Library iris.algebra.auth

From iris.algebra Require Export view frac.
From iris.algebra Require Import proofmode_classes big_op.
From iris.prelude Require Import options.

The authoritative camera with fractional authoritative elements The authoritative camera has 2 types of elements: the authoritative element ●{dq} a and the fragment b (of which there can be several). To enable sharing of the authoritative element ●{dq} a, it is equiped with a discardable fraction dq. Updates are only possible with the full authoritative element a (syntax for ●{#1} a]), while fractional authoritative elements have agreement, i.e., (●{dq1} a1 ●{dq2} a2) a1 a2.

Definition of the view relation

The authoritative camera is obtained by instantiating the view camera.
Definition auth_view_rel_raw {A : ucmra} (n : nat) (a b : A) : Prop :=
  b ≼{n} a ✓{n} a.
Lemma auth_view_rel_raw_mono (A : ucmra) n1 n2 (a1 a2 b1 b2 : A) :
  auth_view_rel_raw n1 a1 b1
  a1 ≡{n2}≡ a2
  b2 ≼{n2} b1
  n2 n1
  auth_view_rel_raw n2 a2 b2.
Proof.
  intros [??] Ha12 ??. split.
  - trans b1; [done|]. rewrite -Ha12. by apply cmra_includedN_le with n1.
  - rewrite -Ha12. by apply cmra_validN_le with n1.
Qed.
Lemma auth_view_rel_raw_valid (A : ucmra) n (a b : A) :
  auth_view_rel_raw n a b ✓{n} b.
Proof. intros [??]; eauto using cmra_validN_includedN. Qed.
Lemma auth_view_rel_raw_unit (A : ucmra) n :
   a : A, auth_view_rel_raw n a ε.
Proof. ε. split; [done|]. apply ucmra_unit_validN. Qed.
Canonical Structure auth_view_rel {A : ucmra} : view_rel A A :=
  ViewRel auth_view_rel_raw (auth_view_rel_raw_mono A)
          (auth_view_rel_raw_valid A) (auth_view_rel_raw_unit A).

Lemma auth_view_rel_unit {A : ucmra} n (a : A) : auth_view_rel n a ε ✓{n} a.
Proof. split; [by intros [??]|]. split; auto using ucmra_unit_leastN. Qed.
Lemma auth_view_rel_exists {A : ucmra} n (b : A) :
  ( a, auth_view_rel n a b) ✓{n} b.
Proof.
  split; [|intros; b; by split].
  intros [a Hrel]. eapply auth_view_rel_raw_valid, Hrel.
Qed.

Global Instance auth_view_rel_discrete {A : ucmra} :
  CmraDiscrete A ViewRelDiscrete (auth_view_rel (A:=A)).
Proof.
  intros ? n a b [??]; split.
  - by apply cmra_discrete_included_iff_0.
  - by apply cmra_discrete_valid_iff_0.
Qed.

Definition and operations on the authoritative camera

The type auth is not defined as a Definition, but as a Notation. This way, one can use auth A with A : Type instead of A : ucmra, and let canonical structure search determine the corresponding camera instance.
Notation auth A := (view (A:=A) (B:=A) auth_view_rel_raw).
Definition authO (A : ucmra) : ofe := viewO (A:=A) (B:=A) auth_view_rel.
Definition authR (A : ucmra) : cmra := viewR (A:=A) (B:=A) auth_view_rel.
Definition authUR (A : ucmra) : ucmra := viewUR (A:=A) (B:=A) auth_view_rel.

Definition auth_auth {A: ucmra} : dfrac A auth A := view_auth.
Definition auth_frag {A: ucmra} : A auth A := view_frag.

Global Typeclasses Opaque auth_auth auth_frag.

Global Instance: Params (@auth_auth) 2 := {}.
Global Instance: Params (@auth_frag) 1 := {}.

Notation "● dq a" := (auth_auth dq a)
  (at level 20, dq custom dfrac at level 1, format "● dq a").
Notation "◯ a" := (auth_frag a) (at level 20).

