Library iris.base_logic.lib.later_credits
This file implements later credits, in particular the later-elimination update.
That update is used internally to define the Iris fupd; it should not
usually be directly used unless you are defining your own fupd.
From iris.prelude Require Import options.
From iris.proofmode Require Import tactics.
From iris.algebra Require Export auth numbers.
From iris.base_logic.lib Require Import iprop own.
Import uPred.
From iris.proofmode Require Import tactics.
From iris.algebra Require Export auth numbers.
From iris.base_logic.lib Require Import iprop own.
Import uPred.
The ghost state for later credits
Class lcGpreS (Σ : gFunctors) := LcGpreS {
#[local] lcGpreS_inG :: inG Σ (authR natUR)
}.
Class lcGS (Σ : gFunctors) := LcGS {
#[local] lcGS_inG :: inG Σ (authR natUR);
lcGS_name : gname;
}.
Global Hint Mode lcGS - : typeclass_instances.
Definition lcΣ := #[GFunctor (authR (natUR))].
Global Instance subG_lcΣ {Σ} : subG lcΣ Σ → lcGpreS Σ.
Proof. solve_inG. Qed.
#[local] lcGpreS_inG :: inG Σ (authR natUR)
}.
Class lcGS (Σ : gFunctors) := LcGS {
#[local] lcGS_inG :: inG Σ (authR natUR);
lcGS_name : gname;
}.
Global Hint Mode lcGS - : typeclass_instances.
Definition lcΣ := #[GFunctor (authR (natUR))].
Global Instance subG_lcΣ {Σ} : subG lcΣ Σ → lcGpreS Σ.
Proof. solve_inG. Qed.
The user-facing credit resource, denoting ownership of n credits.
Local Definition lc_def `{!lcGS Σ} (n : nat) : iProp Σ := own lcGS_name (◯ n).
Local Definition lc_aux : seal (@lc_def). Proof. by eexists. Qed.
Definition lc := lc_aux.(unseal).
Local Definition lc_unseal :
@lc = @lc_def := lc_aux.(seal_eq).
Global Arguments lc {Σ _} n.
Notation "'£' n" := (lc n) (at level 1).
Local Definition lc_aux : seal (@lc_def). Proof. by eexists. Qed.
Definition lc := lc_aux.(unseal).
Local Definition lc_unseal :
@lc = @lc_def := lc_aux.(seal_eq).
Global Arguments lc {Σ _} n.
Notation "'£' n" := (lc n) (at level 1).
The internal authoritative part of the credit ghost state,
tracking how many credits are available in total.
Users should not directly interface with this.
Local Definition lc_supply_def `{!lcGS Σ} (n : nat) : iProp Σ := own lcGS_name (● n).
Local Definition lc_supply_aux : seal (@lc_supply_def). Proof. by eexists. Qed.
Local Definition lc_supply := lc_supply_aux.(unseal).
Local Definition lc_supply_unseal :
@lc_supply = @lc_supply_def := lc_supply_aux.(seal_eq).
Global Arguments lc_supply {Σ _} n.
Section later_credit_theory.
Context `{!lcGS Σ}.
Implicit Types (P Q : iProp Σ).
Local Definition lc_supply_aux : seal (@lc_supply_def). Proof. by eexists. Qed.
Local Definition lc_supply := lc_supply_aux.(unseal).
Local Definition lc_supply_unseal :
@lc_supply = @lc_supply_def := lc_supply_aux.(seal_eq).
Global Arguments lc_supply {Σ _} n.
Section later_credit_theory.
Context `{!lcGS Σ}.
Implicit Types (P Q : iProp Σ).
Later credit rules
Lemma lc_split n m :
£ (n + m) ⊣⊢ £ n ∗ £ m.
Proof.
rewrite lc_unseal /lc_def.
rewrite -own_op auth_frag_op //=.
Qed.
Lemma lc_zero : ⊢ |==> £ 0.
Proof.
rewrite lc_unseal /lc_def. iApply own_unit.
Qed.
Lemma lc_supply_bound n m :
lc_supply m -∗ £ n -∗ ⌜n ≤ m⌝.
Proof.
rewrite lc_unseal /lc_def.
rewrite lc_supply_unseal /lc_supply_def.
iIntros "H1 H2".
iCombine "H1 H2" gives %Hop.
iPureIntro. eapply auth_both_valid_discrete in Hop as [Hlt _].
by eapply nat_included.
Qed.
Lemma lc_decrease_supply n m :
lc_supply (n + m) -∗ £ n -∗ |==> lc_supply m.
Proof.
rewrite lc_unseal /lc_def.
rewrite lc_supply_unseal /lc_supply_def.
iIntros "H1 H2".
iMod (own_update_2 with "H1 H2") as "Hown".
{ eapply auth_update. eapply (nat_local_update _ _ m 0). lia. }
by iDestruct "Hown" as "[Hm _]".
Qed.
Lemma lc_succ n :
£ (S n) ⊣⊢ £ 1 ∗ £ n.
Proof. rewrite -lc_split //=. Qed.
Lemma lc_weaken {n} m :
m ≤ n → £ n -∗ £ m.
Proof.
intros [k ->]%Nat.le_sum. rewrite lc_split. iIntros "[$ _]".
Qed.
Global Instance lc_timeless n : Timeless (£ n).
