Library stdpp.zmap

This files extends the implementation of finite over positive to finite maps whose keys range over Coq's data type of binary naturals Z.
From stdpp Require Import pmap mapset.
From stdpp Require Export prelude fin_maps.
From stdpp Require Import options.
Local Open Scope Z_scope.

Record Zmap (A : Type) : Type :=
  ZMap { Zmap_0 : option A; Zmap_pos : Pmap A; Zmap_neg : Pmap A }.
Global Arguments Zmap_0 {_} _ : assert.
Global Arguments Zmap_pos {_} _ : assert.
Global Arguments Zmap_neg {_} _ : assert.
Global Arguments ZMap {_} _ _ _ : assert.

Global Instance Zmap_eq_dec `{EqDecision A} : EqDecision (Zmap A).
Proof.
 refine (λ t1 t2,
  match t1, t2 with
  | ZMap x t1 t1', ZMap y t2 t2'
     cast_if_and3 (decide (x = y)) (decide (t1 = t2)) (decide (t1' = t2'))
  end); abstract congruence.
Defined.
Global Instance Zmap_empty {A} : Empty (Zmap A) := ZMap None .
Global Instance Zmap_lookup {A} : Lookup Z A (Zmap A) := λ i t,
  match i with
  | Z0Zmap_0 t | Zpos pZmap_pos t !! p | Zneg pZmap_neg t !! p
  end.
Global Instance Zmap_partial_alter {A} : PartialAlter Z A (Zmap A) := λ f i t,
  match i, t with
  | Z0, ZMap o t t'ZMap (f o) t t'
  | Z.pos p, ZMap o t t'ZMap o (partial_alter f p t) t'
  | Z.neg p, ZMap o t t'ZMap o t (partial_alter f p t')
  end.
Global Instance Zmap_fmap: FMap Zmap := λ A B f t,
  match t with ZMap o t t'ZMap (f <$> o) (f <$> t) (f <$> t') end.
Global Instance Zmap_omap: OMap Zmap := λ A B f t,
  match t with ZMap o t t'ZMap (o ≫= f) (omap f t) (omap f t') end.
Global Instance Zmap_merge: Merge Zmap := λ A B C f t1 t2,
  match t1, t2 with
  | ZMap o1 t1 t1', ZMap o2 t2 t2'
     ZMap (diag_None f o1 o2) (merge f t1 t2) (merge f t1' t2')
  end.
Global Instance Zmap_fold {A} : MapFold Z A (Zmap A) := λ B f d t,
  match t with
  | ZMap mx t t'map_fold (f Z.pos) (map_fold (f Z.neg)
     match mx with Some xf 0 x d | Noned end t') t
  end.

Global Instance Zmap_map: FinMap Z Zmap.
Proof.
  split.
  - intros ? [??] [??] H. f_equal.
    + apply (H 0).
    + apply map_eq. intros i. apply (H (Z.pos i)).
    + apply map_eq. intros i. apply (H (Z.neg i)).
  - by intros ? [].
  - intros ? f [] [|?|?]; simpl; [done| |]; apply lookup_partial_alter.
  - intros ? f [] [|?|?] [|?|?]; simpl; intuition congruence ||
      intros; apply lookup_partial_alter_ne; congruence.
  - intros ??? [??] []; simpl; [done| |]; apply lookup_fmap.
  - intros ?? f [??] [|?|?]; simpl; [done| |]; apply (lookup_omap f).
  - intros ??? f [??] [??] [|?|?]; simpl; [done| |]; apply (lookup_merge f).
  - intros A B P f b Hemp Hinsert [mx t t'].
    apply (map_fold_ind (λ r t, P r (ZMap mx t t'))); clear t.
    { apply (map_fold_ind (λ r t', P r (ZMap mx t'))); clear t'.
      { destruct mx as [x|]; [|done].
        replace (ZMap (Some x) ) with (<[0:=x]> : Zmap _) by done.
        by apply Hinsert. }
      intros i x t' r ??. by apply (Hinsert (Z.neg i) x (ZMap mx t')). }
    intros i x t r ??. by apply (Hinsert (Z.pos i) x (ZMap mx t t')).
Qed.

Finite sets

We construct sets of Zs satisfying extensional equality.
Notation Zset := (mapset Zmap).
Global Instance Zmap_dom {A} : Dom (Zmap A) Zset := mapset_dom.
Global Instance: FinMapDom Z Zmap Zset := mapset_dom_spec.