Laws of the authoritative camera

We omit the usual equivI lemma because it is hard to state a suitably general version in terms of and , and because such a lemma has never been needed in practice.
Section auth.
  Context {A : ucmra}.
  Implicit Types a b : A.
  Implicit Types x y : auth A.
  Implicit Types q : frac.
  Implicit Types dq : dfrac.

  Global Instance auth_auth_ne dq : NonExpansive (@auth_auth A dq).
  Proof. rewrite /auth_auth. apply _. Qed.
  Global Instance auth_auth_proper dq : Proper ((≡) ==> (≡)) (@auth_auth A dq).
  Proof. rewrite /auth_auth. apply _. Qed.
  Global Instance auth_frag_ne : NonExpansive (@auth_frag A).
  Proof. rewrite /auth_frag. apply _. Qed.
  Global Instance auth_frag_proper : Proper ((≡) ==> (≡)) (@auth_frag A).
  Proof. rewrite /auth_frag. apply _. Qed.

  Global Instance auth_auth_dist_inj n : Inj2 (=) (dist n) (dist n) (@auth_auth A).
  Proof. rewrite /auth_auth. apply _. Qed.
  Global Instance auth_auth_inj : Inj2 (=) (≡) (≡) (@auth_auth A).
  Proof. rewrite /auth_auth. apply _. Qed.
  Global Instance auth_frag_dist_inj n : Inj (dist n) (dist n) (@auth_frag A).
  Proof. rewrite /auth_frag. apply _. Qed.
  Global Instance auth_frag_inj : Inj (≡) (≡) (@auth_frag A).
  Proof. rewrite /auth_frag. apply _. Qed.

  Global Instance auth_ofe_discrete : OfeDiscrete A OfeDiscrete (authO A).
  Proof. apply _. Qed.
  Global Instance auth_auth_discrete dq a :
    Discrete a Discrete (ε : A) Discrete ({dq} a).
  Proof. rewrite /auth_auth. apply _. Qed.
  Global Instance auth_frag_discrete a : Discrete a Discrete ( a).
  Proof. rewrite /auth_frag. apply _. Qed.
  Global Instance auth_cmra_discrete : CmraDiscrete A CmraDiscrete (authR A).
  Proof. apply _. Qed.

Operation
  Lemma auth_auth_dfrac_op dq1 dq2 a : {dq1 dq2} a {dq1} a {dq2} a.
  Proof. apply view_auth_dfrac_op. Qed.
  Global Instance auth_auth_dfrac_is_op dq dq1 dq2 a :
    IsOp dq dq1 dq2 IsOp' ({dq} a) ({dq1} a) ({dq2} a).
  Proof. rewrite /auth_auth. apply _. Qed.

  Lemma auth_frag_op a b : (a b) = a b.
  Proof. apply view_frag_op. Qed.
  Lemma auth_frag_mono a b : a b a b.
  Proof. apply view_frag_mono. Qed.
  Lemma auth_frag_core a : core ( a) = (core a).
  Proof. apply view_frag_core. Qed.
  Lemma auth_both_core_discarded a b :
    core ( a b) a (core b).
  Proof. apply view_both_core_discarded. Qed.
  Lemma auth_both_core_frac q a b :
    core ({#q} a b) (core b).
  Proof. apply view_both_core_frac. Qed.

  Global Instance auth_auth_core_id a : CoreId ( a).
  Proof. rewrite /auth_auth. apply _. Qed.
  Global Instance auth_frag_core_id a : CoreId a CoreId ( a).
  Proof. rewrite /auth_frag. apply _. Qed.
  Global Instance auth_both_core_id a1 a2 : CoreId a2 CoreId ( a1 a2).
  Proof. rewrite /auth_auth /auth_frag. apply _. Qed.
  Global Instance auth_frag_is_op a b1 b2 :
    IsOp a b1 b2 IsOp' ( a) ( b1) ( b2).
  Proof. rewrite /auth_frag. apply _. Qed.
  Global Instance auth_frag_sep_homomorphism :
    MonoidHomomorphism op op (≡) (@auth_frag A).
  Proof. rewrite /auth_frag. apply _. Qed.