Proof.
rewrite lc_unseal /lc_def. apply _.
Qed.
Global Instance lc_0_persistent : Persistent (£ 0).
Proof.
rewrite lc_unseal /lc_def. apply _.
Qed.
£ (n + m) ⊣⊢ £ n ∗ £ m.
Proof.
rewrite lc_unseal /lc_def.
rewrite -own_op auth_frag_op //=.
Qed.
Lemma lc_zero : ⊢ |==> £ 0.
Proof.
rewrite lc_unseal /lc_def. iApply own_unit.
Qed.
Lemma lc_supply_bound n m :
lc_supply m -∗ £ n -∗ ⌜n ≤ m⌝.
Proof.
rewrite lc_unseal /lc_def.
rewrite lc_supply_unseal /lc_supply_def.
iIntros "H1 H2".
iCombine "H1 H2" gives %Hop.
iPureIntro. eapply auth_both_valid_discrete in Hop as [Hlt _].
by eapply nat_included.
Qed.
Lemma lc_decrease_supply n m :
lc_supply (n + m) -∗ £ n -∗ |==> lc_supply m.
Proof.
rewrite lc_unseal /lc_def.
rewrite lc_supply_unseal /lc_supply_def.
iIntros "H1 H2".
iMod (own_update_2 with "H1 H2") as "Hown".
{ eapply auth_update. eapply (nat_local_update _ _ m 0). lia. }
by iDestruct "Hown" as "[Hm _]".
Qed.
Lemma lc_succ n :
£ (S n) ⊣⊢ £ 1 ∗ £ n.
Proof. rewrite -lc_split //=. Qed.
Lemma lc_weaken {n} m :
m ≤ n → £ n -∗ £ m.
Proof.
intros [k ->]%Nat.le_sum. rewrite lc_split. iIntros "[$ _]".
Qed.
Global Instance lc_timeless n : Timeless (£ n).
Proof.
rewrite lc_unseal /lc_def. apply _.
Qed.
Global Instance lc_0_persistent : Persistent (£ 0).
Proof.
rewrite lc_unseal /lc_def. apply _.
Qed.
Make sure that the rule for + is used before S, otherwise Coq's
unification applies the S hint too eagerly. See Iris issue 470.
Global Instance from_sep_lc_add n m :
FromSep (£ (n + m)) (£ n) (£ m) | 0.
Proof.
by rewrite /FromSep lc_split.
Qed.
Global Instance from_sep_lc_S n :
FromSep (£ (S n)) (£ 1) (£ n) | 1.
Proof.
by rewrite /FromSep (lc_succ n).
Qed.
FromSep (£ (n + m)) (£ n) (£ m) | 0.
Proof.
by rewrite /FromSep lc_split.
Qed.
Global Instance from_sep_lc_S n :
FromSep (£ (S n)) (£ 1) (£ n) | 1.
Proof.
by rewrite /FromSep (lc_succ n).
Qed.
When combining later credits with iCombine, the priorities are
reversed when compared to FromSep and IntoSep. This causes
£ n and £ 1 to be combined as £ (S n), not as £ (n + 1).
Global Instance combine_sep_lc_add n m :
CombineSepAs (£ n) (£ m) (£ (n + m)) | 1.
Proof.
by rewrite /CombineSepAs lc_split.
Qed.
Global Instance combine_sep_lc_S_l n :
CombineSepAs (£ n) (£ 1) (£ (S n)) | 0.
Proof.
by rewrite /CombineSepAs comm (lc_succ n).
Qed.
Global Instance into_sep_lc_add n m :
IntoSep (£ (n + m)) (£ n) (£ m) | 0.
Proof.
by rewrite /IntoSep lc_split.
Qed.
Global Instance into_sep_lc_S n :
IntoSep (£ (S n)) (£ 1) (£ n) | 1.
Proof.
by rewrite /IntoSep (lc_succ n).
Qed.
End later_credit_theory.
CombineSepAs (£ n) (£ m) (£ (n + m)) | 1.
Proof.
by rewrite /CombineSepAs lc_split.
Qed.
Global Instance combine_sep_lc_S_l n :
CombineSepAs (£ n) (£ 1) (£ (S n)) | 0.
Proof.
by rewrite /CombineSepAs comm (lc_succ n).
Qed.
Global Instance into_sep_lc_add n m :
IntoSep (£ (n + m)) (£ n) (£ m) | 0.
Proof.
by rewrite /IntoSep lc_split.
Qed.
Global Instance into_sep_lc_S n :
IntoSep (£ (S n)) (£ 1) (£ n) | 1.
Proof.
by rewrite /IntoSep (lc_succ n).
Qed.
End later_credit_theory.
Let users import the above without also getting the below laws.
This should only be imported by the internal development of fancy updates.
Definition of the later-elimination update
Definition le_upd_pre `{!lcGS Σ}
(le_upd : iProp Σ -d> iPropO Σ) : iProp Σ -d> iPropO Σ := λ P,
(∀ n, lc_supply n ==∗
(lc_supply n ∗ P) ∨ (∃ m, ⌜m < n⌝ ∗ lc_supply m ∗ ▷ le_upd P))%I.
Local Instance le_upd_pre_contractive `{!lcGS Σ} : Contractive le_upd_pre.
