F1 * F2" := (prodURF F1%URF F2%URF) : urFunctor_scope.

Global Instance prodURF_contractive F1 F2 :
  urFunctorContractive F1 urFunctorContractive F2
  urFunctorContractive (prodURF F1 F2).
Proof.
  intros ?? A1 ? A2 ? B1 ? B2 ? n ???;
    by apply prodO_map_ne; apply urFunctor_map_contractive.
Qed.

CMRA for the option type

Section option.
  Context {A : cmra}.
  Implicit Types a b : A.
  Implicit Types ma mb : option A.
  Local Arguments core _ _ !_ /.
  Local Arguments pcore _ _ !_ /.

  Local Instance option_valid_instance : Valid (option A) := λ ma,
    match ma with Some a a | NoneTrue end.
  Local Instance option_validN_instance : ValidN (option A) := λ n ma,
    match ma with Some a✓{n} a | NoneTrue end.
  Local Instance option_pcore_instance : PCore (option A) := λ ma,
    Some (ma ≫= pcore).
  Local Arguments option_pcore_instance !_ /.
  Local Instance option_op_instance : Op (option A) :=
    union_with (λ a b, Some (a b)).

  Definition Some_valid a : Some a a := reflexivity _.
  Definition Some_validN a n : ✓{n} Some a ✓{n} a := reflexivity _.
  Definition Some_op a b : Some (a b) = Some a Some b := eq_refl.
  Lemma Some_core `{!CmraTotal A} a : Some (core a) = core (Some a).
  Proof. rewrite /core /=. by destruct (cmra_total a) as [? ->]. Qed.
  Lemma pcore_Some a : pcore (Some a) = Some (pcore a).
  Proof. done. Qed.
  Lemma Some_op_opM a ma : Some a ma = Some (a ⋅? ma).
  Proof. by destruct ma. Qed.

  Lemma option_included ma mb :
    ma mb ma = None a b, ma = Some a mb = Some b (a b a b).
  Proof.
    split.
    - intros [mc Hmc].
      destruct ma as [a|]; [right|by left].
      destruct mb as [b|]; [ a, b|destruct mc; inversion_clear Hmc].
      destruct mc as [c|]; inversion_clear Hmc; split_and?; auto;
        setoid_subst; eauto.
    - intros [->|(a&b&->&->&[Hc|[c Hc]])].
      + mb. by destruct mb.
      + None; by constructor.
      + (Some c); by constructor.
  Qed.
  Lemma option_included_total `{!CmraTotal A} ma mb :
    ma mb ma = None a b, ma = Some a mb = Some b a b.
  Proof.
    rewrite option_included. split; last naive_solver.
    intros [->|(a&b&->&->&[Hab|?])]; [by eauto| |by eauto 10].
    right. a, b. by rewrite {3}Hab.
  Qed.

  Lemma option_includedN n ma mb :
    ma ≼{n} mb ma = None
                  x y, ma = Some x mb = Some y (x ≡{n}≡ y x ≼{n} y).
  Proof.
    split.
    - intros [mc Hmc].
      destruct ma as [a|]; [right|by left].
      destruct mb as [b|]; [ a, b|destruct mc; inversion_clear Hmc].
      destruct mc as [c|]; inversion_clear Hmc; split_and?; auto;
        ofe_subst; eauto using cmra_includedN_l.
    - intros [->|(a&y&->&->&[Hc|[c Hc]])].
      + mb. by destruct mb.
      + None; by constructor.
      + (Some c); by constructor.
  Qed.
  Lemma option_includedN_total `{!CmraTotal A} n ma mb :
    ma ≼{n} mb ma = None a b, ma = Some a mb = Some b a ≼{n} b.
  Proof.
    rewrite option_includedN. split; last naive_solver.
    intros [->|(a&b&->&->&[Hab|?])]; [by eauto| |by eauto 10].
    right. a, b. by rewrite {3}Hab.
  Qed.