  Lemma big_opL_auth_frag {B} (g : nat B A) (l : list B) :
    ( [^op list] kx l, g k x) [^op list] kx l, (g k x).
  Proof. apply (big_opL_commute _). Qed.
  Lemma big_opM_auth_frag `{Countable K} {B} (g : K B A) (m : gmap K B) :
    ( [^op map] kx m, g k x) [^op map] kx m, (g k x).
  Proof. apply (big_opM_commute _). Qed.
  Lemma big_opS_auth_frag `{Countable B} (g : B A) (X : gset B) :
    ( [^op set] x X, g x) [^op set] x X, (g x).
  Proof. apply (big_opS_commute _). Qed.
  Lemma big_opMS_auth_frag `{Countable B} (g : B A) (X : gmultiset B) :
    ( [^op mset] x X, g x) [^op mset] x X, (g x).
  Proof. apply (big_opMS_commute _). Qed.

Validity
The following lemmas are also stated as implications, which can be used to force apply to use the lemma in the right direction.
  Lemma auth_frag_validN n b : ✓{n} ( b) ✓{n} b.
  Proof. by rewrite view_frag_validN auth_view_rel_exists. Qed.
  Lemma auth_frag_validN_1 n b : ✓{n} ( b) ✓{n} b.
  Proof. apply auth_frag_validN. Qed.
  Lemma auth_frag_validN_2 n b : ✓{n} b ✓{n} ( b).
  Proof. apply auth_frag_validN. Qed.
  Lemma auth_frag_op_validN n b1 b2 : ✓{n} ( b1 b2) ✓{n} (b1 b2).
  Proof. apply auth_frag_validN. Qed.
  Lemma auth_frag_op_validN_1 n b1 b2 : ✓{n} ( b1 b2) ✓{n} (b1 b2).
  Proof. apply auth_frag_op_validN. Qed.
  Lemma auth_frag_op_validN_2 n b1 b2 : ✓{n} (b1 b2) ✓{n} ( b1 b2).
  Proof. apply auth_frag_op_validN. Qed.

  Lemma auth_both_dfrac_validN n dq a b :
    ✓{n} ({dq} a b) dq b ≼{n} a ✓{n} a.
  Proof. apply view_both_dfrac_validN. Qed.
  Lemma auth_both_validN n a b : ✓{n} ( a b) b ≼{n} a ✓{n} a.
  Proof. apply view_both_validN. Qed.

  Lemma auth_auth_dfrac_valid dq a : ({dq} a) dq a.
  Proof.
    rewrite view_auth_dfrac_valid !cmra_valid_validN.
    by setoid_rewrite auth_view_rel_unit.
  Qed.
  Lemma auth_auth_valid a : ( a) a.
  Proof.
    rewrite view_auth_valid !cmra_valid_validN.
    by setoid_rewrite auth_view_rel_unit.
  Qed.

  Lemma auth_auth_dfrac_op_valid dq1 dq2 a1 a2 :
     ({dq1} a1 {dq2} a2) (dq1 dq2) a1 a2 a1.
  Proof.
    rewrite view_auth_dfrac_op_valid !cmra_valid_validN.
    setoid_rewrite auth_view_rel_unit. done.
  Qed.
  Lemma auth_auth_op_valid a1 a2 : ( a1 a2) False.
  Proof. apply view_auth_op_valid. Qed.