Proof. solve_contractive. Qed.
Local Definition le_upd_def `{!lcGS Σ} :
iProp Σ -d> iPropO Σ := fixpoint le_upd_pre.
Local Definition le_upd_aux : seal (@le_upd_def). Proof. by eexists. Qed.
Definition le_upd := le_upd_aux.(unseal).
Local Definition le_upd_unseal : @le_upd = @le_upd_def := le_upd_aux.(seal_eq).
Global Arguments le_upd {_ _} _.
Notation "'|==£>' P" := (le_upd P%I) (at level 99, P at level 200, format "|==£> P") : bi_scope.
Local Lemma le_upd_unfold `{!lcGS Σ} P:
(|==£> P) ⊣⊢
∀ n, lc_supply n ==∗
(lc_supply n ∗ P) ∨ (∃ m, ⌜m < n⌝ ∗ lc_supply m ∗ ▷ le_upd P).
Proof.
by rewrite le_upd_unseal
/le_upd_def {1}(fixpoint_unfold le_upd_pre P) {1}/le_upd_pre.
Qed.
Section le_upd.
Context `{!lcGS Σ}.
Implicit Types (P Q : iProp Σ).
(le_upd : iProp Σ -d> iPropO Σ) : iProp Σ -d> iPropO Σ := λ P,
(∀ n, lc_supply n ==∗
(lc_supply n ∗ P) ∨ (∃ m, ⌜m < n⌝ ∗ lc_supply m ∗ ▷ le_upd P))%I.
Local Instance le_upd_pre_contractive `{!lcGS Σ} : Contractive le_upd_pre.
Proof. solve_contractive. Qed.
Local Definition le_upd_def `{!lcGS Σ} :
iProp Σ -d> iPropO Σ := fixpoint le_upd_pre.
Local Definition le_upd_aux : seal (@le_upd_def). Proof. by eexists. Qed.
Definition le_upd := le_upd_aux.(unseal).
Local Definition le_upd_unseal : @le_upd = @le_upd_def := le_upd_aux.(seal_eq).
Global Arguments le_upd {_ _} _.
Notation "'|==£>' P" := (le_upd P%I) (at level 99, P at level 200, format "|==£> P") : bi_scope.
Local Lemma le_upd_unfold `{!lcGS Σ} P:
(|==£> P) ⊣⊢
∀ n, lc_supply n ==∗
(lc_supply n ∗ P) ∨ (∃ m, ⌜m < n⌝ ∗ lc_supply m ∗ ▷ le_upd P).
Proof.
by rewrite le_upd_unseal
/le_upd_def {1}(fixpoint_unfold le_upd_pre P) {1}/le_upd_pre.
Qed.
Section le_upd.
Context `{!lcGS Σ}.
Implicit Types (P Q : iProp Σ).
Rules for the later elimination update
Global Instance le_upd_ne : NonExpansive le_upd.
Proof.
intros n; induction (lt_wf n) as [n _ IH].
intros P1 P2 HP. rewrite (le_upd_unfold P1) (le_upd_unfold P2).
do 9 (done || f_equiv). f_contractive. eapply IH, dist_le; [lia|done|lia].
Qed.
Lemma bupd_le_upd P : (|==> P) ⊢ (|==£> P).
Proof.
rewrite le_upd_unfold; iIntros "Hupd" (x) "Hpr".
iMod "Hupd" as "P". iModIntro. iLeft. by iFrame.
Qed.
Lemma le_upd_intro P : P ⊢ |==£> P.
Proof.
iIntros "H"; by iApply bupd_le_upd.
Qed.
Lemma le_upd_bind P Q :
(P -∗ |==£> Q) -∗ (|==£> P) -∗ (|==£> Q).
Proof.
iLöb as "IH". iIntros "PQ".
iEval (rewrite (le_upd_unfold P) (le_upd_unfold Q)).
iIntros "Hupd" (x) "Hpr". iMod ("Hupd" with "Hpr") as "[Hupd|Hupd]".
- iDestruct "Hupd" as "[Hpr Hupd]".
iSpecialize ("PQ" with "Hupd").
iEval (rewrite le_upd_unfold) in "PQ".
iMod ("PQ" with "Hpr") as "[Hupd|Hupd]".
+ iModIntro. by iLeft.
+ iModIntro. iRight. iDestruct "Hupd" as (x'' Hstep'') "[Hpr Hupd]".
iExists _; iFrame. by iPureIntro.
- iModIntro. iRight. iDestruct "Hupd" as (x') "(Hstep & Hpr & Hupd)".
iExists _; iFrame. iNext. by iApply ("IH" with "PQ Hupd").
Qed.
Lemma le_upd_later_elim P :
£ 1 -∗ (▷ |==£> P) -∗ |==£> P.
Proof.
iIntros "Hc Hl".
iEval (rewrite le_upd_unfold). iIntros (n) "Hs".
iDestruct (lc_supply_bound with "Hs Hc") as "%".
destruct n as [ | n]; first by lia.
replace (S n) with (1 + n) by lia.
iMod (lc_decrease_supply with "Hs Hc") as "Hs". eauto 10 with iFrame lia.
Qed.
Proof.
intros n; induction (lt_wf n) as [n _ IH].
intros P1 P2 HP. rewrite (le_upd_unfold P1) (le_upd_unfold P2).
do 9 (done || f_equiv). f_contractive. eapply IH, dist_le; [lia|done|lia].