  Lemma option_cmra_mixin : CmraMixin (option A).
  Proof.
    apply cmra_total_mixin.
    - eauto.
    - by intros [a|] n; destruct 1; constructor; ofe_subst.
    - destruct 1; by ofe_subst.
    - by destruct 1; rewrite /validN /option_validN_instance //=; ofe_subst.
    - intros [a|]; [apply cmra_valid_validN|done].
    - intros n [a|];
        unfold validN, option_validN_instance; eauto using cmra_validN_S.
    - intros [a|] [b|] [c|]; constructor; rewrite ?assoc; auto.
    - intros [a|] [b|]; constructor; rewrite 1?comm; auto.
    - intros [a|]; simpl; auto.
      destruct (pcore a) as [ca|] eqn:?; constructor; eauto using cmra_pcore_l.
    - intros [a|]; simpl; auto.
      destruct (pcore a) as [ca|] eqn:?; simpl; eauto using cmra_pcore_idemp.
    - intros ma mb; setoid_rewrite option_included.
      intros [->|(a&b&->&->&[?|?])]; simpl; eauto.
      + destruct (pcore a) as [ca|] eqn:?; eauto.
        destruct (cmra_pcore_proper a b ca) as (?&?&?); eauto 10.
      + destruct (pcore a) as [ca|] eqn:?; eauto.
        destruct (cmra_pcore_mono a b ca) as (?&?&?); eauto 10.
    - intros n [a|] [b|]; rewrite /validN /option_validN_instance /=;
        eauto using cmra_validN_op_l.
    - intros n ma mb1 mb2.
      destruct ma as [a|], mb1 as [b1|], mb2 as [b2|]; intros Hx Hx';
        (try by exfalso; inversion Hx'); (try (apply (inj Some) in Hx')).
      + destruct (cmra_extend n a b1 b2) as (c1&c2&?&?&?); auto.
        by (Some c1), (Some c2); repeat constructor.
      + by (Some a), None; repeat constructor.
      + by None, (Some a); repeat constructor.
      + None, None; repeat constructor.
  Qed.
  Canonical Structure optionR := Cmra (option A) option_cmra_mixin.

  Global Instance option_cmra_discrete : CmraDiscrete A CmraDiscrete optionR.
  Proof. split; [apply _|]. by intros [a|]; [apply (cmra_discrete_valid a)|]. Qed.

  Local Instance option_unit_instance : Unit (option A) := None.
  Lemma option_ucmra_mixin : UcmraMixin optionR.
  Proof. split; [done| |done]. by intros []. Qed.
  Canonical Structure optionUR := Ucmra (option A) option_ucmra_mixin.

Misc
  Lemma op_None ma mb : ma mb = None ma = None mb = None.
  Proof. destruct ma, mb; naive_solver. Qed.
  Lemma op_is_Some ma mb : is_Some (ma mb) is_Some ma is_Some mb.
  Proof. rewrite -!not_eq_None_Some op_None. destruct ma, mb; naive_solver. Qed.
  Global Instance op_None_left_id : LeftId (=) None (@op (option A) _).
  Proof. intros [a|]; done. Qed.
  Global Instance op_None_right_id : RightId (=) None (@op (option A) _).
  Proof. intros [a|]; done. Qed.

  Lemma cmra_opM_opM_assoc a mb mc : a ⋅? mb ⋅? mc a ⋅? (mb mc).
  Proof. destruct mb, mc; by rewrite /= -?assoc. Qed.
  Lemma cmra_opM_opM_assoc_L `{!LeibnizEquiv A} a mb mc :
    a ⋅? mb ⋅? mc = a ⋅? (mb mc).
  Proof. unfold_leibniz. apply cmra_opM_opM_assoc. Qed.
  Lemma cmra_opM_opM_swap a mb mc : a ⋅? mb ⋅? mc a ⋅? mc ⋅? mb.
  Proof. by rewrite !cmra_opM_opM_assoc (comm _ mb). Qed.
  Lemma cmra_opM_opM_swap_L `{!LeibnizEquiv A} a mb mc :
    a ⋅? mb ⋅? mc = a ⋅? mc ⋅? mb.
  Proof. by rewrite !cmra_opM_opM_assoc_L (comm_L _ mb). Qed.
  Lemma cmra_opM_fmap_Some ma1 ma2 : ma1 ⋅? (Some <$> ma2) = ma1 ma2.
  Proof. by destruct ma1, ma2. Qed.

  Global Instance Some_core_id a : CoreId a CoreId (Some a).
  Proof. by constructor. Qed.
  Global Instance option_core_id ma : ( x : A, CoreId x) CoreId ma.
  Proof. intros. destruct ma; apply _. Qed.