The following lemmas are also stated as implications, which can be used to force apply to use the lemma in the right direction.
  Lemma auth_frag_valid b : ( b) b.
  Proof.
    rewrite view_frag_valid cmra_valid_validN.
    by setoid_rewrite auth_view_rel_exists.
  Qed.
  Lemma auth_frag_valid_1 b : ( b) b.
  Proof. apply auth_frag_valid. Qed.
  Lemma auth_frag_valid_2 b : b ( b).
  Proof. apply auth_frag_valid. Qed.
  Lemma auth_frag_op_valid b1 b2 : ( b1 b2) (b1 b2).
  Proof. apply auth_frag_valid. Qed.
  Lemma auth_frag_op_valid_1 b1 b2 : ( b1 b2) (b1 b2).
  Proof. apply auth_frag_op_valid. Qed.
  Lemma auth_frag_op_valid_2 b1 b2 : (b1 b2) ( b1 b2).
  Proof. apply auth_frag_op_valid. Qed.

These lemma statements are a bit awkward as we cannot possibly extract a single witness for b a from validity, we have to make do with one witness per step-index, i.e., n, b ≼{n} a.
  Lemma auth_both_dfrac_valid dq a b :
     ({dq} a b) dq ( n, b ≼{n} a) a.
  Proof.
    rewrite view_both_dfrac_valid. apply and_iff_compat_l. split.
    - intros Hrel. split.
      + intros n. by destruct (Hrel n).
      + apply cmra_valid_validNn. by destruct (Hrel n).
    - intros [Hincl Hval] n. split; [done|by apply cmra_valid_validN].
  Qed.
  Lemma auth_both_valid a b :
     ( a b) ( n, b ≼{n} a) a.
  Proof. rewrite auth_both_dfrac_valid. split; [naive_solver|done]. Qed.

  Lemma auth_both_dfrac_valid_2 dq a b : dq a b a ({dq} a b).
  Proof.
    intros. apply auth_both_dfrac_valid.
    naive_solver eauto using cmra_included_includedN.
  Qed.
  Lemma auth_both_valid_2 a b : a b a ( a b).
  Proof. intros ??. by apply auth_both_dfrac_valid_2. Qed.

  Lemma auth_both_dfrac_valid_discrete `{!CmraDiscrete A} dq a b :
     ({dq} a b) dq b a a.
  Proof.
    rewrite auth_both_dfrac_valid. setoid_rewrite <-cmra_discrete_included_iff.
    naive_solver eauto using O.
  Qed.
  Lemma auth_both_valid_discrete `{!CmraDiscrete A} a b :
     ( a b) b a a.
  Proof. rewrite auth_both_dfrac_valid_discrete. split; [naive_solver|done]. Qed.

Inclusion
  Lemma auth_auth_dfrac_includedN n dq1 dq2 a1 a2 b :
    {dq1} a1 ≼{n} {dq2} a2 b (dq1 dq2 dq1 = dq2) a1 ≡{n}≡ a2.
  Proof. apply view_auth_dfrac_includedN. Qed.
  Lemma auth_auth_dfrac_included dq1 dq2 a1 a2 b :
    {dq1} a1 {dq2} a2 b (dq1 dq2 dq1 = dq2) a1 a2.
  Proof. apply view_auth_dfrac_included. Qed.
  Lemma auth_auth_includedN n a1 a2 b :
     a1 ≼{n} a2 b a1 ≡{n}≡ a2.
  Proof. apply view_auth_includedN. Qed.
  Lemma auth_auth_included a1 a2 b :
     a1 a2 b a1 a2.
  Proof. apply view_auth_included. Qed.

  Lemma auth_frag_includedN n dq a b1 b2 :
     b1 ≼{n} {dq} a b2 b1 ≼{n} b2.
  Proof. apply view_frag_includedN. Qed.
  Lemma auth_frag_included dq a b1 b2 :
     b1 {dq} a b2 b1 b2.
  Proof. apply view_frag_included. Qed.

The weaker auth_both_included lemmas below are a consequence of the auth_auth_included and auth_frag_included lemmas above.
Updates
  Lemma auth_update a b a' b' :
    (a,b) ¬l~> (a',b') a b ~~> a' b'.
  Proof.
    intros Hup. apply view_updaten bf [[bf' Haeq] Hav].
    destruct (Hup n (Some (bf bf'))); simpl in *; [done|by rewrite assoc|].
    split; [|done]. bf'. by rewrite -assoc.
  Qed.

