Library stdpp.bitvector.tactics

This file is maintained by Michael Sammler.
From stdpp.bitvector Require Export definitions.
From stdpp Require Import options.

bitvector tactics

This file provides tactics for the bitvector library in bitvector.v. In particular, it provides integration of bitvectors with the bitblast tactic and tactics for simplifying and solving bitvector expressions. The main tactic provided by this library is bv_simplify which performs the following steps:
1. Simplify the goal by rewriting with the bv_simplify database. 2. If the goal is an (in)equality (= or ≠) between bitvectors, turn it into an (in)equality between their unsigned values. (Using unsigned values here rather than signed is somewhat arbitrary but works well enough in practice.) 3. Unfold bv_unsigned and bv_signed of operations on bv n to operations on Z. 4. Simplify the goal by rewriting with the bv_unfolded_simplify database.
This file provides the following variants of the bv_simplify tactic:
  • bv_simplify applies the simplification procedure to the goal.
  • bv_simplify H applies the simplification procedure to the hypothesis H.
  • bv_simplify select pat applies the simplification procedure to the hypothesis matching pat.
  • bv_simplify_arith applies the simplification procedure to the goal and additionally rewrites with the bv_unfolded_to_arith database to turn the goal into a more suitable shape for calling lia.
  • bv_simplify_arith H same as bv_simplify_arith, but in the hypothesis H.
  • bv_simplify_arith select pat same as bv_simplify_arith, but in the hypothesis matching pat.
  • bv_solve simplifies the goal using bv_simplify_arith, learns bounds facts about bitvector variables in the context and tries to solve the goal using lia.
This automation assumes that lia can handle `mod` and `div` as can be enabled via the one of the following flags: Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations. or Ltac Zify.zify_post_hook ::= Z.div_mod_to_equations. or Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true). See https://coq.github.io/doc/master/refman/addendum/micromega.htmlcoq:tacn.zify for details.

Settings

Local Open Scope Z_scope.

General tactics

Ltac unfold_lets_in_context :=
  repeat match goal with
         | H := _ |- _unfold H in *; clear H
         end.

Tactic Notation "reduce_closed" constr(x) :=
  is_closed_term x;
  let r := eval vm_compute in x in
  change_no_check x with r in ×
.

General lemmas

Lemma bv_extract_concat_later m n1 n2 s l (b1 : bv n1) (b2 : bv n2):
  (n2 s)%N
  (m = n1 + n2)%N
  bv_extract s l (bv_concat m b1 b2) = bv_extract (s - n2) l b1.
Proof.
  intros ? →. apply bv_eq.
  rewrite !bv_extract_unsigned, bv_concat_unsigned, !bv_wrap_land by done.
  apply Z.bits_inj_iff' ⇒ ??.
  rewrite !Z.land_spec, !Z.shiftr_spec, Z.lor_spec, Z.shiftl_spec, Z.ones_spec; [|lia..].
  case_bool_decide; rewrite ?andb_false_r, ?andb_true_r; [|done].
  rewrite <-(bv_wrap_bv_unsigned _ b2), bv_wrap_spec_high, ?orb_false_r; [|lia].
  f_equal. lia.
Qed.
Lemma bv_extract_concat_here m n1 n2 s (b1 : bv n1) (b2 : bv n2):
  s = 0%N
  (m = n1 + n2)%N
  bv_extract s n2 (bv_concat m b1 b2) = b2.
Proof.
  intros → →. apply bv_eq.
  rewrite !bv_extract_unsigned, bv_concat_unsigned, !bv_wrap_land by done.
  apply Z.bits_inj_iff' ⇒ ??.
  rewrite !Z.land_spec, !Z.shiftr_spec, Z.lor_spec, Z.shiftl_spec, Z.ones_spec; [|lia..].
  case_bool_decide; rewrite ?andb_false_r, ?andb_true_r.
  - rewrite (Z.testbit_neg_r (bv_unsigned b1)); [|lia]. simpl. f_equal. lia.
  - rewrite <-(bv_wrap_bv_unsigned _ b2), bv_wrap_spec_high, ?orb_false_l; lia.
Qed.

