Library iris.base_logic.lib.invariants

From stdpp Require Export namespaces.
From iris.algebra Require Import gmap.
From iris.proofmode Require Import tactics.
From iris.base_logic.lib Require Export fancy_updates.
From iris.base_logic.lib Require Import wsat.
From iris.prelude Require Import options.
Import uPred.

Semantic Invariants
Definition inv_def `{!invG Σ} (N : namespace) (P : iProp Σ) : iProp Σ :=
   E, N E |={E,E N}=> P ( P ={E N,E}=∗ True).
Definition inv_aux : seal (@inv_def). Proof. by eexists. Qed.
Definition inv := inv_aux.(unseal).
Global Arguments inv {Σ _} N P.
Definition inv_eq : @inv = @inv_def := inv_aux.(seal_eq).
Global Instance: Params (@inv) 3 := {}.


Section inv.
  Context `{!invG Σ}.
  Implicit Types i : positive.
  Implicit Types N : namespace.
  Implicit Types E : coPset.
  Implicit Types P Q R : iProp Σ.

Internal model of invariants

  Definition own_inv (N : namespace) (P : iProp Σ) : iProp Σ :=
     i, i (N:coPset) ownI i P.

  Lemma own_inv_acc E N P :
    N E own_inv N P ={E,EN}=∗ P ( P ={EN,E}=∗ True).
    rewrite uPred_fupd_eq /uPred_fupd_def. iDestruct 1 as (i) "[Hi #HiP]".
    iDestruct "Hi" as % ?%elem_of_subseteq_singleton.
    rewrite {1 4}(union_difference_L ( N) E) // ownE_op; last set_solver.
    rewrite {1 5}(union_difference_L {[ i ]} ( N)) // ownE_op; last set_solver.
    iIntros "(Hw & [HE $] & $) !> !>".
    iDestruct (ownI_open i with "[$Hw $HE $HiP]") as "($ & $ & HD)".
    iIntros "HP [Hw $] !> !>". iApply (ownI_close _ P). by iFrame.

  Lemma fresh_inv_name (E : gset positive) N : i, i E i (N:coPset).
     (coPpick ( N gset_to_coPset E)).
    rewrite -elem_of_gset_to_coPset (comm and) -elem_of_difference.
    apply coPpick_elem_ofHfin.
    eapply nclose_infinite, (difference_finite_inv _ _), Hfin.
    apply gset_to_coPset_finite.

  Lemma own_inv_alloc N E P : P ={E}=∗ own_inv N P.
    rewrite uPred_fupd_eq. iIntros "HP [Hw $]".
    iMod (ownI_alloc (.∈ (N : coPset)) P with "[$HP $Hw]")
      as (i ?) "[$ ?]"; auto using fresh_inv_name.
    do 2 iModIntro. iExists i. auto.

  Lemma own_inv_alloc_open N E P :
    N E |={E, EN}=> own_inv N P (P ={EN, E}=∗ True).
    rewrite uPred_fupd_eq. iIntros (Sub) "[Hw HE]".
    iMod (ownI_alloc_open (.∈ (N : coPset)) P with "Hw")
      as (i ?) "(Hw & #Hi & HD)"; auto using fresh_inv_name.
    iAssert (ownE {[i]} ownE ( N {[i]}) ownE (E N))%I
      with "[HE]" as "(HEi & HEN\i & HE\N)".
    { rewrite -?ownE_op; [|set_solver..].
      rewrite assoc_L -!union_difference_L //. set_solver. }
    do 2 iModIntro. iFrame "HE\N". iSplitL "Hw HEi"; first by iApply "Hw".
    iSplitL "Hi".
    { iExists i. auto. }
    iIntros "HP [Hw HE\N]".
    iDestruct (ownI_close with "[$Hw $Hi $HP $HD]") as "[$ HEi]".
    do 2 iModIntro. iSplitL; [|done].
    iCombine "HEi HEN\i HE\N" as "HEN".
    rewrite -?ownE_op; [|set_solver..].
    rewrite assoc_L -!union_difference_L //; set_solver.

  Lemma own_inv_to_inv M P: own_inv M P -∗ inv M P.
    iIntros "#I". rewrite inv_eq. iIntros (E H).
    iPoseProof (own_inv_acc with "I") as "H"; eauto.

Public API of invariants

  Global Instance inv_contractive N : Contractive (inv N).
  Proof. rewrite inv_eq. solve_contractive. Qed.

  Global Instance inv_ne N : NonExpansive (inv N).
  Proof. apply contractive_ne, _. Qed.

  Global Instance inv_proper N : Proper (equiv ==> equiv) (inv N).
  Proof. apply ne_proper, _. Qed.

  Global Instance inv_persistent N P : Persistent (inv N P).
  Proof. rewrite inv_eq. apply _. Qed.

