Library iris.heap_lang.locations

From stdpp Require Import countable numbers gmap.
From iris.prelude Require Export prelude.
From iris.prelude Require Import options.

Record loc := Loc { loc_car : Z }.

Add Printing Constructor loc.

Module Loc.
  Local Open Scope Z_scope.

  Lemma eq_spec l1 l2 : l1 = l2 loc_car l1 = loc_car l2.
  Proof. destruct l1, l2; naive_solver. Qed.

  Global Instance eq_dec : EqDecision loc.
  Proof. solve_decision. Defined.

  Global Instance inhabited : Inhabited loc := populate {|loc_car := 0 |}.

  Global Instance countable : Countable loc.
  Proof. by apply (inj_countable' loc_car Loc); intros []. Defined.

  Global Program Instance infinite : Infinite loc :=
    inj_infinite (λ p, {| loc_car := p |}) (λ l, Some (loc_car l)) _.
  Next Obligation. done. Qed.

  Definition add (l : loc) (off : Z) : loc :=
    {| loc_car := loc_car l + off|}.

  Definition le (l1 l2 : loc) : Prop := loc_car l1 loc_car l2.

  Definition lt (l1 l2 : loc) : Prop := loc_car l1 < loc_car l2.

  Module Import notations.
    Notation "l +ₗ off" :=
      (add l off) (at level 50, left associativity) : stdpp_scope.
    Notation "l1 ≤ₗ l2" := (le l1 l2) (at level 70) : stdpp_scope.
    Notation "l1 <ₗ l2" := (lt l1 l2) (at level 70) : stdpp_scope.
  End notations.

  Lemma add_assoc l i j : l +ₗ i +ₗ j = l +ₗ (i + j).
  Proof. rewrite eq_spec /=. lia. Qed.

  Lemma add_0 l : l +ₗ 0 = l.
  Proof. rewrite eq_spec /=; lia. Qed.

  Global Instance add_inj l : Inj eq eq (add l).
  Proof. intros x1 x2. rewrite eq_spec /=. lia. Qed.

  Global Instance le_dec l1 l2 : Decision (l1 ≤ₗ l2).
  Proof. rewrite /le. apply _. Qed.

  Global Instance lt_dec l1 l2 : Decision (l1 <ₗ l2).
  Proof. rewrite /lt. apply _. Qed.

  Global Instance le_po : PartialOrder le.
  Proof.
    rewrite /le. split; [split|].
    - by intros ?.
    - intros [x] [y] [z]; lia.
    - intros [x] [y] ??; f_equal/=; lia.
  Qed.

  Global Instance le_total : Total le.
  Proof. rewrite /Total /le. lia. Qed.

  Lemma le_ngt l1 l2 : l1 ≤ₗ l2 ¬l2 <ₗ l1.
  Proof. apply Z.le_ngt. Qed.

  Lemma le_lteq l1 l2 : l1 ≤ₗ l2 l1 <ₗ l2 l1 = l2.
  Proof. rewrite eq_spec. apply Z.le_lteq. Qed.

  Lemma add_le_mono l1 l2 i1 i2 :
    l1 ≤ₗ l2 i1 i2 l1 +ₗ i1 ≤ₗ l2 +ₗ i2.
  Proof. apply Z.add_le_mono. Qed.

  Definition fresh (ls : gset loc) : loc :=
    {| loc_car := set_fold (λ k r, (1 + loc_car k) `max` r) 1 ls |}.

  Lemma fresh_fresh ls i : 0 i fresh ls +ₗ i ls.
  Proof.
    intros Hi. cut ( l, l ls loc_car l < loc_car (fresh ls) + i).
    { intros help Hf%help. simpl in ×. lia. }
    apply (set_fold_ind_L (λ r ls, l, l ls (loc_car l < r + i)));
      set_solver by eauto with lia.
  Qed.

  Global Opaque fresh.
End Loc.

Export Loc.notations.