bv_simplify rewrite database

The bv_simplify database collects rewrite rules that rewrite bitvectors into other bitvectors.
Create HintDb bv_simplify discriminated. Global Hint Rewrite @bv_concat_0 using done : bv_simplify.
Global Hint Rewrite @bv_extract_concat_later
  @bv_extract_concat_here using lia : bv_simplify.
Global Hint Rewrite @bv_extract_bool_to_bv using lia : bv_simplify.
Global Hint Rewrite @bv_not_bool_to_bv : bv_simplify.
Global Hint Rewrite bool_decide_bool_to_bv_0 bool_decide_bool_to_bv_1 : bv_simplify.

bv_unfold

Create HintDb bv_unfold_db discriminated.
Global Hint Constants Opaque : bv_unfold_db.
Global Hint Variables Opaque : bv_unfold_db.
Global Hint Extern 1 (TCFastDone ?P) ⇒ (change P; fast_done) : bv_unfold_db.
Global Hint Transparent BvWf andb Is_true Z.ltb Z.leb Z.compare Pos.compare
  Pos.compare_cont bv_modulus Z.pow Z.pow_pos Pos.iter Z.mul Pos.mul Z.of_N
  : bv_unfold_db.

Notation bv_suwrap signed := (if signed then bv_swrap else bv_wrap).

Class BvUnfold (n : N) (signed : bool) (wrapped : bool) (b : bv n) (z : Z) := {
    bv_unfold_proof : ((if signed then bv_signed else bv_unsigned) b) =
                        (if wrapped then bv_suwrap signed n z else z);
}.
Global Arguments bv_unfold_proof {_ _ _} _ _ {_}.
Global Hint Mode BvUnfold + + + + - : bv_unfold_db.

BV_UNFOLD_BLOCK is a marker that this occurrence of bv_signed or bv_unsigned has already been simplified.
Definition BV_UNFOLD_BLOCK {A} (x : A) : A := x.