  Lemma exclusiveN_Some_l n a `{!Exclusive a} mb :
    ✓{n} (Some a mb) mb = None.
  Proof. destruct mb; last done. move⇒ /(exclusiveN_l _ a) []. Qed.
  Lemma exclusiveN_Some_r n a `{!Exclusive a} mb :
    ✓{n} (mb Some a) mb = None.
  Proof. rewrite comm. by apply exclusiveN_Some_l. Qed.

  Lemma exclusive_Some_l a `{!Exclusive a} mb : (Some a mb) mb = None.
  Proof. destruct mb; last done. move⇒ /(exclusive_l a) []. Qed.
  Lemma exclusive_Some_r a `{!Exclusive a} mb : (mb Some a) mb = None.
  Proof. rewrite comm. by apply exclusive_Some_l. Qed.

  Lemma Some_includedN n a b : Some a ≼{n} Some b a ≡{n}≡ b a ≼{n} b.
  Proof. rewrite option_includedN; naive_solver. Qed.
  Lemma Some_includedN_1 n a b : Some a ≼{n} Some b a ≡{n}≡ b a ≼{n} b.
  Proof. rewrite Some_includedN. auto. Qed.
  Lemma Some_includedN_2 n a b : a ≡{n}≡ b a ≼{n} b Some a ≼{n} Some b.
  Proof. rewrite Some_includedN. auto. Qed.
  Lemma Some_includedN_mono n a b : a ≼{n} b Some a ≼{n} Some b.
  Proof. rewrite Some_includedN. auto. Qed.
  Lemma Some_includedN_refl n a b : a ≡{n}≡ b Some a ≼{n} Some b.
  Proof. rewrite Some_includedN. auto. Qed.
  Lemma Some_includedN_is_Some n x mb : Some x ≼{n} mb is_Some mb.
  Proof. rewrite option_includedN. naive_solver. Qed.

  Lemma Some_included a b : Some a Some b a b a b.
  Proof. rewrite option_included; naive_solver. Qed.
  Lemma Some_included_1 a b : Some a Some b a b a b.
  Proof. rewrite Some_included. auto. Qed.
  Lemma Some_included_2 a b : a b a b Some a Some b.
  Proof. rewrite Some_included. auto. Qed.
  Lemma Some_included_mono a b : a b Some a Some b.
  Proof. rewrite Some_included. auto. Qed.
  Lemma Some_included_refl a b : a b Some a Some b.
  Proof. rewrite Some_included. auto. Qed.
  Lemma Some_included_is_Some x mb : Some x mb is_Some mb.
  Proof. rewrite option_included. naive_solver. Qed.

  Lemma Some_includedN_opM n a b : Some a ≼{n} Some b mc, b ≡{n}≡ a ⋅? mc.
  Proof.
    rewrite /includedN. f_equivmc. by rewrite -(inj_iff Some b) Some_op_opM.
  Qed.
  Lemma Some_included_opM a b : Some a Some b mc, b a ⋅? mc.
  Proof.
    rewrite /included. f_equivmc. by rewrite -(inj_iff Some b) Some_op_opM.
  Qed.

  Lemma cmra_validN_Some_includedN n a b : ✓{n} a Some b ≼{n} Some a ✓{n} b.
  Proof. apply: (cmra_validN_includedN _ (Some _) (Some _)). Qed.
  Lemma cmra_valid_Some_included a b : a Some b Some a b.
  Proof. apply: (cmra_valid_included (Some _) (Some _)). Qed.

  Lemma Some_includedN_total `{!CmraTotal A} n a b : Some a ≼{n} Some b a ≼{n} b.
  Proof. rewrite Some_includedN. split; [|by eauto]. by intros [->|?]. Qed.
  Lemma Some_included_total `{!CmraTotal A} a b : Some a Some b a b.
  Proof. rewrite Some_included. split; [|by eauto]. by intros [->|?]. Qed.

  Lemma Some_includedN_exclusive n a `{!Exclusive a} b :
    Some a ≼{n} Some b ✓{n} b a ≡{n}≡ b.
  Proof. move⇒ /Some_includedN [//|/exclusive_includedN]; tauto. Qed.
  Lemma Some_included_exclusive a `{!Exclusive a} b :
    Some a Some b b a b.
  Proof. move⇒ /Some_included [//|/exclusive_included]; tauto. Qed.