Qed.
Lemma bupd_le_upd P : (|==> P) ⊢ (|==£> P).
Proof.
rewrite le_upd_unfold; iIntros "Hupd" (x) "Hpr".
iMod "Hupd" as "P". iModIntro. iLeft. by iFrame.
Qed.
Lemma le_upd_intro P : P ⊢ |==£> P.
Proof.
iIntros "H"; by iApply bupd_le_upd.
Qed.
Lemma le_upd_bind P Q :
(P -∗ |==£> Q) -∗ (|==£> P) -∗ (|==£> Q).
Proof.
iLöb as "IH". iIntros "PQ".
iEval (rewrite (le_upd_unfold P) (le_upd_unfold Q)).
iIntros "Hupd" (x) "Hpr". iMod ("Hupd" with "Hpr") as "[Hupd|Hupd]".
- iDestruct "Hupd" as "[Hpr Hupd]".
iSpecialize ("PQ" with "Hupd").
iEval (rewrite le_upd_unfold) in "PQ".
iMod ("PQ" with "Hpr") as "[Hupd|Hupd]".
+ iModIntro. by iLeft.
+ iModIntro. iRight. iDestruct "Hupd" as (x'' Hstep'') "[Hpr Hupd]".
iExists _; iFrame. by iPureIntro.
- iModIntro. iRight. iDestruct "Hupd" as (x') "(Hstep & Hpr & Hupd)".
iExists _; iFrame. iNext. by iApply ("IH" with "PQ Hupd").
Qed.
Lemma le_upd_later_elim P :
£ 1 -∗ (▷ |==£> P) -∗ |==£> P.
Proof.
iIntros "Hc Hl".
iEval (rewrite le_upd_unfold). iIntros (n) "Hs".
iDestruct (lc_supply_bound with "Hs Hc") as "%".
destruct n as [ | n]; first by lia.
replace (S n) with (1 + n) by lia.
iMod (lc_decrease_supply with "Hs Hc") as "Hs". eauto 10 with iFrame lia.
Qed.
Derived lemmas
Lemma le_upd_mono P Q : (P ⊢ Q) → (|==£> P) ⊢ (|==£> Q).
Proof.
intros Hent. iApply le_upd_bind.
iIntros "P"; iApply le_upd_intro; by iApply Hent.
Qed.
Global Instance le_upd_mono' : Proper ((⊢) ==> (⊢)) le_upd.
Proof. intros P Q PQ; by apply le_upd_mono. Qed.
Global Instance le_upd_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) le_upd.
Proof. intros P Q PQ; by apply le_upd_mono. Qed.
Global Instance le_upd_equiv_proper : Proper ((≡) ==> (≡)) le_upd.
Proof. apply ne_proper. apply _. Qed.
Lemma le_upd_trans P : (|==£> |==£> P) ⊢ |==£> P.
Proof.
iIntros "HP". iApply le_upd_bind; eauto.
Qed.
Lemma le_upd_frame_r P R : (|==£> P) ∗ R ⊢ |==£> P ∗ R.
Proof.
iIntros "[Hupd R]". iApply (le_upd_bind with "[R]"); last done.
iIntros "P". iApply le_upd_intro. by iFrame.
Qed.
Lemma le_upd_frame_l P R : R ∗ (|==£> P) ⊢ |==£> R ∗ P.
Proof. rewrite comm le_upd_frame_r comm //. Qed.
Lemma le_upd_later P :
£ 1 -∗ ▷ P -∗ |==£> P.
Proof.
iIntros "H1 H2". iApply (le_upd_later_elim with "H1").
iNext. by iApply le_upd_intro.
Qed.
Lemma except_0_le_upd P : ◇ (le_upd P) ⊢ le_upd (◇ P).
Proof.
rewrite /bi_except_0. apply or_elim; eauto using le_upd_mono, or_intro_r.
by rewrite -le_upd_intro -or_intro_l.
Qed.
Proof.
intros Hent. iApply le_upd_bind.
iIntros "P"; iApply le_upd_intro; by iApply Hent.
Qed.
Global Instance le_upd_mono' : Proper ((⊢) ==> (⊢)) le_upd.
Proof. intros P Q PQ; by apply le_upd_mono. Qed.
Global Instance le_upd_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) le_upd.
Proof. intros P Q PQ; by apply le_upd_mono. Qed.
Global Instance le_upd_equiv_proper : Proper ((≡) ==> (≡)) le_upd.
Proof. apply ne_proper. apply _. Qed.
Lemma le_upd_trans P : (|==£> |==£> P) ⊢ |==£> P.
Proof.
iIntros "HP". iApply le_upd_bind; eauto.
Qed.
Lemma le_upd_frame_r P R : (|==£> P) ∗ R ⊢ |==£> P ∗ R.
Proof.
iIntros "[Hupd R]". iApply (le_upd_bind with "[R]"); last done.
iIntros "P". iApply le_upd_intro. by iFrame.
Qed.
Lemma le_upd_frame_l P R : R ∗ (|==£> P) ⊢ |==£> R ∗ P.
Proof. rewrite comm le_upd_frame_r comm //. Qed.