Lemma bv_unfold_end s w n b :
  BvUnfold n s w b ((if s then BV_UNFOLD_BLOCK bv_signed else BV_UNFOLD_BLOCK bv_unsigned) b).
Proof.
  constructor. unfold BV_UNFOLD_BLOCK.
  destruct w, s; by rewrite ?bv_wrap_bv_unsigned, ?bv_swrap_bv_signed.
Qed.
Global Hint Resolve bv_unfold_end | 1000 : bv_unfold_db.
Lemma bv_unfold_BV s w n z Hwf :
  BvUnfold n s w (@BV _ z Hwf) (if w then z else if s then bv_swrap n z else z).
Proof.
  constructor. unfold bv_unsigned.
  destruct w, s; simpl; try done; by rewrite bv_wrap_small by by apply bv_wf_in_range.
Qed.
Global Hint Resolve bv_unfold_BV | 10 : bv_unfold_db.
Lemma bv_unfold_bv_0 s w n :
  BvUnfold n s w (bv_0 n) 0.
Proof. constructor. destruct w, s; rewrite ?bv_0_signed, ?bv_0_unsigned, ?bv_swrap_0; done. Qed.
Global Hint Resolve bv_unfold_bv_0 | 10 : bv_unfold_db.
Lemma bv_unfold_Z_to_bv s w n z :
  BvUnfold n s w (Z_to_bv _ z) (if w then z else bv_suwrap s n z).
Proof. constructor. destruct w, s; rewrite ?Z_to_bv_signed, ?Z_to_bv_unsigned; done. Qed.
Global Hint Resolve bv_unfold_Z_to_bv | 10 : bv_unfold_db.
Lemma bv_unfold_succ s w n b z :
  BvUnfold n s true b z
  BvUnfold n s w (bv_succ b) (if w then Z.succ z else bv_suwrap s n (Z.succ z)).
Proof.
  intros [Hz]. constructor.
  destruct w, s; rewrite ?bv_succ_signed, ?bv_succ_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_succ | 10 : bv_unfold_db.
Lemma bv_unfold_pred s w n b z :
  BvUnfold n s true b z
  BvUnfold n s w (bv_pred b) (if w then Z.pred z else bv_suwrap s n (Z.pred z)).
Proof.
  intros [Hz]. constructor.
  destruct w, s; rewrite ?bv_pred_signed, ?bv_pred_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_pred | 10 : bv_unfold_db.
Lemma bv_unfold_add s w n b1 b2 z1 z2 :
  BvUnfold n s true b1 z1
  BvUnfold n s true b2 z2
  BvUnfold n s w (bv_add b1 b2) (if w then z1 + z2 else bv_suwrap s n (z1 + z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_add_signed, ?bv_add_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_add | 10 : bv_unfold_db.
Lemma bv_unfold_sub s w n b1 b2 z1 z2 :
  BvUnfold n s true b1 z1
  BvUnfold n s true b2 z2
  BvUnfold n s w (bv_sub b1 b2) (if w then z1 - z2 else bv_suwrap s n (z1 - z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_sub_signed, ?bv_sub_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_sub | 10 : bv_unfold_db.
Lemma bv_unfold_opp s w n b z :
  BvUnfold n s true b z
  BvUnfold n s w (bv_opp b) (if w then - z else bv_suwrap s n (- z)).
Proof.
  intros [Hz]. constructor.
  destruct w, s; rewrite ?bv_opp_signed, ?bv_opp_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_opp | 10 : bv_unfold_db.
Lemma bv_unfold_mul s w n b1 b2 z1 z2 :
  BvUnfold n s true b1 z1
  BvUnfold n s true b2 z2
  BvUnfold n s w (bv_mul b1 b2) (if w then z1 × z2 else bv_suwrap s n (z1 × z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_mul_signed, ?bv_mul_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_mul | 10 : bv_unfold_db.
Lemma bv_unfold_divu s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_divu b1 b2) (if w then z1 `div` z2 else if s then bv_swrap n (z1 `div` z2) else z1 `div` z2).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_divu_signed, ?bv_divu_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
  - pose proof (bv_unsigned_in_range _ (bv_divu b1 b2)) as Hr. rewrite bv_divu_unsigned in Hr. subst.
    by rewrite bv_wrap_small.
  - done.
Qed.
Global Hint Resolve bv_unfold_divu | 10 : bv_unfold_db.
Lemma bv_unfold_modu s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_modu b1 b2) (if w then z1 `mod` z2 else if s then bv_swrap n (z1 `mod` z2) else z1 `mod` z2).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_modu_signed, ?bv_modu_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
  - pose proof (bv_unsigned_in_range _ (bv_modu b1 b2)) as Hr. rewrite bv_modu_unsigned in Hr. subst.