  Lemma inv_alter N P Q : inv N P -∗ (P -∗ Q (Q -∗ P)) -∗ inv N Q.
    rewrite inv_eq. iIntros "#HI #HPQ !>" (E H).
    iMod ("HI" $! E H) as "[HP Hclose]".
    iDestruct ("HPQ" with "HP") as "[$ HQP]".
    iIntros "!> HQ". iApply "Hclose". iApply "HQP". done.

  Lemma inv_iff N P Q : inv N P -∗ (P Q) -∗ inv N Q.
    iIntros "#HI #HPQ". iApply (inv_alter with "HI").
    iIntros "!> !> HP". iSplitL "HP".
    - by iApply "HPQ".
    - iIntros "HQ". by iApply "HPQ".

  Lemma inv_alloc N E P : P ={E}=∗ inv N P.
    iIntros "HP". iApply own_inv_to_inv.
    iApply (own_inv_alloc N E with "HP").

  Lemma inv_alloc_open N E P :
    N E |={E, EN}=> inv N P (P ={EN, E}=∗ True).
    iIntros (?). iMod own_inv_alloc_open as "[HI $]"; first done.
    iApply own_inv_to_inv. done.

  Lemma inv_acc E N P :
    N E inv N P ={E,EN}=∗ P ( P ={EN,E}=∗ True).
    rewrite inv_eq /inv_def; iIntros (?) "#HI". by iApply "HI".

  Lemma inv_combine N1 N2 N P Q :
    N1 ## N2
    N1 N2 ⊆@{coPset} N
    inv N1 P -∗ inv N2 Q -∗ inv N (P Q).
    rewrite inv_eq. iIntros (??) "#HinvP #HinvQ !>"; iIntros (E ?).
    iMod ("HinvP" with "[%]") as "[$ HcloseP]"; first set_solver.
    iMod ("HinvQ" with "[%]") as "[$ HcloseQ]"; first set_solver.
    iApply fupd_mask_intro; first set_solver.
    iIntros "Hclose [HP HQ]".
    iMod "Hclose" as %_. iMod ("HcloseQ" with "HQ") as %_. by iApply "HcloseP".

  Lemma inv_combine_dup_l N P Q :
     (P -∗ P P) -∗
    inv N P -∗ inv N Q -∗ inv N (P Q).
    rewrite inv_eq. iIntros "#HPdup #HinvP #HinvQ !>" (E ?).
    iMod ("HinvP" with "[//]") as "[HP HcloseP]".
    iDestruct ("HPdup" with "HP") as "[$ HP]".
    iMod ("HcloseP" with "HP") as %_.
    iMod ("HinvQ" with "[//]") as "[$ HcloseQ]".
    iIntros "!> [HP HQ]". by iApply "HcloseQ".

Proof mode integration

  Global Instance into_inv_inv N P : IntoInv (inv N P) N := {}.

  Global Instance into_acc_inv N P E:
    IntoAcc (X := unit) (inv N P)
            (N E) True (fupd E (E N)) (fupd (E N) E)
            (λ _ : (), ( P)%I) (λ _ : (), ( P)%I) (λ _ : (), None).
    rewrite inv_eq /IntoAcc /accessor bi.exist_unit.
    iIntros (?) "#Hinv _". iApply "Hinv"; done.

Derived properties

  Lemma inv_acc_strong E N P :
    N E inv N P ={E,EN}=∗ P E', P ={E',N E'}=∗ True.
    iIntros (?) "Hinv".
    iPoseProof (inv_acc ( N) N with "Hinv") as "H"; first done.
    rewrite difference_diag_L.
    iPoseProof (fupd_mask_frame_r _ _ (E N) with "H") as "H"; first set_solver.
    rewrite left_id_L -union_difference_L //. iMod "H" as "[$ H]"; iModIntro.
    iIntros (E') "HP".
    iPoseProof (fupd_mask_frame_r _ _ E' with "(H HP)") as "H"; first set_solver.
    by rewrite left_id_L.

  Lemma inv_acc_timeless E N P `{!Timeless P} :
    N E inv N P ={E,EN}=∗ P (P ={EN,E}=∗ True).
    iIntros (?) "Hinv". iMod (inv_acc with "Hinv") as "[>HP Hclose]"; auto.
    iIntros "!> {$HP} HP". iApply "Hclose"; auto.

  Lemma inv_split_l N P Q : inv N (P Q) -∗ inv N P.
    iIntros "#HI". iApply inv_alter; eauto.
    iIntros "!> !> [$ $] $".
  Lemma inv_split_r N P Q : inv N (P Q) -∗ inv N Q.
    rewrite (comm _ P Q). eapply inv_split_l.
  Lemma inv_split N P Q : inv N (P Q) -∗ inv N P inv N Q.
    iIntros "#H".
    iPoseProof (inv_split_l with "H") as "$".
    iPoseProof (inv_split_r with "H") as "$".

End inv.