Library iris.heap_lang.lib.spin_lock

From iris.proofmode Require Import tactics.
From iris.algebra Require Import excl.
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import proofmode notation.
From iris.heap_lang.lib Require Import lock.
Set Default Proof Using "Type".

Definition newlock : val := λ: , ref #false.
Definition try_acquire : val := λ: "l", CAS "l" #false #true.
Definition acquire : val :=
  rec: "acquire" "l" := if: try_acquire "l" then #() else "acquire" "l".
Definition release : val := λ: "l", "l" <- #false.

The CMRA we need.
Class lockG Σ := LockG { lock_tokG :> inG Σ (exclR unitO) }.
Definition lockΣ : gFunctors := #[GFunctor (exclR unitO)].

Instance subG_lockΣ {Σ} : subG lockΣ Σ lockG Σ.
Proof. solve_inG. Qed.

Section proof.
  Context `{!heapG Σ, !lockG Σ}.
  Let N := nroot .@ "spin_lock".

  Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ :=
     b : bool, l #b if b then True else own γ (Excl ()) R.

  Definition is_lock (γ : gname) (lk : val) (R : iProp Σ) : iProp Σ :=
     l: loc, lk = #l inv N (lock_inv γ l R).

  Definition locked (γ : gname) : iProp Σ := own γ (Excl ()).

  Lemma locked_exclusive (γ : gname) : locked γ -∗ locked γ -∗ False.
  Proof. iIntros "H1 H2". by iDestruct (own_valid_2 with "H1 H2") as %?. Qed.

  Global Instance lock_inv_ne γ l : NonExpansive (lock_inv γ l).
  Proof. solve_proper. Qed.
  Global Instance is_lock_contractive γ l : Contractive (is_lock γ l).
  Proof. solve_contractive. Qed.

The main proofs.
  Global Instance is_lock_persistent γ l R : Persistent (is_lock γ l R).
  Proof. apply _. Qed.
  Global Instance locked_timeless γ : Timeless (locked γ).
  Proof. apply _. Qed.

  Lemma is_lock_iff γ lk R1 R2 :
    is_lock γ lk R1 -∗ (R1 R2) -∗ is_lock γ lk R2.
    iDestruct 1 as (l ->) "#Hinv"; iIntros "#HR".
    iExists l; iSplit; [done|]. iApply (inv_iff with "Hinv").
    iIntros "!> !>"; iSplit; iDestruct 1 as (b) "[Hl H]";
      iExists b; iFrame "Hl"; destruct b;
      first [done|iDestruct "H" as "[$ ?]"; by iApply "HR"].

  Lemma newlock_spec (R : iProp Σ):
    {{{ R }}} newlock #() {{{ lk γ, RET lk; is_lock γ lk R }}}.
    iIntros (Φ) "HR HΦ". rewrite -wp_fupd /newlock /=.
    wp_lam. wp_alloc l as "Hl".
    iMod (own_alloc (Excl ())) as (γ) "Hγ"; first done.
    iMod (inv_alloc N _ (lock_inv γ l R) with "[-HΦ]") as "#?".
    { iIntros "!>". iExists false. by iFrame. }
    iModIntro. iApply "HΦ". iExists l. eauto.

  Lemma try_acquire_spec γ lk R :
    {{{ is_lock γ lk R }}} try_acquire lk
    {{{ b, RET #b; if b is true then locked γ R else True }}}.
    iIntros (Φ) "#Hl HΦ". iDestruct "Hl" as (l ->) "#Hinv".
    wp_rec. wp_bind (CmpXchg _ _ _). iInv N as ([]) "[Hl HR]".
    - wp_cmpxchg_fail. iModIntro. iSplitL "Hl"; first (iNext; iExists true; eauto).
      wp_pures. iApply ("HΦ" $! false). done.
    - wp_cmpxchg_suc. iDestruct "HR" as "[Hγ HR]".
      iModIntro. iSplitL "Hl"; first (iNext; iExists true; eauto).
      rewrite /locked. wp_pures. by iApply ("HΦ" $! true with "[$Hγ $HR]").

  Lemma acquire_spec γ lk R :
    {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ R }}}.
    iIntros (Φ) "#Hl HΦ". iLöb as "IH". wp_rec.
    wp_apply (try_acquire_spec with "Hl"). iIntros ([]).
    - iIntros "[Hlked HR]". wp_if. iApply "HΦ"; iFrame.
    - iIntros "_". wp_if. iApply ("IH" with "[HΦ]"). auto.

  Lemma release_spec γ lk R :
    {{{ is_lock γ lk R locked γ R }}} release lk {{{ RET #(); True }}}.
    iIntros (Φ) "(Hlock & Hlocked & HR) HΦ".
    iDestruct "Hlock" as (l ->) "#Hinv".
    rewrite /release /=. wp_lam. iInv N as (b) "[Hl _]".
    wp_store. iSplitR "HΦ"; last by iApply "HΦ".
    iModIntro. iNext. iExists false. by iFrame.
End proof.

Typeclasses Opaque is_lock locked.

Canonical Structure spin_lock `{!heapG Σ, !lockG Σ} : lock Σ :=
  {| lock.locked_exclusive := locked_exclusive; lock.is_lock_iff := is_lock_iff;
     lock.newlock_spec := newlock_spec;
     lock.acquire_spec := acquire_spec; lock.release_spec := release_spec |}.