Library iris.base_logic.lib.saved_prop

From stdpp Require Import gmap.
From iris.algebra Require Import dfrac_agree.
From iris.proofmode Require Import proofmode.
From iris.base_logic Require Export own.
From iris.bi Require Import fractional.
From iris.prelude Require Import options.
Import uPred.


Class savedAnythingG (Σ : gFunctors) (F : oFunctor) := SavedAnythingG {
  #[local] saved_anything_inG :: inG Σ (dfrac_agreeR (oFunctor_apply F (iPropO Σ)));
  saved_anything_contractive : oFunctorContractive F
}.

Definition savedAnythingΣ (F : oFunctor) `{!oFunctorContractive F} : gFunctors :=
  #[ GFunctor (dfrac_agreeRF F) ].

Global Instance subG_savedAnythingΣ {Σ F} `{!oFunctorContractive F} :
  subG (savedAnythingΣ F) Σ savedAnythingG Σ F.
Proof. solve_inG. Qed.

Definition saved_anything_own `{!savedAnythingG Σ F}
    (γ : gname) (dq : dfrac) (x : oFunctor_apply F (iPropO Σ)) : iProp Σ :=
  own γ (to_dfrac_agree dq x).
Global Typeclasses Opaque saved_anything_own.
Global Instance: Params (@saved_anything_own) 4 := {}.

Section saved_anything.
  Context `{!savedAnythingG Σ F}.
  Implicit Types x y : oFunctor_apply F (iPropO Σ).
  Implicit Types (γ : gname) (dq : dfrac).

  Global Instance saved_anything_discarded_persistent γ x :
    Persistent (saved_anything_own γ DfracDiscarded x).
  Proof. rewrite /saved_anything_own; apply _. Qed.

  Global Instance saved_anything_ne γ dq : NonExpansive (saved_anything_own γ dq).
  Proof. solve_proper. Qed.
  Global Instance saved_anything_proper γ dq : Proper ((≡) ==> (≡)) (saved_anything_own γ dq).
  Proof. solve_proper. Qed.

  Global Instance saved_anything_fractional γ x : Fractional (λ q, saved_anything_own γ (DfracOwn q) x).
  Proof. intros q1 q2. rewrite /saved_anything_own -own_op -dfrac_agree_op //. Qed.
  Global Instance saved_anything_as_fractional γ x q :
    AsFractional (saved_anything_own γ (DfracOwn q) x) (λ q, saved_anything_own γ (DfracOwn q) x) q.
  Proof. split; [done|]. apply _. Qed.

Allocation
  Lemma saved_anything_alloc_strong x (I : gname Prop) dq :
     dq
    pred_infinite I
     |==> γ, I γ saved_anything_own γ dq x.
  Proof. intros ??. by apply own_alloc_strong. Qed.

  Lemma saved_anything_alloc_cofinite x (G : gset gname) dq :
     dq
     |==> γ, γ G saved_anything_own γ dq x.
  Proof. intros ?. by apply own_alloc_cofinite. Qed.

  Lemma saved_anything_alloc x dq :
     dq
     |==> γ, saved_anything_own γ dq x.
  Proof. intros ?. by apply own_alloc. Qed.

Validity
  Lemma saved_anything_valid γ dq x :
    saved_anything_own γ dq x -∗ dq.
  Proof.
    rewrite /saved_anything_own own_valid dfrac_agree_validI //. eauto.
  Qed.
  Lemma saved_anything_valid_2 γ dq1 dq2 x y :
    saved_anything_own γ dq1 x -∗ saved_anything_own γ dq2 y -∗ (dq1 dq2) x y.
  Proof.
    iIntros "Hx Hy". rewrite /saved_anything_own.
    iCombine "Hx Hy" gives "Hv".
    rewrite dfrac_agree_validI_2. iDestruct "Hv" as "[$ $]".
  Qed.
  Lemma saved_anything_agree γ dq1 dq2 x y :
    saved_anything_own γ dq1 x -∗ saved_anything_own γ dq2 y -∗ x y.
  Proof. iIntros "Hx Hy". iPoseProof (saved_anything_valid_2 with "Hx Hy") as "[_ $]". Qed.

  Global Instance saved_anything_combine_gives γ dq1 dq2 x y :
    CombineSepGives (saved_anything_own γ dq1 x) (saved_anything_own γ dq2 y)
      ( (dq1 dq2) x y).
  Proof.
    rewrite /CombineSepGives. iIntros "[Hx Hy]".
    iPoseProof (saved_anything_valid_2 with "Hx Hy") as "[% #$]". eauto.
  Qed.