    by rewrite bv_wrap_small.
  - done.
Qed.
Global Hint Resolve bv_unfold_modu | 10 : bv_unfold_db.
Lemma bv_unfold_divs s w n b1 b2 z1 z2 :
  BvUnfold n true false b1 z1
  BvUnfold n true false b2 z2
  BvUnfold n s w (bv_divs b1 b2) (if w then z1 `div` z2 else bv_suwrap s n (z1 `div` z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_divs_signed, ?bv_divs_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_divs | 10 : bv_unfold_db.
Lemma bv_unfold_quots s w n b1 b2 z1 z2 :
  BvUnfold n true false b1 z1
  BvUnfold n true false b2 z2
  BvUnfold n s w (bv_quots b1 b2) (if w then z1 `quot` z2 else bv_suwrap s n (z1 `quot` z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_quots_signed, ?bv_quots_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_quots | 10 : bv_unfold_db.
Lemma bv_unfold_mods s w n b1 b2 z1 z2 :
  BvUnfold n true false b1 z1
  BvUnfold n true false b2 z2
  BvUnfold n s w (bv_mods b1 b2) (if w then z1 `mod` z2 else bv_suwrap s n (z1 `mod` z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_mods_signed, ?bv_mods_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_mods | 10 : bv_unfold_db.
Lemma bv_unfold_rems s w n b1 b2 z1 z2 :
  BvUnfold n true false b1 z1
  BvUnfold n true false b2 z2
  BvUnfold n s w (bv_rems b1 b2) (if w then z1 `rem` z2 else bv_suwrap s n (z1 `rem` z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_rems_signed, ?bv_rems_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_rems | 10 : bv_unfold_db.
Lemma bv_unfold_shiftl s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_shiftl b1 b2) (if w then z1 z2 else bv_suwrap s n (z1 z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_shiftl_signed, ?bv_shiftl_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_shiftl | 10 : bv_unfold_db.
Lemma bv_unfold_shiftr s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_shiftr b1 b2) (if w then z1 z2 else if s then bv_swrap n (z1 z2) else (z1 z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_shiftr_signed, ?bv_shiftr_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
  - pose proof (bv_unsigned_in_range _ (bv_shiftr b1 b2)) as Hr. rewrite bv_shiftr_unsigned in Hr. subst.
    by rewrite bv_wrap_small.
  - done.
Qed.
Global Hint Resolve bv_unfold_shiftr | 10 : bv_unfold_db.
Lemma bv_unfold_ashiftr s w n b1 b2 z1 z2 :
  BvUnfold n true false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_ashiftr b1 b2) (if w then z1 z2 else bv_suwrap s n (z1 z2)).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_ashiftr_signed, ?bv_ashiftr_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_ashiftr | 10 : bv_unfold_db.
Lemma bv_unfold_or s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_or b1 b2) (if w then Z.lor z1 z2 else if s then bv_swrap n (Z.lor z1 z2) else Z.lor z1 z2).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_or_signed, ?bv_or_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
  - pose proof (bv_unsigned_in_range _ (bv_or b1 b2)) as Hr. rewrite bv_or_unsigned in Hr. subst.
    by rewrite bv_wrap_small.
  - done.
Qed.
Global Hint Resolve bv_unfold_or | 10 : bv_unfold_db.
Lemma bv_unfold_and s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_and b1 b2) (if w then Z.land z1 z2 else if s then bv_swrap n (Z.land z1 z2) else Z.land z1 z2).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_and_signed, ?bv_and_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
  - pose proof (bv_unsigned_in_range _ (bv_and b1 b2)) as Hr. rewrite bv_and_unsigned in Hr. subst.
    by rewrite bv_wrap_small.
  - done.
Qed.
Global Hint Resolve bv_unfold_and | 10 : bv_unfold_db.
Lemma bv_unfold_xor s w n b1 b2 z1 z2 :
  BvUnfold n false false b1 z1
  BvUnfold n false false b2 z2
  BvUnfold n s w (bv_xor b1 b2) (if w then Z.lxor z1 z2 else if s then bv_swrap n (Z.lxor z1 z2) else Z.lxor z1 z2).