  Lemma is_Some_includedN n ma mb : ma ≼{n} mb is_Some ma is_Some mb.
  Proof. rewrite -!not_eq_None_Some option_includedN. naive_solver. Qed.
  Lemma is_Some_included ma mb : ma mb is_Some ma is_Some mb.
  Proof. rewrite -!not_eq_None_Some option_included. naive_solver. Qed.

  Global Instance cancelable_Some a :
    IdFree a Cancelable a Cancelable (Some a).
  Proof.
    intros Hirr ? n [b|] [c|] ? EQ; inversion_clear EQ.
    - constructor. by apply (cancelableN a).
    - destruct (Hirr b); [|eauto using dist_le with lia].
      by eapply (cmra_validN_op_l 0 a b), (cmra_validN_le n); last lia.
    - destruct (Hirr c); [|symmetry; eauto using dist_le with lia].
      by eapply (cmra_validN_le n); last lia.
    - done.
  Qed.

  Global Instance option_cancelable (ma : option A) :
    ( a : A, IdFree a) ( a : A, Cancelable a) Cancelable ma.
  Proof. destruct ma; apply _. Qed.
End option.

Global Arguments optionR : clear implicits.
Global Arguments optionUR : clear implicits.

Section option_prod.
  Context {A B : cmra}.
  Implicit Types a : A.
  Implicit Types b : B.

  Lemma Some_pair_includedN n a1 a2 b1 b2 :
    Some (a1,b1) ≼{n} Some (a2,b2) Some a1 ≼{n} Some a2 Some b1 ≼{n} Some b2.
  Proof. rewrite !Some_includedN. intros [[??]|[??]%prod_includedN]; eauto. Qed.
  Lemma Some_pair_includedN_l n a1 a2 b1 b2 :
    Some (a1,b1) ≼{n} Some (a2,b2) Some a1 ≼{n} Some a2.
  Proof. intros. eapply Some_pair_includedN. done. Qed.
  Lemma Some_pair_includedN_r n a1 a2 b1 b2 :
    Some (a1,b1) ≼{n} Some (a2,b2) Some b1 ≼{n} Some b2.
  Proof. intros. eapply Some_pair_includedN. done. Qed.
  Lemma Some_pair_includedN_total_1 `{CmraTotal A} n a1 a2 b1 b2 :
    Some (a1,b1) ≼{n} Some (a2,b2) a1 ≼{n} a2 Some b1 ≼{n} Some b2.
  Proof. intros ?%Some_pair_includedN. by rewrite -(Some_includedN_total _ a1). Qed.
  Lemma Some_pair_includedN_total_2 `{CmraTotal B} n a1 a2 b1 b2 :
    Some (a1,b1) ≼{n} Some (a2,b2) Some a1 ≼{n} Some a2 b1 ≼{n} b2.
  Proof. intros ?%Some_pair_includedN. by rewrite -(Some_includedN_total _ b1). Qed.

  Lemma Some_pair_included a1 a2 b1 b2 :
    Some (a1,b1) Some (a2,b2) Some a1 Some a2 Some b1 Some b2.
  Proof. rewrite !Some_included. intros [[??]|[??]%prod_included]; eauto. Qed.
  Lemma Some_pair_included_l a1 a2 b1 b2 :
    Some (a1,b1) Some (a2,b2) Some a1 Some a2.
  Proof. intros. eapply Some_pair_included. done. Qed.
  Lemma Some_pair_included_r a1 a2 b1 b2 :
    Some (a1,b1) Some (a2,b2) Some b1 Some b2.
  Proof. intros. eapply Some_pair_included. done. Qed.
  Lemma Some_pair_included_total_1 `{CmraTotal A} a1 a2 b1 b2 :
    Some (a1,b1) Some (a2,b2) a1 a2 Some b1 Some b2.
  Proof. intros ?%Some_pair_included. by rewrite -(Some_included_total a1). Qed.
  Lemma Some_pair_included_total_2 `{CmraTotal B} a1 a2 b1 b2 :
    Some (a1,b1) Some (a2,b2) Some a1 Some a2 b1 b2.
  Proof. intros ?%Some_pair_included. by rewrite -(Some_included_total b1). Qed.
End option_prod.