Lemma le_upd_later P :
£ 1 -∗ ▷ P -∗ |==£> P.
Proof.
iIntros "H1 H2". iApply (le_upd_later_elim with "H1").
iNext. by iApply le_upd_intro.
Qed.
Lemma except_0_le_upd P : ◇ (le_upd P) ⊢ le_upd (◇ P).
Proof.
rewrite /bi_except_0. apply or_elim; eauto using le_upd_mono, or_intro_r.
by rewrite -le_upd_intro -or_intro_l.
Qed.
A safety check that later-elimination updates can replace basic updates We do not use this to build an instance, because it would conflict
with the basic updates.
Local Lemma bi_bupd_mixin_le_upd : BiBUpdMixin (iPropI Σ) le_upd.
Proof.
split; rewrite /bupd.
- apply _.
- apply le_upd_intro.
- apply le_upd_mono.
- apply le_upd_trans.
- apply le_upd_frame_r.
Qed.
Proof.
split; rewrite /bupd.
- apply _.
- apply le_upd_intro.
- apply le_upd_mono.
- apply le_upd_trans.
- apply le_upd_frame_r.
Qed.
unfolding the later elimination update
Lemma le_upd_elim n P :
lc_supply n -∗
(|==£> P) -∗
Nat.iter n (λ P, |==> ▷ P) (|==> ◇ (∃ m, ⌜m ≤ n⌝ ∗ lc_supply m ∗ P)).
Proof.
induction (Nat.lt_wf_0 n) as [n _ IH].
iIntros "Ha". rewrite (le_upd_unfold P) //=.
iIntros "Hupd". iSpecialize ("Hupd" with "Ha").
destruct n as [|n]; simpl.
- iMod "Hupd" as "[[H● ?]| Hf]".
{ do 2 iModIntro. iExists 0. iFrame. done. }
iDestruct "Hf" as (x' Hlt) "_". lia.
- iMod "Hupd" as "[[Hc P]|Hupd]".
+ iModIntro. iNext. iApply iter_modal_intro; last first.
{ do 2 iModIntro. iExists (S n); iFrame; done. }
iIntros (Q) "Q"; iModIntro; by iNext.
+ iModIntro. iDestruct "Hupd" as (m Hstep) "[Hown Hupd]". iNext.
iPoseProof (IH with "Hown Hupd") as "Hit"; first done.
clear IH.
assert (m ≤ n) as [k ->]%Nat.le_sum by lia.
rewrite Nat.add_comm Nat.iter_add.
iApply iter_modal_intro.
{ by iIntros (Q) "$". }
iApply (iter_modal_mono with "[] Hit").
{ iIntros (R S) "Hent H". by iApply "Hent". }
iIntros "H". iMod "H". iModIntro. iMod "H" as (m' Hle) "H".
iModIntro. iExists m'. iFrame. iPureIntro. lia.
Qed.
Lemma le_upd_elim_complete n P :
lc_supply n -∗
(|==£> P) -∗
Nat.iter (S n) (λ Q, |==> ▷ Q) P.
Proof.
iIntros "Hlc Hupd". iPoseProof (le_upd_elim with "Hlc Hupd") as "Hit".
rewrite Nat.iter_succ_r. iApply (iter_modal_mono with "[] Hit").
{ clear. iIntros (P Q) "Hent HP". by iApply "Hent". }
iIntros "Hupd". iMod "Hupd". iModIntro. iMod "Hupd".
iNext. iDestruct "Hupd" as "[%m (_ & _ & $)]".
Qed.
lc_supply n -∗
(|==£> P) -∗
Nat.iter n (λ P, |==> ▷ P) (|==> ◇ (∃ m, ⌜m ≤ n⌝ ∗ lc_supply m ∗ P)).
Proof.
induction (Nat.lt_wf_0 n) as [n _ IH].
iIntros "Ha". rewrite (le_upd_unfold P) //=.
iIntros "Hupd". iSpecialize ("Hupd" with "Ha").
destruct n as [|n]; simpl.
- iMod "Hupd" as "[[H● ?]| Hf]".
{ do 2 iModIntro. iExists 0. iFrame. done. }
iDestruct "Hf" as (x' Hlt) "_". lia.
- iMod "Hupd" as "[[Hc P]|Hupd]".
+ iModIntro. iNext. iApply iter_modal_intro; last first.
{ do 2 iModIntro. iExists (S n); iFrame; done. }
iIntros (Q) "Q"; iModIntro; by iNext.
+ iModIntro. iDestruct "Hupd" as (m Hstep) "[Hown Hupd]". iNext.
iPoseProof (IH with "Hown Hupd") as "Hit"; first done.
clear IH.
assert (m ≤ n) as [k ->]%Nat.le_sum by lia.
rewrite Nat.add_comm Nat.iter_add.
iApply iter_modal_intro.
{ by iIntros (Q) "$". }
iApply (iter_modal_mono with "[] Hit").
{ iIntros (R S) "Hent H". by iApply "Hent". }
iIntros "H". iMod "H". iModIntro. iMod "H" as (m' Hle) "H".
iModIntro. iExists m'. iFrame. iPureIntro. lia.
Qed.
Lemma le_upd_elim_complete n P :
lc_supply n -∗
(|==£> P) -∗
Nat.iter (S n) (λ Q, |==> ▷ Q) P.
