Library iris.bi.weakestpre

From stdpp Require Export coPset.
From iris.bi Require Import interface derived_connectives.
From iris.program_logic Require Import language.

Inductive stuckness := NotStuck | MaybeStuck.

Definition stuckness_leb (s1 s2 : stuckness) : bool :=
  match s1, s2 with
  | MaybeStuck, NotStuckfalse
  | _, _true
  end.
Instance stuckness_le : SqSubsetEq stuckness := stuckness_leb.
Instance stuckness_le_po : PreOrder stuckness_le.
Proof. split; by repeat intros []. Qed.

Definition stuckness_to_atomicity (s : stuckness) : atomicity :=
  if s is MaybeStuck then StronglyAtomic else WeaklyAtomic.

Weakest preconditions WP e @ s ; E {{ Φ }} have an additional argument s of arbitrary type A, that can be chosen by the one instantiating the Wp type class. This argument can be used for e.g. the stuckness bit (as in Iris) or thread IDs (as in iGPS).
For the case of stuckness bits, there are two specific notations WP e @ E {{ Φ }} and WP e @ E ?{{ Φ }}, which forces A to be stuckness, and s to be NotStuck or MaybeStuck. This will fail to typecheck if A is not stuckness. If we ever want to use the notation WP e @ E {{ Φ }} with a different A, the plan is to generalize the notation to use Inhabited instead to pick a default value depending on A.
Class Wp (Λ : language) (PROP A : Type) :=
  wp : A coPset expr Λ (val Λ PROP) PROP.
Arguments wp {_ _ _ _} _ _ _%E _%I.
Instance: Params (@wp) 7 := {}.

Class Twp (Λ : language) (PROP A : Type) :=
  twp : A coPset expr Λ (val Λ PROP) PROP.
Arguments twp {_ _ _ _} _ _ _%E _%I.
Instance: Params (@twp) 7 := {}.

Notations for partial weakest preconditions Notations without binder -- only parsing because they overlap with the notations with binder.
Notation "'WP' e @ s ; E {{ Φ } }" := (wp s E e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e @ E {{ Φ } }" := (wp NotStuck E e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e @ E ? {{ Φ } }" := (wp MaybeStuck E e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e {{ Φ } }" := (wp NotStuck e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e ? {{ Φ } }" := (wp MaybeStuck e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.

Notations with binder. The indentation for the inner format block is chosen such that *if* one has a single-character mask (e.g. E), the second line should align with the binder(s) on the first line.
Notation "'WP' e @ s ; E {{ v , Q } }" := (wp s E e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' @ s ; E {{ v , Q } } ']' ']'") : bi_scope.
Notation "'WP' e @ E {{ v , Q } }" := (wp NotStuck E e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' @ E {{ v , Q } } ']' ']'") : bi_scope.
Notation "'WP' e @ E ? {{ v , Q } }" := (wp MaybeStuck E e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' @ E ? {{ v , Q } } ']' ']'") : bi_scope.
Notation "'WP' e {{ v , Q } }" := (wp NotStuck e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' {{ v , Q } } ']' ']'") : bi_scope.
Notation "'WP' e ? {{ v , Q } }" := (wp MaybeStuck e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' ? {{ v , Q } } ']' ']'") : bi_scope.

Notation "'{{{' P } } } e @ s ; E {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ s; E {{ Φ }})%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' {{{ P } } } '/ ' e '/' @ s ; E {{{ x .. y , RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e @ E {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E {{ Φ }})%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' {{{ P } } } '/ ' e '/' @ E {{{ x .. y , RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e @ E ? {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E ?{{ Φ }})%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' {{{ P } } } '/ ' e '/' @ E ? {{{ x .. y , RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e {{ Φ }})%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' {{{ P } } } '/ ' e '/' {{{ x .. y , RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e ? {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e ?{{ Φ }})%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' {{{ P } } } '/ ' e '/' ? {{{ x .. y , RET pat ; Q } } } ']'") : bi_scope.

Notation "'{{{' P } } } e @ s ; E {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ s; E {{ Φ }})%I
    (at level 20,
     format "'[hv' {{{ P } } } '/ ' e '/' @ s ; E {{{ RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e @ E {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E {{ Φ }})%I
    (at level 20,
     format "'[hv' {{{ P } } } '/ ' e '/' @ E {{{ RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e @ E ? {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E ?{{ Φ }})%I
    (at level 20,
     format "'[hv' {{{ P } } } '/ ' e '/' @ E ? {{{ RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e {{ Φ }})%I
    (at level 20,
     format "'[hv' {{{ P } } } '/ ' e '/' {{{ RET pat ; Q } } } ']'") : bi_scope.
Notation "'{{{' P } } } e ? {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e ?{{ Φ }})%I
    (at level 20,
     format "'[hv' {{{ P } } } '/ ' e '/' ? {{{ RET pat ; Q } } } ']'") : bi_scope.