Lemma option_fmap_mono {A B : cmra} (f : A B) (ma mb : option A) :
  Proper ((≡) ==> (≡)) f
  ( a b, a b f a f b)
  ma mb f <$> ma f <$> mb.
Proof.
  intros ??. rewrite !option_included; intros [->|(a&b&->&->&?)]; naive_solver.
Qed.

Global Instance option_fmap_cmra_morphism {A B : cmra} (f: A B) `{!CmraMorphism f} :
  CmraMorphism (fmap f : option A option B).
Proof.
  split; first apply _.
  - intros n [a|] ?; rewrite /cmra_validN //=. by apply (cmra_morphism_validN f).
  - move⇒ [a|] //. by apply Some_proper, cmra_morphism_pcore.
  - move⇒ [a|] [b|] //=. by rewrite (cmra_morphism_op f).
Qed.

Program Definition optionURF (F : rFunctor) : urFunctor := {|
  urFunctor_car A _ B _ := optionUR (rFunctor_car F A B);
  urFunctor_map A1 _ A2 _ B1 _ B2 _ fg := optionO_map (rFunctor_map F fg)
|}.
Next Obligation.
  intros F A1 ? A2 ? B1 ? B2 ? n f g Hfg.
  by apply optionO_map_ne, rFunctor_map_ne.
Qed.
Next Obligation.
  intros F A ? B ? x. rewrite /= -{2}(option_fmap_id x).
  apply option_fmap_equiv_exty; apply rFunctor_map_id.
Qed.
Next Obligation.
  intros F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x.
  rewrite /= -option_fmap_compose.
  apply option_fmap_equiv_exty; apply rFunctor_map_compose.
Qed.

Global Instance optionURF_contractive F :
  rFunctorContractive F urFunctorContractive (optionURF F).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n f g Hfg.
  by apply optionO_map_ne, rFunctor_map_contractive.
Qed.

Program Definition optionRF (F : rFunctor) : rFunctor := {|
  rFunctor_car A _ B _ := optionR (rFunctor_car F A B);
  rFunctor_map A1 _ A2 _ B1 _ B2 _ fg := optionO_map (rFunctor_map F fg)
|}.
Solve Obligations with apply optionURF.

Global Instance optionRF_contractive F :
  rFunctorContractive F rFunctorContractive (optionRF F).
Proof. apply optionURF_contractive. Qed.

Section discrete_fun_cmra.
  Context {A : Type} {B : A ucmra}.
  Implicit Types f g : discrete_fun B.

  Local Instance discrete_fun_op_instance : Op (discrete_fun B) := λ f g x,
    f x g x.
  Local Instance discrete_fun_pcore_instance : PCore (discrete_fun B) := λ f,
    Some (λ x, core (f x)).
  Local Instance discrete_fun_valid_instance : Valid (discrete_fun B) := λ f,
     x, f x.
  Local Instance discrete_fun_validN_instance : ValidN (discrete_fun B) := λ n f,
     x, ✓{n} f x.

  Definition discrete_fun_lookup_op f g x : (f g) x = f x g x := eq_refl.
  Definition discrete_fun_lookup_core f x : (core f) x = core (f x) := eq_refl.

  Lemma discrete_fun_included_spec_1 (f g : discrete_fun B) x : f g f x g x.
  Proof.
    by intros [h Hh]; (h x); rewrite /op /discrete_fun_op_instance (Hh x).
  Qed.

  Lemma discrete_fun_included_spec `{Hfin : Finite A} (f g : discrete_fun B) :
    f g x, f x g x.
  Proof.
    split; [by intros; apply discrete_fun_included_spec_1|].
    intros [h ?]%finite_choice; by h.
  Qed.