  Lemma auth_update_alloc a a' b' : (a,ε) ¬l~> (a',b') a ~~> a' b'.
  Proof. intros. rewrite -(right_id _ _ ( a)). by apply auth_update. Qed.
  Lemma auth_update_dealloc a b a' : (a,b) ¬l~> (a',ε) a b ~~> a'.
  Proof. intros. rewrite -(right_id _ _ ( a')). by apply auth_update. Qed.
  Lemma auth_update_auth a a' b' : (a,ε) ¬l~> (a',b') a ~~> a'.
  Proof.
    intros. etrans; first exact: auth_update_alloc.
    exact: cmra_update_op_l.
  Qed.
  Lemma auth_update_auth_persist dq a : {dq} a ~~> a.
  Proof. apply view_update_auth_persist. Qed.
  Lemma auth_updateP_auth_unpersist a : a ~~>: λ k, q, k = {#q} a.
  Proof. apply view_updateP_auth_unpersist. Qed.
  Lemma auth_updateP_both_unpersist a b : a b ~~>: λ k, q, k = {#q} a b.
  Proof. apply view_updateP_both_unpersist. Qed.

  Lemma auth_update_dfrac_alloc dq a b `{!CoreId b} :
    b a {dq} a ~~> {dq} a b.
  Proof.
    intros Ha%(core_id_extract _ _). apply view_update_dfrac_allocn bf [??].
    split; [|done]. rewrite Ha (comm _ a). by apply cmra_monoN_l.
  Qed.

  Lemma auth_local_update a b0 b1 a' b0' b1' :
    (b0, b1) ¬l~> (b0', b1') b0' a' a'
    ( a b0, a b1) ¬l~> ( a' b0', a' b1').
  Proof.
    intros. apply view_local_update; [done|]=> n [??]. split.
    - by apply cmra_included_includedN.
    - by apply cmra_valid_validN.
  Qed.
End auth.

Functor

Program Definition authURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A _ B _ := authUR (urFunctor_car F A B);
  urFunctor_map A1 _ A2 _ B1 _ B2 _ fg :=
    viewO_map (urFunctor_map F fg) (urFunctor_map F fg)
|}.
Next Obligation.
  intros F A1 ? A2 ? B1 ? B2 ? n f g Hfg.
  apply viewO_map_ne; by apply urFunctor_map_ne.
Qed.
Next Obligation.
  intros F A ? B ? x; simpl in ×. rewrite -{2}(view_map_id x).
  apply (view_map_ext _ _ _ _)=> y; apply urFunctor_map_id.
Qed.
Next Obligation.
  intros F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x; simpl in ×.
  rewrite -view_map_compose.
  apply (view_map_ext _ _ _ _)=> y; apply urFunctor_map_compose.
Qed.
Next Obligation.
  intros F A1 ? A2 ? B1 ? B2 ? fg; simpl.
  apply view_map_cmra_morphism; [apply _..|]=> n a b [??]; split.
  - by apply (cmra_morphism_monotoneN _).
  - by apply (cmra_morphism_validN _).
Qed.

Global Instance authURF_contractive F :
  urFunctorContractive F urFunctorContractive (authURF F).
Proof.
  intros ? A1 ? A2 ? B1 ? B2 ? n f g Hfg.
  apply viewO_map_ne; by apply urFunctor_map_contractive.
Qed.

Program Definition authRF (F : urFunctor) : rFunctor := {|
  rFunctor_car A _ B _ := authR (urFunctor_car F A B);
  rFunctor_map A1 _ A2 _ B1 _ B2 _ fg :=
    viewO_map (urFunctor_map F fg) (urFunctor_map F fg)
|}.
Solve Obligations with apply authURF.

Global Instance authRF_contractive F :
  urFunctorContractive F rFunctorContractive (authRF F).
Proof. apply authURF_contractive. Qed.