Proof.
  intros [Hz1] [Hz2]. constructor.
  destruct w, s; rewrite ?bv_xor_signed, ?bv_xor_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
  - pose proof (bv_unsigned_in_range _ (bv_xor b1 b2)) as Hr. rewrite bv_xor_unsigned in Hr. subst.
    by rewrite bv_wrap_small.
  - done.
Qed.
Global Hint Resolve bv_unfold_xor | 10 : bv_unfold_db.
Lemma bv_unfold_not s w n b z :
  BvUnfold n false false b z
  BvUnfold n s w (bv_not b) (if w then Z.lnot z else bv_suwrap s n (Z.lnot z)).
Proof.
  intros [Hz]. constructor.
  destruct w, s; rewrite ?bv_not_signed, ?bv_not_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_not | 10 : bv_unfold_db.
Lemma bv_unfold_zero_extend s w n n' b z `{!TCFastDone (n' <=? n = true)%N} :
  BvUnfold n' false false b z
  BvUnfold n s w (bv_zero_extend n b) (if w then z else if s then bv_swrap n z else z).
Proof.
  intros [Hz]. constructor. unfold TCFastDone in ×. rewrite ->?N.leb_le in ×.
  destruct w, s; rewrite ?bv_zero_extend_signed, ?bv_zero_extend_unsigned, ?Hz by done;
    try bv_wrap_simplify_solve.
  - rewrite <-Hz, bv_wrap_small; [done|]. bv_saturate. pose proof (bv_modulus_le_mono n' n). lia.
  - done.
Qed.
Global Hint Resolve bv_unfold_zero_extend | 10 : bv_unfold_db.
Lemma bv_unfold_sign_extend s w n n' b z `{!TCFastDone (n' <=? n = true)%N} :
  BvUnfold n' true false b z
  BvUnfold n s w (bv_sign_extend n b) (if w then z else if s then z else bv_wrap n z).
Proof.
  intros [Hz]. constructor. unfold TCFastDone in ×. rewrite ->?N.leb_le in ×.
  destruct w, s; rewrite ?bv_sign_extend_signed, ?bv_sign_extend_unsigned, ?Hz by done;
    try bv_wrap_simplify_solve.
  - subst. rewrite <-(bv_sign_extend_signed n) at 2 by done. by rewrite bv_swrap_bv_signed, bv_sign_extend_signed.
  - done.
Qed.
Global Hint Resolve bv_unfold_sign_extend | 10 : bv_unfold_db.
Lemma bv_unfold_extract s w n n' n1 b z :
  BvUnfold n' false false b z
  BvUnfold n s w (bv_extract n1 n b) (if w then z Z.of_N n1 else bv_suwrap s n (z Z.of_N n1)).
Proof.
  intros [Hz]. constructor.
  destruct w, s; rewrite ?bv_extract_signed, ?bv_extract_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_extract | 10 : bv_unfold_db.
Lemma bv_unfold_concat s w n n1 n2 b1 b2 z1 z2 `{!TCFastDone (n = n1 + n2)%N} :
  BvUnfold n1 false false b1 z1
  BvUnfold n2 false false b2 z2
  BvUnfold n s w (bv_concat n b1 b2) (if w then Z.lor (z1 Z.of_N n2) z2 else if s then bv_swrap n (Z.lor (z1 Z.of_N n2) z2) else Z.lor (z1 Z.of_N n2) z2).
Proof.
  intros [Hz1] [Hz2]. constructor. unfold TCFastDone in ×.
  destruct w, s; rewrite ?bv_concat_signed, ?bv_concat_unsigned, ?Hz1, ?Hz2 by done;
    try bv_wrap_simplify_solve.
  - subst. rewrite <-(bv_concat_unsigned (n1 + n2)) at 2 by done.
    by rewrite bv_wrap_bv_unsigned, bv_concat_unsigned.
  - done.
Qed.
Global Hint Resolve bv_unfold_concat | 10 : bv_unfold_db.
Lemma bv_unfold_add_Z s w n b1 z1 z2 :
  BvUnfold n s true b1 z1
  BvUnfold n s w (bv_add_Z b1 z2) (if w then z1 + z2 else bv_suwrap s n (z1 + z2)).
Proof.
  intros [Hz1]. constructor.
  destruct w, s; rewrite ?bv_add_Z_signed, ?bv_add_Z_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_add_Z | 10 : bv_unfold_db.
Lemma bv_unfold_sub_Z s w n b1 z1 z2 :
  BvUnfold n s true b1 z1
  BvUnfold n s w (bv_sub_Z b1 z2) (if w then z1 - z2 else bv_suwrap s n (z1 - z2)).
Proof.
  intros [Hz1]. constructor.
  destruct w, s; rewrite ?bv_sub_Z_signed, ?bv_sub_Z_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_sub_Z | 10 : bv_unfold_db.
Lemma bv_unfold_mul_Z s w n b1 z1 z2 :
  BvUnfold n s true b1 z1
  BvUnfold n s w (bv_mul_Z b1 z2) (if w then z1 × z2 else bv_suwrap s n (z1 × z2)).
Proof.
  intros [Hz1]. constructor.
  destruct w, s; rewrite ?bv_mul_Z_signed, ?bv_mul_Z_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_mul_Z | 10 : bv_unfold_db.