  Lemma discrete_fun_cmra_mixin : CmraMixin (discrete_fun B).
  Proof.
    apply cmra_total_mixin.
    - eauto.
    - intros n f1 f2 f3 Hf x. by rewrite discrete_fun_lookup_op (Hf x).
    - intros n f1 f2 Hf x. by rewrite discrete_fun_lookup_core (Hf x).
    - intros n f1 f2 Hf ? x. by rewrite -(Hf x).
    - intros g; split.
      + intros Hg n i; apply cmra_valid_validN, Hg.
      + intros Hg i; apply cmra_valid_validNn; apply Hg.
    - intros n f Hf x; apply cmra_validN_S, Hf.
    - intros f1 f2 f3 x. by rewrite discrete_fun_lookup_op assoc.
    - intros f1 f2 x. by rewrite discrete_fun_lookup_op comm.
    - intros f x.
      by rewrite discrete_fun_lookup_op discrete_fun_lookup_core cmra_core_l.
    - intros f x. by rewrite discrete_fun_lookup_core cmra_core_idemp.
    - intros f1 f2 Hf12. (core f2)=>x. rewrite discrete_fun_lookup_op.
      apply (discrete_fun_included_spec_1 _ _ x), (cmra_core_mono (f1 x)) in Hf12.
      rewrite !discrete_fun_lookup_core. destruct Hf12 as [? ->].
      rewrite assoc -cmra_core_dup //.
    - intros n f1 f2 Hf x. apply cmra_validN_op_l with (f2 x), Hf.
    - intros n f f1 f2 Hf Hf12.
      assert (FUN := λ x, cmra_extend n (f x) (f1 x) (f2 x) (Hf x) (Hf12 x)).
       (λ x, projT1 (FUN x)), (λ x, proj1_sig (projT2 (FUN x))).
      split; [|split]=>x; [rewrite discrete_fun_lookup_op| |];
        by destruct (FUN x) as (?&?&?&?&?).
  Qed.
  Canonical Structure discrete_funR :=
    Cmra (discrete_fun B) discrete_fun_cmra_mixin.

  Local Instance discrete_fun_unit_instance : Unit (discrete_fun B) := λ x, ε.
  Definition discrete_fun_lookup_empty x : ε x = ε := eq_refl.

  Lemma discrete_fun_ucmra_mixin : UcmraMixin (discrete_fun B).
  Proof.
    split.
    - intros x. apply ucmra_unit_valid.
    - intros f x. by rewrite discrete_fun_lookup_op left_id.
    - constructorx. apply core_id_core, _.
  Qed.
  Canonical Structure discrete_funUR :=
    Ucmra (discrete_fun B) discrete_fun_ucmra_mixin.

  Global Instance discrete_fun_unit_discrete :
    ( i, Discrete (ε : B i)) Discrete (ε : discrete_fun B).
  Proof. intros ? f Hf x. by apply: discrete. Qed.
End discrete_fun_cmra.

Global Arguments discrete_funR {_} _.
Global Arguments discrete_funUR {_} _.

Global Instance discrete_fun_map_cmra_morphism {A} {B1 B2 : A ucmra}
    (f : x, B1 x B2 x) :
  ( x, CmraMorphism (f x)) CmraMorphism (discrete_fun_map f).
Proof.
  split; first apply _.
  - intros n g Hg x. rewrite /discrete_fun_map.
    apply (cmra_morphism_validN (f _)), Hg.
  - intros. apply Some_properi. apply (cmra_morphism_core (f i)).
  - intros g1 g2 i.
    by rewrite /discrete_fun_map discrete_fun_lookup_op cmra_morphism_op.
Qed.

Program Definition discrete_funURF {C} (F : C urFunctor) : urFunctor := {|
  urFunctor_car A _ B _ := discrete_funUR (λ c, urFunctor_car (F c) A B);
  urFunctor_map A1 _ A2 _ B1 _ B2 _ fg :=
    discrete_funO_map (λ c, urFunctor_map (F c) fg)
|}.
Next Obligation.
  intros C F A1 ? A2 ? B1 ? B2 ? n ?? g.
  by apply discrete_funO_map_ne=>?; apply urFunctor_map_ne.
Qed.
Next Obligation.
  intros C F A ? B ? g; simpl. rewrite -{2}(discrete_fun_map_id g).
  apply discrete_fun_map_exty; apply urFunctor_map_id.
Qed.
Next Obligation.
  intros C F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f1 f2 f1' f2' g.
  rewrite /=-discrete_fun_map_compose.
  apply discrete_fun_map_exty; apply urFunctor_map_compose.
Qed.
Global Instance discrete_funURF_contractive {C} (F : C urFunctor) :
  ( c, urFunctorContractive (F c)) urFunctorContractive (discrete_funURF F).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n ?? g.
  by apply discrete_funO_map_nec; apply urFunctor_map_contractive.
Qed.

