Library iris.base_logic.lib.wsat

From stdpp Require Export coPset.
From iris.algebra Require Import gmap_view gset coPset.
From iris.bi Require Import lib.cmra.
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Export own.
From iris.prelude Require Import options.

All definitions in this file are internal to fancy_updates with the exception of what's in the wsatGS module. The module wsatGS is thus exported in fancy_updates, where wsat is only imported.
Module wsatGS.
  Class wsatGpreS (Σ : gFunctors) : Set := WsatGpreS {
    wsatGpreS_inv : inG Σ (gmap_viewR positive (agreeR $ laterO (iPropO Σ)));
    wsatGpreS_enabled : inG Σ coPset_disjR;
    wsatGpreS_disabled : inG Σ (gset_disjR positive);
  }.

  Class wsatGS (Σ : gFunctors) : Set := WsatG {
    wsat_inG : wsatGpreS Σ;
    invariant_name : gname;
    enabled_name : gname;
    disabled_name : gname;
  }.

  Definition wsatΣ : gFunctors :=
    #[GFunctor (gmap_viewRF positive (agreeRF $ laterOF idOF));
      GFunctor coPset_disjR;
      GFunctor (gset_disjR positive)].

  Global Instance subG_wsatΣ {Σ} : subG wsatΣ Σ wsatGpreS Σ.
  Proof. solve_inG. Qed.
End wsatGS.
Import wsatGS.

Local Existing Instances wsat_inG wsatGpreS_inv wsatGpreS_enabled wsatGpreS_disabled.

Definition invariant_unfold {Σ} (P : iProp Σ) : later (iProp Σ) :=
  Next P.
Definition ownI `{!wsatGS Σ} (i : positive) (P : iProp Σ) : iProp Σ :=
  own invariant_name
    (gmap_view_frag i DfracDiscarded (to_agree $ invariant_unfold P)).
Global Typeclasses Opaque ownI.
Global Instance: Params (@invariant_unfold) 1 := {}.
Global Instance: Params (@ownI) 3 := {}.

Definition ownE `{!wsatGS Σ} (E : coPset) : iProp Σ :=
  own enabled_name (CoPset E).
Global Typeclasses Opaque ownE.
Global Instance: Params (@ownE) 3 := {}.

Definition ownD `{!wsatGS Σ} (E : gset positive) : iProp Σ :=
  own disabled_name (GSet E).
Global Typeclasses Opaque ownD.
Global Instance: Params (@ownD) 3 := {}.

Definition wsat `{!wsatGS Σ} : iProp Σ :=
  locked ( I : gmap positive (iProp Σ),
    own invariant_name
      (gmap_view_auth (DfracOwn 1) (to_agree <$> (invariant_unfold <$> I)))
    [∗ map] i Q I, Q ownD {[i]} ownE {[i]})%I.

Section wsat.
Context `{!wsatGS Σ}.
Implicit Types P : iProp Σ.

Local Instance invariant_unfold_contractive : Contractive (@invariant_unfold Σ).
Proof. solve_contractive. Qed.
Global Instance ownI_contractive i : Contractive (@ownI Σ _ i).
Proof. solve_contractive. Qed.
Global Instance ownI_persistent i P : Persistent (ownI i P).
Proof. rewrite /ownI. apply _. Qed.

Lemma ownE_empty : |==> ownE .
Proof.
  rewrite /bi_emp_valid.
  by rewrite (own_unit (coPset_disjUR) enabled_name).
Qed.
Lemma ownE_op E1 E2 : E1 ## E2 ownE (E1 E2) ⊣⊢ ownE E1 ownE E2.
Proof. intros. by rewrite /ownE -own_op coPset_disj_union. Qed.
Lemma ownE_disjoint E1 E2 : ownE E1 ownE E2 E1 ## E2.
Proof. rewrite /ownE -own_op own_valid. by iIntros (?%coPset_disj_valid_op). Qed.
Lemma ownE_op' E1 E2 : E1 ## E2 ownE (E1 E2) ⊣⊢ ownE E1 ownE E2.
Proof.
  iSplit; [iIntros "[% ?]"; by iApply ownE_op|].
  iIntros "HE". iDestruct (ownE_disjoint with "HE") as %?.
  iSplit; first done. iApply ownE_op; by try iFrame.
Qed.
Lemma ownE_singleton_twice i : ownE {[i]} ownE {[i]} False.
Proof. rewrite ownE_disjoint. iIntros (?); set_solver. Qed.