Ltac bv_unfold_eq :=
  lazymatch goal with
  | |- @bv_unsigned ?n ?b = ?z
      simple notypeclasses refine (@bv_unfold_proof n false false b z _)
  | |- @bv_signed ?n ?b = ?z
      simple notypeclasses refine (@bv_unfold_proof n true false b z _)
  end;
  typeclasses eauto with bv_unfold_db.
Ltac bv_unfold :=
  repeat (match goal with
            
          | |- context [@bv_unsigned ?n ?b] ⇒
              pattern (@bv_unsigned n b);
              simple refine (eq_rec_r _ _ _); [shelve| |bv_unfold_eq]; cbn beta
          | |- context [@bv_signed ?n ?b] ⇒
              pattern (@bv_signed n b);
              simple refine (eq_rec_r _ _ _); [shelve| |bv_unfold_eq]; cbn beta
          end); unfold BV_UNFOLD_BLOCK.

bv_unfolded_simplify rewrite database

The bv_unfolded_simplify database collects rewrite rules that should be used to simplify the goal after Z is bv_unfolded.
Create HintDb bv_unfolded_simplify discriminated. Global Hint Rewrite Z.shiftr_0_r Z.lor_0_r Z.lor_0_l : bv_unfolded_simplify.
Global Hint Rewrite Z.land_ones using lia : bv_unfolded_simplify.
Global Hint Rewrite bv_wrap_bv_wrap using lia : bv_unfolded_simplify.
Global Hint Rewrite
  Z_to_bv_small using unfold bv_modulus; lia : bv_unfolded_simplify.

bv_unfolded_to_arith rewrite database

The bv_unfolded_to_arith database collects rewrite rules that convert bitwise operations to arithmetic operations in preparation for lia.
Create HintDb bv_unfolded_to_arith discriminated. Global Hint Rewrite <-Z.opp_lnot : bv_unfolded_to_arith.
Global Hint Rewrite Z.shiftl_mul_pow2 Z.shiftr_div_pow2 using lia : bv_unfolded_to_arith.

Reduction of closed terms

Ltac reduce_closed_N_tac := idtac.
Ltac reduce_closed_N :=
  idtac;
  reduce_closed_N_tac;
  repeat match goal with
  | |- context [N.add ?a ?b] ⇒ progress reduce_closed (N.add a b)
  | H : context [N.add ?a ?b] |- _progress reduce_closed (N.add a b)
  end.

Ltac reduce_closed_bv_simplify_tac := idtac.
Ltac reduce_closed_bv_simplify :=
  idtac;
  reduce_closed_bv_simplify_tac;
  
  repeat match goal with
  | |- context [Z.lor ?a ?b] ⇒ progress reduce_closed (Z.lor a b)
  | H : context [Z.lor ?a ?b] |- _progress reduce_closed (Z.lor a b)
  | |- context [Z.land ?a ?b] ⇒ progress reduce_closed (Z.land a b)
  | H : context [Z.land ?a ?b] |- _progress reduce_closed (Z.land a b)
  | |- context [Z.lxor ?a ?b] ⇒ progress reduce_closed (Z.lxor a b)
  | H : context [Z.lxor ?a ?b] |- _progress reduce_closed (Z.lxor a b)
  end.

bv_simplify tactic

Tactic Notation "bv_simplify" :=
  unfold_lets_in_context;
  
  reduce_closed_N;
  autorewrite with bv_simplify;
  lazymatch goal with
  | |- _ =@{bv _} _apply bv_eq_wrap
  | |- not (_ =@{bv _} _) ⇒ apply bv_neq_wrap
  | _idtac
  end;
  bv_unfold;
  autorewrite with bv_unfolded_simplify.

Tactic Notation "bv_simplify" ident(H) :=
  unfold_lets_in_context;
  autorewrite with bv_simplify in H;
  lazymatch (type of H) with
  | _ =@{bv _} _apply bv_eq in H
  | not (_ =@{bv _} _) ⇒ apply bv_neq in H
  | _idtac
  end;
  do [bv_unfold] in H;
  autorewrite with bv_unfolded_simplify in H.
Tactic Notation "bv_simplify" "select" open_constr(pat) :=
  select pat (fun Hbv_simplify H).

Tactic Notation "bv_simplify_arith" :=
  bv_simplify;
  autorewrite with bv_unfolded_to_arith;
  reduce_closed_bv_simplify.
Tactic Notation "bv_simplify_arith" ident(H) :=
  bv_simplify H;
  autorewrite with bv_unfolded_to_arith in H;
  reduce_closed_bv_simplify.
Tactic Notation "bv_simplify_arith" "select" open_constr(pat) :=
  select pat (fun Hbv_simplify_arith H).

bv_solve tactic

Ltac bv_solve_unfold_tac := idtac.
Ltac bv_solve :=
  bv_simplify_arith;
  
  bv_saturate_unsigned;
  bv_solve_unfold_tac;
  unfold bv_signed, bv_swrap, bv_wrap, bv_half_modulus, bv_modulus, bv_unsigned in *;
  simpl;
  lia.

Class BvSolve (P : Prop) : Prop := bv_solve_proof : P.
Global Hint Extern 1 (BvSolve ?P) ⇒ (change P; bv_solve) : typeclass_instances.