Aliases for stdpp scope -- they inherit the levels and format from above.
Notation "'{{{' P } } } e @ s ; E {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ s; E {{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e @ E {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E {{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e @ E ? {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E ?{{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e {{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e ? {{{ x .. y , 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e ?{{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e @ s ; E {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ s; E {{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e @ E {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E {{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e @ E ? {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E ?{{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e {{ Φ }}) : stdpp_scope.
Notation "'{{{' P } } } e ? {{{ 'RET' pat ; Q } } }" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e ?{{ Φ }}) : stdpp_scope.

Notations for total weakest preconditions Notations without binder -- only parsing because they overlap with the notations with binder.
Notation "'WP' e @ s ; E [{ Φ } ]" := (twp s E e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e @ E [{ Φ } ]" := (twp NotStuck E e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e @ E ? [{ Φ } ]" := (twp MaybeStuck E e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e [{ Φ } ]" := (twp NotStuck e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.
Notation "'WP' e ? [{ Φ } ]" := (twp MaybeStuck e%E Φ)
  (at level 20, e, Φ at level 200, only parsing) : bi_scope.

Notations with binder. The indentation for the inner format block is chosen such that *if* one has a single-character mask (e.g. E), the second line should align with the binder(s) on the first line.
Notation "'WP' e @ s ; E [{ v , Q } ]" := (twp s E e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' @ s ; E [{ v , Q } ] ']' ']'") : bi_scope.
Notation "'WP' e @ E [{ v , Q } ]" := (twp NotStuck E e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' @ E [{ v , Q } ] ']' ']'") : bi_scope.
Notation "'WP' e @ E ? [{ v , Q } ]" := (twp MaybeStuck E e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' @ E ? [{ v , Q } ] ']' ']'") : bi_scope.
Notation "'WP' e [{ v , Q } ]" := (twp NotStuck e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' [{ v , Q } ] ']' ']'") : bi_scope.
Notation "'WP' e ? [{ v , Q } ]" := (twp MaybeStuck e%E (λ v, Q))
  (at level 20, e, Q at level 200,
   format "'[' 'WP' e '/' '[ ' ? [{ v , Q } ] ']' ']'") : bi_scope.

Notation "'[[{' P } ] ] e @ s ; E [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ s; E [{ Φ }])%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' [[{ P } ] ] '/ ' e '/' @ s ; E [[{ x .. y , RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e @ E [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E [{ Φ }])%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' [[{ P } ] ] '/ ' e '/' @ E [[{ x .. y , RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e @ E ? [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E ?[{ Φ }])%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' [[{ P } ] ] '/ ' e '/' @ E ? [[{ x .. y , RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e [{ Φ }])%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' [[{ P } ] ] '/ ' e '/' [[{ x .. y , RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e ? [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ,
      P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e ?[{ Φ }])%I
    (at level 20, x closed binder, y closed binder,
     format "'[hv' [[{ P } ] ] '/ ' e '/' ? [[{ x .. y , RET pat ; Q } ] ] ']'") : bi_scope.

Notation "'[[{' P } ] ] e @ s ; E [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ s; E [{ Φ }])%I
    (at level 20,
     format "'[hv' [[{ P } ] ] '/ ' e '/' @ s ; E [[{ RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e @ E [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E [{ Φ }])%I
    (at level 20,
     format "'[hv' [[{ P } ] ] '/ ' e '/' @ E [[{ RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e @ E ? [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E ?[{ Φ }])%I
    (at level 20,
     format "'[hv' [[{ P } ] ] '/ ' e '/' @ E ? [[{ RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e [{ Φ }])%I
    (at level 20,
     format "'[hv' [[{ P } ] ] '/ ' e '/' [[{ RET pat ; Q } ] ] ']'") : bi_scope.
Notation "'[[{' P } ] ] e ? [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e ?[{ Φ }])%I
    (at level 20,
     format "'[hv' [[{ P } ] ] '/ ' e '/' ? [[{ RET pat ; Q } ] ] ']'") : bi_scope.

Aliases for stdpp scope -- they inherit the levels and format from above.
Notation "'[[{' P } ] ] e @ s ; E [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ s; E [{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e @ E [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E [{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e @ E ? [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E ?[{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e [{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e ? [[{ x .. y , 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ ( x, .. ( y, Q -∗ Φ pat%V) .. ) -∗ WP e ?[{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e @ s ; E [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ s; E [{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e @ E [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E [{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e @ E ? [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e @ E ?[{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e [{ Φ }]) : stdpp_scope.
Notation "'[[{' P } ] ] e ? [[{ 'RET' pat ; Q } ] ]" :=
  ( Φ, P -∗ (Q -∗ Φ pat%V) -∗ WP e ?[{ Φ }]) : stdpp_scope.