Library iris.base_logic.lib.cancelable_invariants

From iris.algebra Require Export frac excl.
From iris.bi.lib Require Import fractional.
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Export invariants.
From iris.prelude Require Import options.

Class cinvG Σ := {
  #[local] cinv_inG :: inG Σ (prodR (optionR (exclR unitO)) (optionR fracR)) ;
}.

Definition cinvΣ : gFunctors := #[GFunctor (prodR (optionR (exclR unitO)) (optionR fracR))].

Global Instance subG_cinvΣ {Σ} : subG cinvΣ Σ cinvG Σ.
Proof. solve_inG. Qed.

Section defs.
  Context `{!invGS_gen hlc Σ, !cinvG Σ}.

  Definition cinv_own (γ : gname) (p : frac) : iProp Σ := own γ (None, Some p).
  Definition cinv_excl γ : iProp Σ := own γ (Some (Excl ()), None).

  Definition cinv (N : namespace) (γ : gname) (P : iProp Σ) : iProp Σ :=
    inv N (P cinv_excl γ cinv_own γ 1).
End defs.

Global Instance: Params (@cinv) 5 := {}.

Section proofs.
  Context `{!invGS_gen hlc Σ, !cinvG Σ}.

  Global Instance cinv_own_timeless γ p : Timeless (cinv_own γ p).
  Proof. rewrite /cinv_own; apply _. Qed.

  Global Instance cinv_contractive N γ : Contractive (cinv N γ).
  Proof. solve_contractive. Qed.
  Global Instance cinv_ne N γ : NonExpansive (cinv N γ).
  Proof. exact: contractive_ne. Qed.
  Global Instance cinv_proper N γ : Proper ((≡) ==> (≡)) (cinv N γ).
  Proof. exact: ne_proper. Qed.

  Global Instance cinv_persistent N γ P : Persistent (cinv N γ P).
  Proof. rewrite /cinv; apply _. Qed.

  Global Instance cinv_own_fractional γ : Fractional (cinv_own γ).
  Proof. intros ??. by rewrite /cinv_own -own_op. Qed.
  Global Instance cinv_own_as_fractional γ q :
    AsFractional (cinv_own γ q) (cinv_own γ) q.
  Proof. split; [done|]. apply _. Qed.

  Lemma cinv_own_valid γ q1 q2 : cinv_own γ q1 -∗ cinv_own γ q2 -∗ q1 + q2 1%Qp.
  Proof.
    rewrite bi.wand_curry -own_op own_valid.
    iIntros "%H !%". apply H.
  Qed.

  Lemma cinv_own_excl_alloc P :
    pred_infinite P |==> γ, P γ cinv_excl γ cinv_own γ 1.
  Proof.
    intros HP. setoid_rewrite <-own_op. apply own_alloc_strong; done.
  Qed.

  Lemma cinv_own_1_l γ q : cinv_own γ 1 -∗ cinv_own γ q -∗ False.
  Proof.
    iIntros "H1 H2".
    iDestruct (cinv_own_valid with "H1 H2") as %[]%(exclusive_l 1%Qp).
  Qed.

  Lemma cinv_excl_excl γ : cinv_excl γ -∗ cinv_excl γ -∗ False.
  Proof.
    rewrite bi.wand_curry -own_op own_valid -pair_op.
    iIntros "%H !%". apply H.
  Qed.

  Lemma cinv_iff N γ P Q : cinv N γ P -∗ (P Q) -∗ cinv N γ Q.
  Proof.
    iIntros "HI #HPQ". iApply (inv_iff with "HI"). iIntros "!> !>".
    iSplit; iIntros "[[? ?]|$]"; iLeft; iFrame; by iApply "HPQ".
  Qed.

The "strong" variants permit any infinite I, and choosing P is delayed until after γ was chosen.
  Lemma cinv_alloc_strong (I : gname Prop) E N :
    pred_infinite I
     |={E}=> γ, I γ cinv_own γ 1 P, P ={E}=∗ cinv N γ P.
  Proof.
    iIntros (?). iMod cinv_own_excl_alloc as (γ) "[$ [Hexcl $]]"; first done.
    iIntros "!>" (P) "P". iApply inv_alloc. iLeft. iFrame.
  Qed.