  Global Instance saved_anything_combine_as γ dq1 dq2 x y :
    CombineSepAs (saved_anything_own γ dq1 x) (saved_anything_own γ dq2 y)
      (saved_anything_own γ (dq1 dq2) x).
  Proof.
    rewrite /CombineSepAs. iIntros "[Hx Hy]".
    iCombine "Hx Hy" gives "[_ #H]".
    iRewrite -"H" in "Hy". rewrite /saved_anything_own.
    iCombine "Hx Hy" as "Hxy". by rewrite -dfrac_agree_op.
  Qed.

Make an element read-only.
  Lemma saved_anything_persist γ dq v :
    saved_anything_own γ dq v ==∗ saved_anything_own γ DfracDiscarded v.
  Proof.
    iApply own_update. apply dfrac_agree_persist.
  Qed.

Recover fractional ownership for read-only element.
  Lemma saved_anything_unpersist γ v :
    saved_anything_own γ DfracDiscarded v ==∗ q, saved_anything_own γ (DfracOwn q) v.
  Proof.
    iIntros "H".
    iMod (own_updateP with "H") as "H";
      first by apply dfrac_agree_unpersist.
    iDestruct "H" as (? (q&->)) "H".
    iIntros "!>". iExists q. done.
  Qed.

Updates
  Lemma saved_anything_update y γ x :
    saved_anything_own γ (DfracOwn 1) x ==∗ saved_anything_own γ (DfracOwn 1) y.
  Proof.
    iApply own_update. apply cmra_update_exclusive. done.
  Qed.
  Lemma saved_anything_update_2 y γ q1 q2 x1 x2 :
    (q1 + q2 = 1)%Qp
    saved_anything_own γ (DfracOwn q1) x1 -∗ saved_anything_own γ (DfracOwn q2) x2 ==∗
    saved_anything_own γ (DfracOwn q1) y saved_anything_own γ (DfracOwn q2) y.
  Proof.
    intros Hq. rewrite -own_op. iApply own_update_2.
    apply dfrac_agree_update_2.
    rewrite dfrac_op_own Hq //.
  Qed.
  Lemma saved_anything_update_halves y γ x1 x2 :
    saved_anything_own γ (DfracOwn (1/2)) x1 -∗
    saved_anything_own γ (DfracOwn (1/2)) x2 ==∗
    saved_anything_own γ (DfracOwn (1/2)) y saved_anything_own γ (DfracOwn (1/2)) y.
  Proof. iApply saved_anything_update_2. apply Qp.half_half. Qed.
End saved_anything.

Provide specialized versions of this for convenience.

Notation savedPropG Σ := (savedAnythingG Σ ( )).
Notation savedPropΣ := (savedAnythingΣ ( )).

Section saved_prop.
  Context `{!savedPropG Σ}.

  Definition saved_prop_own (γ : gname) (dq : dfrac) (P: iProp Σ) :=
    saved_anything_own (F := ) γ dq (Next P).

  Global Instance saved_prop_own_contractive γ dq :
    Contractive (saved_prop_own γ dq).
  Proof. solve_contractive. Qed.

  Global Instance saved_prop_discarded_persistent γ P :
    Persistent (saved_prop_own γ DfracDiscarded P).
  Proof. apply _. Qed.

  Global Instance saved_prop_fractional γ P : Fractional (λ q, saved_prop_own γ (DfracOwn q) P).
  Proof. apply _. Qed.
  Global Instance saved_prop_as_fractional γ P q :
    AsFractional (saved_prop_own γ (DfracOwn q) P) (λ q, saved_prop_own γ (DfracOwn q) P) q.
  Proof. apply _. Qed.

Allocation
  Lemma saved_prop_alloc_strong (I : gname Prop) (P: iProp Σ) dq :
     dq
    pred_infinite I
     |==> γ, I γ saved_prop_own γ dq P.
  Proof. intros ??. by apply saved_anything_alloc_strong. Qed.

  Lemma saved_prop_alloc_cofinite (G : gset gname) (P: iProp Σ) dq :
     dq
     |==> γ, γ G saved_prop_own γ dq P.
  Proof. by apply saved_anything_alloc_cofinite. Qed.

  Lemma saved_prop_alloc (P : iProp Σ) dq :
     dq
     |==> γ, saved_prop_own γ dq P.
  Proof. apply saved_anything_alloc. Qed.

Validity
  Lemma saved_prop_valid γ dq P :
    saved_prop_own γ dq P -∗ dq.
  Proof. apply saved_anything_valid. Qed.
  Lemma saved_prop_valid_2 γ dq1 dq2 P Q :
    saved_prop_own γ dq1 P -∗ saved_prop_own γ dq2 Q -∗ (dq1 dq2) (P Q).
  Proof.
    iIntros "HP HQ".
    iCombine "HP HQ" gives "($ & Hag)".
    by iApply later_equivI.
  Qed.
  Lemma saved_prop_agree γ dq1 dq2 P Q :
    saved_prop_own γ dq1 P -∗ saved_prop_own γ dq2 Q -∗ (P Q).
  Proof. iIntros "HP HQ". iCombine "HP" "HQ" gives "[_ $]". Qed.