Constructing a camera B through a mapping into A

The mapping may restrict the domain (i.e., we have an injection from B to A, not a bijection) and validity. These two restrictions work on opposite "ends" of A according to : domain restriction must prove that when an element is in the domain, so is its composition with other elements; validity restriction must prove that if the composition of two elements is valid, then so are both of the elements. The "domain" is the image of g in A, or equivalently the part of A where f returns Some.
Lemma inj_cmra_mixin_restrict_validity {A : cmra} {B : ofe}
  `{!PCore B, !Op B, !Valid B, !ValidN B}
  (f : A option B) (g : B A)
  
  (g_dist : n y1 y2, y1 ≡{n}≡ y2 g y1 ≡{n}≡ g y2)
  
  (gf_dist : (x : A) (y : B) n, f x ≡{n}≡ Some y g y ≡{n}≡ x)
  
  (g_pcore_dist : (y cy : B) n,
    pcore y ≡{n}≡ Some cy pcore (g y) ≡{n}≡ Some (g cy))
  (g_op : (y1 y2 : B), g (y1 y2) g y1 g y2)
  
  (g_opM_f : (x : A) (y : B), g (y ⋅? f x) g y x)
  
  (g_validN : n y, ✓{n} y ✓{n} (g y))
  
  (valid_validN_ne : n, Proper (dist n ==> impl) (validN (A:=B) n))
  (valid_rvalidN : y : B, y n, ✓{n} y)
  (validN_S : n (y : B), ✓{S n} y ✓{n} y)
  (validN_op_l : n (y1 y2 : B), ✓{n} (y1 y2) ✓{n} y1) :
  CmraMixin B.
Proof.
  assert (g_equiv : y1 y2, y1 y2 g y1 g y2).
  { intros ??. rewrite !equiv_dist. naive_solver. }
  assert (g_pcore : (y cy : B),
    pcore y Some cy pcore (g y) Some (g cy)).
  { intros. rewrite !equiv_dist. naive_solver. }
  assert (gf : x y, f x Some y g y x).
  { intros. rewrite !equiv_dist. naive_solver. }
  assert (fg : y, f (g y) Some y).
  { intros. apply gf. done. }
  assert (g_ne : NonExpansive g).
  { intros n ???. apply g_dist. done. }
  
  assert (b_pcore_l' : y cy : B, pcore y Some cy cy y y).
  { intros y cy Hy. apply g_equiv. rewrite g_op. apply cmra_pcore_l'.
    apply g_pcore. done. }
  assert (b_pcore_idemp : y cy : B, pcore y Some cy pcore cy Some cy).
  { intros y cy Hy. eapply g_pcore, cmra_pcore_idemp', g_pcore. done. }
  
  split.
  - intros y n z1 z2 Hz%g_dist. apply g_dist. by rewrite !g_op Hz.
  - intros n y1 y2 cy Hy%g_dist Hy1.
    assert (g <$> pcore y2 ≡{n}≡ Some (g cy))
      as (cx & (cy'&->&->)%fmap_Some_1 & ?%g_dist)%dist_Some_inv_r'; [|by eauto].
    assert (Hgcy : pcore (g y1) Some (g cy)).
    { apply g_pcore. rewrite Hy1. done. }
    rewrite equiv_dist in Hgcy. specialize (Hgcy n).
    rewrite Hy in Hgcy. apply g_pcore_dist in Hgcy. rewrite Hgcy. done.
  - done.
  - done.
  - done.
  - intros y1 y2 y3. apply g_equiv. by rewrite !g_op assoc.
  - intros y1 y2. apply g_equiv. by rewrite !g_op comm.
  - intros y cy Hcy. apply b_pcore_l'. by rewrite Hcy.
  - intros y cy Hcy. eapply b_pcore_idemp. by rewrite -Hcy.
  - intros y1 y2 cy [z Hy2] Hy1.
    destruct (cmra_pcore_mono' (g y1) (g y2) (g cy)) as (cx&Hcgy2&[x Hcx]).
    { (g z). rewrite -g_op. by apply g_equiv. }
    { apply g_pcore. rewrite Hy1 //. }
    apply (reflexive_eq (R:=equiv)) in Hcgy2.
    rewrite -g_opM_f in Hcx. rewrite Hcx in Hcgy2.
    apply g_pcore in Hcgy2.
    apply Some_equiv_eq in Hcgy2 as [cy' [-> Hcy']].
    eexists. split; first done.
    destruct (f x) as [y|].
    + y. done.
    + cy. apply (reflexive_eq (R:=equiv)), b_pcore_idemp, b_pcore_l' in Hy1.
      rewrite Hy1 //.
  - done.
  - intros n y z1 z2 ?%g_validN ?.
    destruct (cmra_extend n (g y) (g z1) (g z2)) as (x1&x2&Hgy&Hx1&Hx2).
    { done. }
    { rewrite -g_op. by apply g_dist. }
    symmetry in Hx1, Hx2.
    apply gf_dist in Hx1, Hx2.
    destruct (f x1) as [y1|] eqn:Hy1; last first.
    { exfalso. inversion Hx1. }
    destruct (f x2) as [y2|] eqn:Hy2; last first.
    { exfalso. inversion Hx2. }
     y1, y2. split_and!.
    + apply g_equiv. rewrite Hgy g_op.
      f_equiv; symmetry; apply gf; rewrite ?Hy1 ?Hy2 //.
    + apply g_dist. apply (inj Some) in Hx1. rewrite Hx1 //.
    + apply g_dist. apply (inj Some) in Hx2. rewrite Hx2 //.
Qed.

