Library iris.algebra.coPset

From stdpp Require Export sets coPset.
From iris.algebra Require Export cmra.
From iris.algebra Require Import updates local_updates.
From iris.prelude Require Import options.
This is pretty much the same as algebra/gset, but I was not able to generalize the construction without breaking canonical structures.

Section coPset.
  Implicit Types X Y : coPset.

  Canonical Structure coPsetO := discreteO coPset.

  Local Instance coPset_valid_instance : Valid coPset := λ _, True.
  Local Instance coPset_unit_instance : Unit coPset := ( : coPset).
  Local Instance coPset_op_instance : Op coPset := union.
  Local Instance coPset_pcore_instance : PCore coPset := Some.

  Lemma coPset_op X Y : X Y = X Y.
  Proof. done. Qed.
  Lemma coPset_core X : core X = X.
  Proof. done. Qed.
  Lemma coPset_included X Y : X Y X Y.
  Proof.
    split.
    - intros [Z ->]. rewrite coPset_op. set_solver.
    - intros (Z&->&?)%subseteq_disjoint_union_L. by Z.
  Qed.

  Lemma coPset_ra_mixin : RAMixin coPset.
  Proof.
    apply ra_total_mixin; eauto.
    - solve_proper.
    - solve_proper.
    - solve_proper.
    - intros X1 X2 X3. by rewrite !coPset_op assoc_L.
    - intros X1 X2. by rewrite !coPset_op comm_L.
    - intros X. by rewrite coPset_core idemp_L.
  Qed.
  Canonical Structure coPsetR := discreteR coPset coPset_ra_mixin.

  Global Instance coPset_cmra_discrete : CmraDiscrete coPsetR.
  Proof. apply discrete_cmra_discrete. Qed.

  Lemma coPset_ucmra_mixin : UcmraMixin coPset.
  Proof. split; [done | | done]. intros X. by rewrite coPset_op left_id_L. Qed.
  Canonical Structure coPsetUR := Ucmra coPset coPset_ucmra_mixin.

  Lemma coPset_opM X mY : X ⋅? mY = X default mY.
  Proof. destruct mY; by rewrite /= ?right_id_L. Qed.

  Lemma coPset_update X Y : X ~~> Y.
  Proof. done. Qed.

  Lemma coPset_local_update X Y X' : X X' (X,Y) ¬l~> (X',X').
  Proof.
    intros (Z&->&?)%subseteq_disjoint_union_L.
    rewrite local_update_unital_discreteZ' _ /leibniz_equiv_iff→.
    split; first done. rewrite coPset_op. set_solver.
  Qed.
End coPset.

Inductive coPset_disj :=
  | CoPset : coPset coPset_disj
  | CoPsetBot : coPset_disj.

Section coPset_disj.
  Local Arguments op _ _ !_ !_ /.
  Canonical Structure coPset_disjO := leibnizO coPset_disj.

  Local Instance coPset_disj_valid_instance : Valid coPset_disj := λ X,
    match X with CoPset _True | CoPsetBotFalse end.
  Local Instance coPset_disj_unit_instance : Unit coPset_disj := CoPset .
  Local Instance coPset_disj_op_instance : Op coPset_disj := λ X Y,
    match X, Y with
    | CoPset X, CoPset Yif decide (X ## Y) then CoPset (X Y) else CoPsetBot
    | _, _CoPsetBot
    end.
  Local Instance coPset_disj_pcore_instance : PCore coPset_disj := λ _, Some ε.

  Ltac coPset_disj_solve :=
    repeat (simpl || case_decide);
    first [apply (f_equal CoPset)|done|exfalso]; set_solver by eauto.

  Lemma coPset_disj_included X Y : CoPset X CoPset Y X Y.
  Proof.
    split.
    - move⇒ [[Z|]]; simpl; try case_decide; set_solver.
    - intros (Z&->&?)%subseteq_disjoint_union_L.
       (CoPset Z). coPset_disj_solve.
  Qed.
  Lemma coPset_disj_valid_inv_l X Y :
     (CoPset X Y) Y', Y = CoPset Y' X ## Y'.
  Proof. destruct Y; repeat (simpl || case_decide); by eauto. Qed.
  Lemma coPset_disj_union X Y : X ## Y CoPset X CoPset Y = CoPset (X Y).
  Proof. intros. by rewrite /= decide_True. Qed.
  Lemma coPset_disj_valid_op X Y : (CoPset X CoPset Y) X ## Y.
  Proof. simpl. case_decide; by split. Qed.

  Lemma coPset_disj_ra_mixin : RAMixin coPset_disj.
  Proof.
    apply ra_total_mixin; eauto.
    - intros [?|]; destruct 1; coPset_disj_solve.
    - by constructor.
    - by destruct 1.
    - intros [X1|] [X2|] [X3|]; coPset_disj_solve.
    - intros [X1|] [X2|]; coPset_disj_solve.
    - intros [X|]; coPset_disj_solve.
    - (CoPset ); coPset_disj_solve.
    - intros [X1|] [X2|]; coPset_disj_solve.
  Qed.
  Canonical Structure coPset_disjR := discreteR coPset_disj coPset_disj_ra_mixin.

  Global Instance coPset_disj_cmra_discrete : CmraDiscrete coPset_disjR.
  Proof. apply discrete_cmra_discrete. Qed.

  Lemma coPset_disj_ucmra_mixin : UcmraMixin coPset_disj.
  Proof. split; try apply _ || done. intros [X|]; coPset_disj_solve. Qed.
  Canonical Structure coPset_disjUR := Ucmra coPset_disj coPset_disj_ucmra_mixin.
End coPset_disj.