Make an element read-only.
Recover fractional ownership for read-only element.
Updates
  Lemma saved_prop_update Q γ P :
    saved_prop_own γ (DfracOwn 1) P ==∗ saved_prop_own γ (DfracOwn 1) Q.
  Proof. apply saved_anything_update. Qed.
  Lemma saved_prop_update_2 Q γ q1 q2 P1 P2 :
    (q1 + q2 = 1)%Qp
    saved_prop_own γ (DfracOwn q1) P1 -∗ saved_prop_own γ (DfracOwn q2) P2 ==∗
    saved_prop_own γ (DfracOwn q1) Q saved_prop_own γ (DfracOwn q2) Q.
  Proof. apply saved_anything_update_2. Qed.
  Lemma saved_prop_update_halves Q γ P1 P2 :
    saved_prop_own γ (DfracOwn (1/2)) P1 -∗
    saved_prop_own γ (DfracOwn (1/2)) P2 ==∗
    saved_prop_own γ (DfracOwn (1/2)) Q saved_prop_own γ (DfracOwn (1/2)) Q.
  Proof. apply saved_anything_update_halves. Qed.
End saved_prop.

Notation savedPredG Σ A := (savedAnythingG Σ (A -d> )).
Notation savedPredΣ A := (savedAnythingΣ (A -d> )).

Section saved_pred.
  Context `{!savedPredG Σ A}.

  Definition saved_pred_own (γ : gname) (dq : dfrac) (Φ : A iProp Σ) :=
    saved_anything_own (F := A -d> ) γ dq (Next Φ).

  Global Instance saved_pred_own_contractive `{!savedPredG Σ A} γ dq :
    Contractive (saved_pred_own γ dq : (A -d> iPropO Σ) iProp Σ).
  Proof.
    solve_proper_core ltac:(fun _first [ intros ?; progress simpl | by auto | f_contractive | f_equiv ]).
  Qed.

  Global Instance saved_pred_discarded_persistent γ Φ :
    Persistent (saved_pred_own γ DfracDiscarded Φ).
  Proof. apply _. Qed.

  Global Instance saved_pred_fractional γ Φ : Fractional (λ q, saved_pred_own γ (DfracOwn q) Φ).
  Proof. apply _. Qed.
  Global Instance saved_pred_as_fractional γ Φ q :
    AsFractional (saved_pred_own γ (DfracOwn q) Φ) (λ q, saved_pred_own γ (DfracOwn q) Φ) q.
  Proof. apply _. Qed.

Allocation
  Lemma saved_pred_alloc_strong (I : gname Prop) (Φ : A iProp Σ) dq :
     dq
    pred_infinite I
     |==> γ, I γ saved_pred_own γ dq Φ.
  Proof. intros ??. by apply saved_anything_alloc_strong. Qed.

  Lemma saved_pred_alloc_cofinite (G : gset gname) (Φ : A iProp Σ) dq :
     dq
     |==> γ, γ G saved_pred_own γ dq Φ.
  Proof. by apply saved_anything_alloc_cofinite. Qed.

  Lemma saved_pred_alloc (Φ : A iProp Σ) dq :
     dq
     |==> γ, saved_pred_own γ dq Φ.
  Proof. apply saved_anything_alloc. Qed.

Validity
  Lemma saved_pred_valid γ dq Φ :
    saved_pred_own γ dq Φ -∗ dq.
  Proof. apply saved_anything_valid. Qed.
  Lemma saved_pred_valid_2 γ dq1 dq2 Φ Ψ x :
    saved_pred_own γ dq1 Φ -∗ saved_pred_own γ dq2 Ψ -∗ (dq1 dq2) (Φ x Ψ x).
  Proof.
    iIntros "HΦ HΨ".
    iCombine "HΦ HΨ" gives "($ & Hag)".
    iApply later_equivI. by iApply (discrete_fun_equivI with "Hag").
  Qed.
  Lemma saved_pred_agree γ dq1 dq2 Φ Ψ x :
    saved_pred_own γ dq1 Φ -∗ saved_pred_own γ dq2 Ψ -∗ (Φ x Ψ x).
  Proof. iIntros "HΦ HΨ". iPoseProof (saved_pred_valid_2 with "HΦ HΨ") as "[_ $]". Qed.

Make an element read-only.
Recover fractional ownership for read-only element.
Updates