Lemma ownD_empty : |==> ownD .
Proof.
  rewrite /bi_emp_valid.
  by rewrite (own_unit (gset_disjUR positive) disabled_name).
Qed.
Lemma ownD_op E1 E2 : E1 ## E2 ownD (E1 E2) ⊣⊢ ownD E1 ownD E2.
Proof. intros. by rewrite /ownD -own_op gset_disj_union. Qed.
Lemma ownD_disjoint E1 E2 : ownD E1 ownD E2 E1 ## E2.
Proof. rewrite /ownD -own_op own_valid. by iIntros (?%gset_disj_valid_op). Qed.
Lemma ownD_op' E1 E2 : E1 ## E2 ownD (E1 E2) ⊣⊢ ownD E1 ownD E2.
Proof.
  iSplit; [iIntros "[% ?]"; by iApply ownD_op|].
  iIntros "HE". iDestruct (ownD_disjoint with "HE") as %?.
  iSplit; first done. iApply ownD_op; by try iFrame.
Qed.
Lemma ownD_singleton_twice i : ownD {[i]} ownD {[i]} False.
Proof. rewrite ownD_disjoint. iIntros (?); set_solver. Qed.

Lemma invariant_lookup (I : gmap positive (iProp Σ)) i P :
  own invariant_name (gmap_view_auth (DfracOwn 1) (to_agree <$> (invariant_unfold <$> I)))
  own invariant_name (gmap_view_frag i DfracDiscarded (to_agree $ invariant_unfold P))
   Q, I !! i = Some Q (Q P).
Proof.
  rewrite -own_op own_valid gmap_view_both_validI_total.
  iIntros "[%Q' (_& _ & HQ' & Hval & Hincl)]". rewrite !lookup_fmap.
  case: (I !! i)=> [Q|] /=; last first.
  { iDestruct "HQ'" as %?. done. }
  iDestruct "HQ'" as %[= <-]. iExists Q; iSplit; first done.
  rewrite to_agree_includedI internal_eq_sym -later_equivI. done.
Qed.

Lemma ownI_open i P : wsat ownI i P ownE {[i]} wsat P ownD {[i]}.
Proof.
  rewrite /ownI /wsat -!lock.
  iIntros "(Hw & Hi & HiE)". iDestruct "Hw" as (I) "[Hw HI]".
  iDestruct (invariant_lookup I i P with "[$]") as (Q ?) "#HPQ".
  iDestruct (big_sepM_delete _ _ i with "HI") as "[[[HQ $]|HiE'] HI]"; eauto.
  - iSplitR "HQ"; last by iNext; iRewrite -"HPQ".
    iExists I. iFrame "Hw". iApply (big_sepM_delete _ _ i); eauto.
    iFrame "HI"; eauto.
  - iDestruct (ownE_singleton_twice with "[$HiE $HiE']") as %[].
Qed.
Lemma ownI_close i P : wsat ownI i P P ownD {[i]} wsat ownE {[i]}.
Proof.
  rewrite /ownI /wsat -!lock.
  iIntros "(Hw & Hi & HP & HiD)". iDestruct "Hw" as (I) "[Hw HI]".
  iDestruct (invariant_lookup with "[$]") as (Q ?) "#HPQ".
  iDestruct (big_sepM_delete _ _ i with "HI") as "[[[HQ ?]|$] HI]"; eauto.
  - iDestruct (ownD_singleton_twice with "[$]") as %[].
  - iExists I. iFrame "Hw". iApply (big_sepM_delete _ _ i); eauto.
    iFrame "HI". iLeft. iFrame "HiD". by iNext; iRewrite "HPQ".
Qed.