The "open" variants create the invariant in the open state, and delay having to prove P. These do not imply the other variants because of the extra assumption N E.
  Lemma cinv_alloc_strong_open (I : gname Prop) E N :
    pred_infinite I
    N E
     |={E}=> γ, I γ cinv_own γ 1 P,
      |={E,EN}=> cinv N γ P ( P ={EN,E}=∗ True).
  Proof.
    iIntros (??). iMod (cinv_own_excl_alloc I) as (γ) "[$ [Hexcl $]]"; first done.
    iIntros "!>" (P). iMod inv_alloc_open as "[$ Hclose]"; first done.
    iIntros "!> P". iApply "Hclose". iLeft. iFrame.
  Qed.

  Lemma cinv_alloc_cofinite (G : gset gname) E N :
     |={E}=> γ, γ G cinv_own γ 1 P, P ={E}=∗ cinv N γ P.
  Proof.
    apply cinv_alloc_strong. apply (pred_infinite_set (C:=gset gname))=> E'.
     (fresh (G E')). apply not_elem_of_union, is_fresh.
  Qed.

  Lemma cinv_alloc E N P : P ={E}=∗ γ, cinv N γ P cinv_own γ 1.
  Proof.
    iIntros "HP". iMod (cinv_alloc_cofinite E N) as (γ _) "[Hγ Halloc]".
    iExists γ. iFrame "Hγ". by iApply "Halloc".
  Qed.

  Lemma cinv_alloc_open E N P :
    N E |={E,EN}=> γ, cinv N γ P cinv_own γ 1 ( P ={EN,E}=∗ True).
  Proof.
    iIntros (?). iMod (cinv_alloc_strong_open (λ _, True)) as (γ) "(_ & Htok & Hmake)"; [|done|].
    { apply pred_infinite_True. }
    iMod ("Hmake" $! P) as "[Hinv Hclose]". iIntros "!>". iExists γ. iFrame.
  Qed.


  Lemma cinv_acc_strong E N γ p P :
    N E
    cinv N γ P -∗ (cinv_own γ p ={E,EN}=∗
     P cinv_own γ p ( E' : coPset, P cinv_own γ 1 ={E',N E'}=∗ True)).
  Proof.
    iIntros (?) "Hinv Hown".
    iMod (inv_acc_strong with "Hinv") as "[[[$ >Hexcl] | >Hown'] H]"; first done.
    - iIntros "{$Hown} !>" (E') "[P|Hown]"; iApply "H"; eauto with iFrame.
    - iDestruct (cinv_own_1_l with "Hown' Hown") as %[].
  Qed.

  Lemma cinv_acc E N γ p P :
    N E
    cinv N γ P -∗ cinv_own γ p ={E,EN}=∗ P cinv_own γ p ( P ={EN,E}=∗ True).
  Proof.
    iIntros (?) "#Hinv Hγ".
    iMod (cinv_acc_strong with "Hinv Hγ") as "($ & $ & H)"; first done.
    iIntros "!> HP".
    iMod ("H" with "[$HP]") as "_".
    rewrite -union_difference_L //.
  Qed.

  Lemma cinv_acc_1 E N γ P :
    N E
    cinv N γ P -∗ cinv_own γ 1 ={E}=∗ P (P ={E}=∗ cinv_own γ 1).
  Proof.
    iIntros (?) "#Hinv Hγ".
    iInv "Hinv" as "[[$ >Hexcl] | >Hγ']" "Hclose".
    - iMod ("Hclose" with "[$Hγ]") as "_". iIntros "!> HP".
      iInv "Hinv" as "[[_ >Hexcl'] | >$]" "Hclose".
      + iDestruct (cinv_excl_excl with "Hexcl Hexcl'") as %[].
      + iApply "Hclose". eauto with iFrame.
    - iDestruct (cinv_own_1_l with "Hγ Hγ'") as %[].
  Qed.

  Lemma cinv_cancel E N γ P : N E cinv N γ P -∗ cinv_own γ 1 ={E}=∗ P.
  Proof.
    iIntros (?) "#Hinv Hγ".
    by iDestruct (cinv_acc_1 with "[$] [$]") as "[$ _]".
  Qed.

  Global Instance into_inv_cinv N γ P : IntoInv (cinv N γ P) N := {}.

  Global Instance into_acc_cinv E N γ P p :
    IntoAcc (X:=unit) (cinv N γ P)
            (N E) (cinv_own γ p) (fupd E (EN)) (fupd (EN) E)
            (λ _, P cinv_own γ p)%I (λ _, P)%I (λ _, None)%I.
  Proof.
    rewrite /IntoAcc /accessor bi.exist_unit -assoc.
    iIntros (?) "#Hinv Hown". by iApply cinv_acc.
  Qed.
End proofs.

Global Typeclasses Opaque cinv_own cinv.