Constructing a CMRA through an isomorphism that may restrict validity.
Lemma iso_cmra_mixin_restrict_validity {A : cmra} {B : ofe}
  `{!PCore B, !Op B, !Valid B, !ValidN B}
  (f : A B) (g : B A)
  
  (g_dist : n y1 y2, y1 ≡{n}≡ y2 g y1 ≡{n}≡ g y2)
  
  (gf : x : A, g (f x) x)
  
  (g_pcore : y : B, pcore (g y) g <$> pcore y)
  (g_op : y1 y2, g (y1 y2) g y1 g y2)
  
  (g_validN : n y, ✓{n} y ✓{n} (g y))
  
  (valid_validN_ne : n, Proper (dist n ==> impl) (validN (A:=B) n))
  (valid_rvalidN : y : B, y n, ✓{n} y)
  (validN_S : n (y : B), ✓{S n} y ✓{n} y)
  (validN_op_l : n (y1 y2 : B), ✓{n} (y1 y2) ✓{n} y1) :
  CmraMixin B.
Proof.
  assert (g_ne : NonExpansive g).
  { intros n ???. apply g_dist. done. }
  assert (g_equiv : y1 y2, y1 y2 g y1 g y2).
  { intros ??.
    split; intros ?; apply equiv_dist; intros; apply g_dist, equiv_dist; done. }
  apply (inj_cmra_mixin_restrict_validity (λ x, Some (f x)) g); try done.
  - intros. split.
    + intros Hy%(inj Some). rewrite -Hy gf //.
    + intros ?. f_equiv. apply g_dist. rewrite gf. done.
  - intros. rewrite g_pcore. split.
    + intros →. done.
    + intros (? & → & ->%g_dist)%fmap_Some_dist. done.
  - intros ??. simpl. rewrite g_op gf //.
Qed.

Constructing a camera through an isomorphism

Lemma iso_cmra_mixin {A : cmra} {B : ofe}
  `{!PCore B, !Op B, !Valid B, !ValidN B}
  (f : A B) (g : B A)
  
  (g_dist : n y1 y2, y1 ≡{n}≡ y2 g y1 ≡{n}≡ g y2)
  
  (gf : x : A, g (f x) x)
  
  (g_pcore : y : B, pcore (g y) g <$> pcore y)
  (g_op : y1 y2, g (y1 y2) g y1 g y2)
  (g_valid : y, (g y) y)
  (g_validN : n y, ✓{n} (g y) ✓{n} y) :
  CmraMixin B.
Proof.
  apply (iso_cmra_mixin_restrict_validity f g); auto.
  - by intros n y ?%g_validN.
  - intros n y1 y2 Hy%g_dist Hy1. by rewrite -g_validN -Hy g_validN.
  - intros y. rewrite -g_valid cmra_valid_validN. naive_solver.
  - intros n y. rewrite -!g_validN. apply cmra_validN_S.
  - intros n y1 y2. rewrite -!g_validN g_op. apply cmra_validN_op_l.
Qed.