Library iris.bi.lib.core
From iris.bi Require Export bi plainly.
From iris.proofmode Require Import proofmode.
From iris.prelude Require Import options.
Import bi.
From iris.proofmode Require Import proofmode.
From iris.prelude Require Import options.
Import bi.
The "core" of an assertion is its maximal persistent part,
i.e. the conjunction of all persistent assertions that are weaker
than P (as in, implied by P).
Definition coreP `{!BiPlainly PROP} (P : PROP) : PROP :=
∀ Q : PROP, <affine> ■ (Q -∗ <pers> Q) -∗ <affine> ■ (P -∗ Q) -∗ Q.
Global Instance: Params (@coreP) 1 := {}.
Global Typeclasses Opaque coreP.
Section core.
Context {PROP : bi} `{!BiPlainly PROP}.
Implicit Types P Q : PROP.
Lemma coreP_intro P : P -∗ coreP P.
Proof.
rewrite /coreP. iIntros "HP" (Q) "_ HPQ".
iDestruct (affinely_plainly_elim with "HPQ") as "HPQ".
by iApply "HPQ".
Qed.
Global Instance coreP_persistent
`{!BiPersistentlyForall PROP, !BiPersistentlyImplPlainly PROP} P :
Persistent (coreP P).
Proof.
rewrite /coreP /Persistent. iIntros "HC" (Q).
iApply persistently_wand_affinely_plainly. iIntros "#HQ".
iApply persistently_wand_affinely_plainly. iIntros "#HPQ".
iApply "HQ". iApply "HC"; auto.
Qed.
Global Instance coreP_affine P : Affine P → Affine (coreP P).
Proof. intros ?. rewrite /coreP /Affine. iIntros "HC". iApply "HC"; eauto. Qed.
Global Instance coreP_ne : NonExpansive (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Global Instance coreP_proper : Proper ((⊣⊢) ==> (⊣⊢)) (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Global Instance coreP_mono : Proper ((⊢) ==> (⊢)) (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Global Instance coreP_flip_mono :
Proper (flip (⊢) ==> flip (⊢)) (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Lemma coreP_wand P Q : <affine> ■ (P -∗ Q) -∗ coreP P -∗ coreP Q.
Proof.
rewrite /coreP. iIntros "#HPQ HP" (R) "#HR #HQR". iApply ("HP" with "HR").
iIntros "!> !> HP". iApply "HQR". by iApply "HPQ".
Qed.
Lemma coreP_elim P : Persistent P → coreP P -∗ P.
Proof. rewrite /coreP. iIntros (?) "HCP". iApply "HCP"; auto. Qed.
∀ Q : PROP, <affine> ■ (Q -∗ <pers> Q) -∗ <affine> ■ (P -∗ Q) -∗ Q.
Global Instance: Params (@coreP) 1 := {}.
Global Typeclasses Opaque coreP.
Section core.
Context {PROP : bi} `{!BiPlainly PROP}.
Implicit Types P Q : PROP.
Lemma coreP_intro P : P -∗ coreP P.
Proof.
rewrite /coreP. iIntros "HP" (Q) "_ HPQ".
iDestruct (affinely_plainly_elim with "HPQ") as "HPQ".
by iApply "HPQ".
Qed.
Global Instance coreP_persistent
`{!BiPersistentlyForall PROP, !BiPersistentlyImplPlainly PROP} P :
Persistent (coreP P).
Proof.
rewrite /coreP /Persistent. iIntros "HC" (Q).
iApply persistently_wand_affinely_plainly. iIntros "#HQ".
iApply persistently_wand_affinely_plainly. iIntros "#HPQ".
iApply "HQ". iApply "HC"; auto.
Qed.
Global Instance coreP_affine P : Affine P → Affine (coreP P).
Proof. intros ?. rewrite /coreP /Affine. iIntros "HC". iApply "HC"; eauto. Qed.
Global Instance coreP_ne : NonExpansive (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Global Instance coreP_proper : Proper ((⊣⊢) ==> (⊣⊢)) (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Global Instance coreP_mono : Proper ((⊢) ==> (⊢)) (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Global Instance coreP_flip_mono :
Proper (flip (⊢) ==> flip (⊢)) (coreP (PROP:=PROP)).
Proof. solve_proper. Qed.
Lemma coreP_wand P Q : <affine> ■ (P -∗ Q) -∗ coreP P -∗ coreP Q.
Proof.
rewrite /coreP. iIntros "#HPQ HP" (R) "#HR #HQR". iApply ("HP" with "HR").
iIntros "!> !> HP". iApply "HQR". by iApply "HPQ".
Qed.
Lemma coreP_elim P : Persistent P → coreP P -∗ P.
Proof. rewrite /coreP. iIntros (?) "HCP". iApply "HCP"; auto. Qed.
The <affine> modality is needed for general BIs:
- The right-to-left direction corresponds to elimination of <pers>, which cannot be done without <affine>.
- The left-to-right direction corresponds the introduction of <pers>. The <affine> modality makes it stronger since it appears in the LHS of the ⊢ in the premise. As a user, you have to prove <affine> coreP P ⊢ Q, which is weaker than coreP P ⊢ Q.
Lemma coreP_entails `{!BiPersistentlyForall PROP, !BiPersistentlyImplPlainly PROP} P Q :
(<affine> coreP P ⊢ Q) ↔ (P ⊢ <pers> Q).
Proof.
split.
- iIntros (HP) "HP". iDestruct (coreP_intro with "HP") as "#HcP {HP}".
iIntros "!>". by iApply HP.
- iIntros (->) "HcQ". by iDestruct (coreP_elim with "HcQ") as "#HQ".
Qed.
(<affine> coreP P ⊢ Q) ↔ (P ⊢ <pers> Q).
Proof.
split.
- iIntros (HP) "HP". iDestruct (coreP_intro with "HP") as "#HcP {HP}".
iIntros "!>". by iApply HP.
- iIntros (->) "HcQ". by iDestruct (coreP_elim with "HcQ") as "#HQ".
Qed.
A more convenient variant of the above lemma for affine P.
Lemma coreP_entails' `{!BiPersistentlyForall PROP, !BiPersistentlyImplPlainly PROP}
P Q `{!Affine P} :
(coreP P ⊢ Q) ↔ (P ⊢ □ Q).
Proof.
rewrite -(affine_affinely (coreP P)) coreP_entails. split.
- rewrite -{2}(affine_affinely P). by intros →.
- intros →. apply affinely_elim.
Qed.
End core.
P Q `{!Affine P} :
(coreP P ⊢ Q) ↔ (P ⊢ □ Q).
Proof.
rewrite -(affine_affinely (coreP P)) coreP_entails. split.
- rewrite -{2}(affine_affinely P). by intros →.
- intros →. apply affinely_elim.
Qed.
End core.