Proof.
iIntros "Hlc Hupd". iPoseProof (le_upd_elim with "Hlc Hupd") as "Hit".
rewrite Nat.iter_succ_r. iApply (iter_modal_mono with "[] Hit").
{ clear. iIntros (P Q) "Hent HP". by iApply "Hent". }
iIntros "Hupd". iMod "Hupd". iModIntro. iMod "Hupd".
iNext. iDestruct "Hupd" as "[%m (_ & _ & $)]".
Qed.
Global Instance elim_bupd_le_upd p P Q :
ElimModal True p false (bupd P) P (le_upd Q) (le_upd Q)%I.
Proof.
rewrite /ElimModal bi.intuitionistically_if_elim //=.
rewrite bupd_le_upd. iIntros "_ [HP HPQ]".
iApply (le_upd_bind with "HPQ HP").
Qed.
Global Instance from_assumption_le_upd p P Q :
FromAssumption p P Q → KnownRFromAssumption p P (le_upd Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption=>->. apply le_upd_intro.
Qed.
Global Instance from_pure_le_upd a P φ :
FromPure a P φ → FromPure a (le_upd P) φ.
Proof. rewrite /FromPure⇒ <-. apply le_upd_intro. Qed.
Global Instance is_except_0_le_upd P : IsExcept0 P → IsExcept0 (le_upd P).
Proof.
rewrite /IsExcept0⇒ HP.
by rewrite -{2}HP -(except_0_idemp P) -except_0_le_upd -(except_0_intro P).
Qed.
Global Instance from_modal_le_upd P :
FromModal True modality_id (le_upd P) (le_upd P) P.
Proof. by rewrite /FromModal /= -le_upd_intro. Qed.
Global Instance elim_modal_le_upd p P Q :
ElimModal True p false (le_upd P) P (le_upd Q) (le_upd Q).
Proof.
by rewrite /ElimModal
intuitionistically_if_elim le_upd_frame_r wand_elim_r le_upd_trans.
Qed.
Global Instance frame_le_upd p R P Q :
Frame p R P Q → Frame p R (le_upd P) (le_upd Q).
Proof. rewrite /Frame=><-. by rewrite le_upd_frame_l. Qed.
End le_upd.
ElimModal True p false (bupd P) P (le_upd Q) (le_upd Q)%I.
Proof.
rewrite /ElimModal bi.intuitionistically_if_elim //=.
rewrite bupd_le_upd. iIntros "_ [HP HPQ]".
iApply (le_upd_bind with "HPQ HP").
Qed.
Global Instance from_assumption_le_upd p P Q :
FromAssumption p P Q → KnownRFromAssumption p P (le_upd Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption=>->. apply le_upd_intro.
Qed.
Global Instance from_pure_le_upd a P φ :
FromPure a P φ → FromPure a (le_upd P) φ.
Proof. rewrite /FromPure⇒ <-. apply le_upd_intro. Qed.
Global Instance is_except_0_le_upd P : IsExcept0 P → IsExcept0 (le_upd P).
Proof.
rewrite /IsExcept0⇒ HP.
by rewrite -{2}HP -(except_0_idemp P) -except_0_le_upd -(except_0_intro P).
Qed.
Global Instance from_modal_le_upd P :
FromModal True modality_id (le_upd P) (le_upd P) P.
Proof. by rewrite /FromModal /= -le_upd_intro. Qed.
Global Instance elim_modal_le_upd p P Q :
ElimModal True p false (le_upd P) P (le_upd Q) (le_upd Q).
Proof.
by rewrite /ElimModal
intuitionistically_if_elim le_upd_frame_r wand_elim_r le_upd_trans.
Qed.
Global Instance frame_le_upd p R P Q :
Frame p R P Q → Frame p R (le_upd P) (le_upd Q).
Proof. rewrite /Frame=><-. by rewrite le_upd_frame_l. Qed.
End le_upd.
You probably do NOT want to use this lemma; use lc_soundness if you want
to actually use le_upd!
Local Lemma lc_alloc `{!lcGpreS Σ} n :
⊢ |==> ∃ _ : lcGS Σ, lc_supply n ∗ £ n.
Proof.
rewrite lc_unseal /lc_def lc_supply_unseal /lc_supply_def.
iMod (own_alloc (● n ⋅ ◯ n)) as (γLC) "[H● H◯]";
first (apply auth_both_valid; split; done).
pose (C := LcGS _ _ γLC).
iModIntro. iExists C. iFrame.
Qed.
Lemma lc_soundness `{!lcGpreS Σ} m (P : iProp Σ) `{!Plain P} :
(∀ {Hc: lcGS Σ}, £ m -∗ |==£> P) → ⊢ P.
Proof.
intros H. apply (laterN_soundness _ (S m)).
eapply bupd_soundness; first apply _.
iStartProof.
iMod (lc_alloc m) as (C) "[H● H◯]".
iPoseProof (H C) as "Hc". iSpecialize ("Hc" with "H◯").
iPoseProof (le_upd_elim_complete m with "H● Hc") as "H".
simpl. iMod "H". iModIntro. iNext.
clear H. iInduction m as [|m IH]; simpl; [done|].
iMod "H". iNext. by iApply "IH".
Qed.
End le_upd.