Lemma ownI_alloc φ P :
  ( E : gset positive, i, i E φ i)
  wsat P ==∗ i, φ i wsat ownI i P.
Proof.
  iIntros (Hfresh) "[Hw HP]". rewrite /wsat -!lock.
  iDestruct "Hw" as (I) "[Hw HI]".
  iMod (own_unit (gset_disjUR positive) disabled_name) as "HE".
  iMod (own_updateP with "[$]") as "HE".
  { apply (gset_disj_alloc_empty_updateP_strong' (λ i, I !! i = None φ i)).
    intros E. destruct (Hfresh (E dom I))
      as (i & [? HIi%not_elem_of_dom]%not_elem_of_union & ?); eauto. }
  iDestruct "HE" as (X) "[Hi HE]"; iDestruct "Hi" as %(i & → & HIi & ?).
  iMod (own_update with "Hw") as "[Hw HiP]".
  { eapply (gmap_view_alloc _ i DfracDiscarded (to_agree _)); [|done..].
    by rewrite /= !lookup_fmap HIi. }
  iModIntro; iExists i; iSplit; [done|]. rewrite /ownI; iFrame "HiP".
  iExists (<[i:=P]>I); iSplitL "Hw".
  { by rewrite !fmap_insert. }
  iApply (big_sepM_insert _ I); first done.
  iFrame "HI". iLeft. by rewrite /ownD; iFrame.
Qed.

Lemma ownI_alloc_open φ P :
  ( E : gset positive, i, i E φ i)
  wsat ==∗ i, φ i (ownE {[i]} -∗ wsat) ownI i P ownD {[i]}.
Proof.
  iIntros (Hfresh) "Hw". rewrite /wsat -!lock. iDestruct "Hw" as (I) "[Hw HI]".
  iMod (own_unit (gset_disjUR positive) disabled_name) as "HD".
  iMod (own_updateP with "[$]") as "HD".
  { apply (gset_disj_alloc_empty_updateP_strong' (λ i, I !! i = None φ i)).
    intros E. destruct (Hfresh (E dom I))
      as (i & [? HIi%not_elem_of_dom]%not_elem_of_union & ?); eauto. }
  iDestruct "HD" as (X) "[Hi HD]"; iDestruct "Hi" as %(i & → & HIi & ?).
  iMod (own_update with "Hw") as "[Hw HiP]".
  { eapply (gmap_view_alloc _ i DfracDiscarded (to_agree _)); [|done..].
    by rewrite /= !lookup_fmap HIi. }
  iModIntro; iExists i; iSplit; [done|]. rewrite /ownI; iFrame "HiP".
  rewrite -/(ownD _). iFrame "HD".
  iIntros "HE". iExists (<[i:=P]>I); iSplitL "Hw".
  { by rewrite !fmap_insert. }
  iApply (big_sepM_insert _ I); first done.
  iFrame "HI". by iRight.
Qed.
End wsat.

Lemma wsat_alloc `{!wsatGpreS Σ} : |==> _ : wsatGS Σ, wsat ownE .
Proof.
  iIntros.
  iMod (own_alloc (gmap_view_auth (DfracOwn 1) )) as (γI) "HI";
    first by apply gmap_view_auth_valid.
  iMod (own_alloc (CoPset )) as (γE) "HE"; first done.
  iMod (own_alloc (GSet )) as (γD) "HD"; first done.
  iModIntro; iExists (WsatG _ _ γI γE γD).
  rewrite /wsat /ownE -lock; iFrame.
  iExists . rewrite fmap_empty big_opM_empty. by iFrame.
Qed.