Library stdpp.nmap

This files extends the implementation of finite over positive to finite maps whose keys range over Coq's data type of binary naturals N.
From stdpp Require Import pmap mapset.
From stdpp Require Export prelude fin_maps.
From stdpp Require Import options.

Local Open Scope N_scope.

Record Nmap (A : Type) : Type := NMap { Nmap_0 : option A; Nmap_pos : Pmap A }.
Add Printing Constructor Nmap.
Global Arguments Nmap_0 {_} _ : assert.
Global Arguments Nmap_pos {_} _ : assert.
Global Arguments NMap {_} _ _ : assert.

Global Instance Nmap_eq_dec `{EqDecision A} : EqDecision (Nmap A).
Proof.
 refine (λ t1 t2,
  match t1, t2 with
  | NMap x t1, NMap y t2cast_if_and (decide (x = y)) (decide (t1 = t2))
  end); abstract congruence.
Defined.
Global Instance Nmap_empty {A} : Empty (Nmap A) := NMap None .
Global Opaque Nmap_empty.
Global Instance Nmap_lookup {A} : Lookup N A (Nmap A) := λ i t,
  match i with
  | 0 ⇒ Nmap_0 t
  | N.pos pNmap_pos t !! p
  end.
Global Instance Nmap_partial_alter {A} : PartialAlter N A (Nmap A) := λ f i t,
  match i, t with
  | 0, NMap o tNMap (f o) t
  | N.pos p, NMap o tNMap o (partial_alter f p t)
  end.
Global Instance Nmap_fmap: FMap Nmap := λ A B f t,
  match t with NMap o tNMap (f <$> o) (f <$> t) end.
Global Instance Nmap_omap: OMap Nmap := λ A B f t,
  match t with NMap o tNMap (o ≫= f) (omap f t) end.
Global Instance Nmap_merge: Merge Nmap := λ A B C f t1 t2,
  match t1, t2 with
  | NMap o1 t1, NMap o2 t2NMap (diag_None f o1 o2) (merge f t1 t2)
  end.
Global Instance Nmap_fold {A} : MapFold N A (Nmap A) := λ B f d t,
  match t with
  | NMap mx t
     map_fold (f N.pos) match mx with Some xf 0 x d | Noned end t
  end.

Global Instance Nmap_map: FinMap N Nmap.
Proof.
  split.
  - intros ? [??] [??] H. f_equal; [apply (H 0)|].
    apply map_eq. intros i. apply (H (N.pos i)).
  - by intros ? [|?].
  - intros ? f [? t] [|i]; simpl; [done |]. apply lookup_partial_alter.
  - intros ? f [? t] [|i] [|j]; simpl; try intuition congruence.
    intros. apply lookup_partial_alter_ne. congruence.
  - intros ??? [??] []; simpl; [done|]. apply lookup_fmap.
  - intros ?? f [??] [|?]; simpl; [done|]; apply (lookup_omap f).
  - intros ??? f [??] [??] [|?]; simpl; [done|]; apply (lookup_merge f).
  - done.
  - intros A P Hemp Hins [mx t].
    induction t as [|i x t ? Hfold IH] using map_fold_fmap_ind.
    { destruct mx as [x|]; [|done].
      replace (NMap (Some x) ) with (<[0:=x]> : Nmap _) by done.
      by apply Hins. }
    apply (Hins (N.pos i) x (NMap mx t)); [done| |done].
    intros A' B f g b. apply Hfold.
Qed.

Finite sets

We construct sets of Ns satisfying extensional equality.
Notation Nset := (mapset Nmap).
Global Instance Nmap_dom {A} : Dom (Nmap A) Nset := mapset_dom.
Global Instance: FinMapDom N Nmap Nset := mapset_dom_spec.