⊢ |==> ∃ _ : lcGS Σ, lc_supply n ∗ £ n.
Proof.
rewrite lc_unseal /lc_def lc_supply_unseal /lc_supply_def.
iMod (own_alloc (● n ⋅ ◯ n)) as (γLC) "[H● H◯]";
first (apply auth_both_valid; split; done).
pose (C := LcGS _ _ γLC).
iModIntro. iExists C. iFrame.
Qed.
Lemma lc_soundness `{!lcGpreS Σ} m (P : iProp Σ) `{!Plain P} :
(∀ {Hc: lcGS Σ}, £ m -∗ |==£> P) → ⊢ P.
Proof.
intros H. apply (laterN_soundness _ (S m)).
eapply bupd_soundness; first apply _.
iStartProof.
iMod (lc_alloc m) as (C) "[H● H◯]".
iPoseProof (H C) as "Hc". iSpecialize ("Hc" with "H◯").
iPoseProof (le_upd_elim_complete m with "H● Hc") as "H".
simpl. iMod "H". iModIntro. iNext.
clear H. iInduction m as [|m IH]; simpl; [done|].
iMod "H". iNext. by iApply "IH".
Qed.
End le_upd.
This should only be imported by the internal development of fancy updates.
Module le_upd_if.
Export le_upd.
Section le_upd_if.
Context `{!lcGS Σ}.
Definition le_upd_if (b : bool) : iProp Σ → iProp Σ :=
if b then le_upd else bupd.
Global Instance le_upd_if_mono' b : Proper ((⊢) ==> (⊢)) (le_upd_if b).
Proof. destruct b; apply _. Qed.
Global Instance le_upd_if_flip_mono' b :
Proper (flip (⊢) ==> flip (⊢)) (le_upd_if b).
Proof. destruct b; apply _. Qed.
Global Instance le_upd_if_proper b : Proper ((≡) ==> (≡)) (le_upd_if b).
Proof. destruct b; apply _. Qed.
Global Instance le_upd_if_ne b : NonExpansive (le_upd_if b).
Proof. destruct b; apply _. Qed.
Lemma le_upd_if_intro b P : P ⊢ le_upd_if b P.
Proof.
destruct b; [apply le_upd_intro | apply bupd_intro].
Qed.
Lemma le_upd_if_bind b P Q :
(P -∗ le_upd_if b Q) -∗ (le_upd_if b P) -∗ (le_upd_if b Q).
Proof.
destruct b; first apply le_upd_bind. simpl.
iIntros "HPQ >HP". by iApply "HPQ".
Qed.
Lemma le_upd_if_mono b P Q : (P ⊢ Q) → (le_upd_if b P) ⊢ (le_upd_if b Q).
Proof.
destruct b; [apply le_upd_mono | apply bupd_mono].
Qed.
Lemma le_upd_if_trans b P : (le_upd_if b (le_upd_if b P)) ⊢ le_upd_if b P.
Proof.
destruct b; [apply le_upd_trans | apply bupd_trans].
Qed.
Lemma le_upd_if_frame_r b P R : (le_upd_if b P) ∗ R ⊢ le_upd_if b (P ∗ R).
Proof.
destruct b; [apply le_upd_frame_r | apply bupd_frame_r].
Qed.
Lemma bupd_le_upd_if b P : (|==> P) ⊢ (le_upd_if b P).
Proof.
destruct b; [apply bupd_le_upd | done].
Qed.
Lemma le_upd_if_frame_l b R Q : (R ∗ le_upd_if b Q) ⊢ le_upd_if b (R ∗ Q).
Proof.
rewrite comm le_upd_if_frame_r comm //.
Qed.
Lemma except_0_le_upd_if b P : ◇ (le_upd_if b P) ⊢ le_upd_if b (◇ P).
Proof.
rewrite /bi_except_0. apply or_elim; eauto using le_upd_if_mono, or_intro_r.
by rewrite -le_upd_if_intro -or_intro_l.
Qed.
Export le_upd.
Section le_upd_if.
Context `{!lcGS Σ}.
Definition le_upd_if (b : bool) : iProp Σ → iProp Σ :=
if b then le_upd else bupd.
Global Instance le_upd_if_mono' b : Proper ((⊢) ==> (⊢)) (le_upd_if b).
Proof. destruct b; apply _. Qed.
Global Instance le_upd_if_flip_mono' b :
Proper (flip (⊢) ==> flip (⊢)) (le_upd_if b).
Proof. destruct b; apply _. Qed.
Global Instance le_upd_if_proper b : Proper ((≡) ==> (≡)) (le_upd_if b).
Proof. destruct b; apply _. Qed.
Global Instance le_upd_if_ne b : NonExpansive (le_upd_if b).
Proof. destruct b; apply _. Qed.
Lemma le_upd_if_intro b P : P ⊢ le_upd_if b P.
Proof.
destruct b; [apply le_upd_intro | apply bupd_intro].
Qed.
Lemma le_upd_if_bind b P Q :
(P -∗ le_upd_if b Q) -∗ (le_upd_if b P) -∗ (le_upd_if b Q).
Proof.
destruct b; first apply le_upd_bind. simpl.
iIntros "HPQ >HP". by iApply "HPQ".
Qed.
Lemma le_upd_if_mono b P Q : (P ⊢ Q) → (le_upd_if b P) ⊢ (le_upd_if b Q).
Proof.
destruct b; [apply le_upd_mono | apply bupd_mono].
Qed.
Lemma le_upd_if_trans b P : (le_upd_if b (le_upd_if b P)) ⊢ le_upd_if b P.
Proof.
destruct b; [apply le_upd_trans | apply bupd_trans].
Qed.
Lemma le_upd_if_frame_r b P R : (le_upd_if b P) ∗ R ⊢ le_upd_if b (P ∗ R).
Proof.
destruct b; [apply le_upd_frame_r | apply bupd_frame_r].
Qed.
Lemma bupd_le_upd_if b P : (|==> P) ⊢ (le_upd_if b P).
Proof.
destruct b; [apply bupd_le_upd | done].
Qed.
Lemma le_upd_if_frame_l b R Q : (R ∗ le_upd_if b Q) ⊢ le_upd_if b (R ∗ Q).
Proof.
rewrite comm le_upd_if_frame_r comm //.
Qed.
Lemma except_0_le_upd_if b P : ◇ (le_upd_if b P) ⊢ le_upd_if b (◇ P).
Proof.
rewrite /bi_except_0. apply or_elim; eauto using le_upd_if_mono, or_intro_r.
by rewrite -le_upd_if_intro -or_intro_l.
Qed.
Proof mode class instances that we need for the internal development,
i.e. for the definition of fancy updates.
Global Instance elim_bupd_le_upd_if b p P Q :
ElimModal True p false (bupd P) P (le_upd_if b Q) (le_upd_if b Q)%I.
Proof.
rewrite /ElimModal bi.intuitionistically_if_elim //=.
rewrite bupd_le_upd_if. iIntros "_ [HP HPQ]".
iApply (le_upd_if_bind with "HPQ HP").
Qed.
Global Instance from_assumption_le_upd_if b p P Q :
FromAssumption p P Q → KnownRFromAssumption p P (le_upd_if b Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption=>->. apply le_upd_if_intro.
Qed.
Global Instance from_pure_le_upd_if b a P φ :
FromPure a P φ → FromPure a (le_upd_if b P) φ.
Proof. rewrite /FromPure⇒ <-. apply le_upd_if_intro. Qed.
Global Instance is_except_0_le_upd_if b P : IsExcept0 P → IsExcept0 (le_upd_if b P).
Proof.
rewrite /IsExcept0⇒ HP.
by rewrite -{2}HP -(except_0_idemp P) -except_0_le_upd_if -(except_0_intro P).
Qed.
Global Instance from_modal_le_upd_if b P :
FromModal True modality_id (le_upd_if b P) (le_upd_if b P) P.
Proof. by rewrite /FromModal /= -le_upd_if_intro. Qed.
Global Instance elim_modal_le_upd_if b p P Q :
ElimModal True p false (le_upd_if b P) P (le_upd_if b Q) (le_upd_if b Q).
Proof.
by rewrite /ElimModal
intuitionistically_if_elim le_upd_if_frame_r wand_elim_r le_upd_if_trans.
Qed.
Global Instance frame_le_upd_if b p R P Q :
Frame p R P Q → Frame p R (le_upd_if b P) (le_upd_if b Q).
Proof. rewrite /Frame=><-. by rewrite le_upd_if_frame_l. Qed.
End le_upd_if.
End le_upd_if.
ElimModal True p false (bupd P) P (le_upd_if b Q) (le_upd_if b Q)%I.
Proof.
rewrite /ElimModal bi.intuitionistically_if_elim //=.
rewrite bupd_le_upd_if. iIntros "_ [HP HPQ]".
iApply (le_upd_if_bind with "HPQ HP").
Qed.
Global Instance from_assumption_le_upd_if b p P Q :
FromAssumption p P Q → KnownRFromAssumption p P (le_upd_if b Q).
Proof.
rewrite /KnownRFromAssumption /FromAssumption=>->. apply le_upd_if_intro.
Qed.
Global Instance from_pure_le_upd_if b a P φ :
FromPure a P φ → FromPure a (le_upd_if b P) φ.
Proof. rewrite /FromPure⇒ <-. apply le_upd_if_intro. Qed.
Global Instance is_except_0_le_upd_if b P : IsExcept0 P → IsExcept0 (le_upd_if b P).
Proof.
rewrite /IsExcept0⇒ HP.
by rewrite -{2}HP -(except_0_idemp P) -except_0_le_upd_if -(except_0_intro P).
Qed.
Global Instance from_modal_le_upd_if b P :
FromModal True modality_id (le_upd_if b P) (le_upd_if b P) P.
Proof. by rewrite /FromModal /= -le_upd_if_intro. Qed.
Global Instance elim_modal_le_upd_if b p P Q :
ElimModal True p false (le_upd_if b P) P (le_upd_if b Q) (le_upd_if b Q).
Proof.
by rewrite /ElimModal
intuitionistically_if_elim le_upd_if_frame_r wand_elim_r le_upd_if_trans.
Qed.
Global Instance frame_le_upd_if b p R P Q :
Frame p R P Q → Frame p R (le_upd_if b P) (le_upd_if b Q).
Proof. rewrite /Frame=><-. by rewrite le_upd_if_frame_l. Qed.
End le_upd_if.
End le_upd_if.