Library iris.deprecated.base_logic.viewshifts
The binary (implicitly persistent) view shift connective is rarely ever
useful in Coq. This module only exists to verify that the proof rules we give
on paper hold true. Use the non-persistent connective ={E}=∗ wrapped in a □
modality if needed.
This file will be removed when we find a good way to have a Definition with
telescopes for Texan triples.
From iris.proofmode Require Import tactics.
From iris.base_logic.lib Require Export invariants.
From iris.prelude Require Import options.
Definition vs `{!invGS Σ} (E1 E2 : coPset) (P Q : iProp Σ) : iProp Σ :=
□ (P -∗ |={E1,E2}=> Q).
Global Arguments vs {_ _} _ _ _%_I _%_I.
Global Instance: Params (@vs) 4 := {}.
Notation "P ={ E1 , E2 }=> Q" := (vs E1 E2 P Q)
(at level 99, E1,E2 at level 50, Q at level 200,
format "P ={ E1 , E2 }=> Q") : bi_scope.
Notation "P ={ E }=> Q" := (P ={E,E}=> Q)%I
(at level 99, E at level 50, Q at level 200,
format "P ={ E }=> Q") : bi_scope.
Notation "P ={ E1 , E2 }=> Q" := (P ={E1,E2}=> Q)%I
(at level 99, E1,E2 at level 50, Q at level 200,
format "P ={ E1 , E2 }=> Q") : stdpp_scope.
Notation "P ={ E }=> Q" := (P ={E}=> Q)%I
(at level 99, E at level 50, Q at level 200,
format "P ={ E }=> Q") : stdpp_scope.
Section vs.
Context `{!invGS Σ}.
Implicit Types P Q R : iProp Σ.
Implicit Types N : namespace.
Global Instance vs_ne E1 E2 : NonExpansive2 (vs E1 E2).
Proof. solve_proper. Qed.
Global Instance vs_proper E1 E2 : Proper ((≡) ==> (≡) ==> (≡)) (vs E1 E2).
Proof. apply ne_proper_2, _. Qed.
Lemma vs_mono E1 E2 P P' Q Q' :
(P ⊢ P') → (Q' ⊢ Q) → (P' ={E1,E2}=> Q') ⊢ P ={E1,E2}=> Q.
Proof. by intros HP HQ; rewrite /vs -HP HQ. Qed.
Global Instance vs_mono' E1 E2 : Proper (flip (⊢) ==> (⊢) ==> (⊢)) (vs E1 E2).
Proof. solve_proper. Qed.
Lemma vs_false_elim E1 E2 P : ⊢ False ={E1,E2}=> P.
Proof. iIntros "!> []". Qed.
Lemma vs_timeless E P : Timeless P → ⊢ ▷ P ={E}=> P.
Proof. by iIntros (?) "!> > ?". Qed.
Lemma vs_transitive E1 E2 E3 P Q R :
(P ={E1,E2}=> Q) ∧ (Q ={E2,E3}=> R) ⊢ P ={E1,E3}=> R.
Proof.
iIntros "#[HvsP HvsQ] !> HP".
iMod ("HvsP" with "HP") as "HQ". by iApply "HvsQ".
Qed.
Lemma vs_reflexive E P : ⊢ P ={E}=> P.
Proof. by iIntros "!> HP". Qed.
Lemma vs_impl E P Q : □ (P → Q) ⊢ P ={E}=> Q.
Proof. iIntros "#HPQ !> HP". by iApply "HPQ". Qed.
Lemma vs_frame_l E1 E2 P Q R : (P ={E1,E2}=> Q) ⊢ R ∗ P ={E1,E2}=> R ∗ Q.
Proof. iIntros "#Hvs !> [$ HP]". by iApply "Hvs". Qed.
Lemma vs_frame_r E1 E2 P Q R : (P ={E1,E2}=> Q) ⊢ P ∗ R ={E1,E2}=> Q ∗ R.
Proof. iIntros "#Hvs !> [HP $]". by iApply "Hvs". Qed.
Lemma vs_mask_frame_r E1 E2 Ef P Q :
E1 ## Ef → (P ={E1,E2}=> Q) ⊢ P ={E1 ∪ Ef,E2 ∪ Ef}=> Q.
Proof.
iIntros (?) "#Hvs !> HP". iApply fupd_mask_frame_r; auto. by iApply "Hvs".
Qed.
Lemma vs_inv N E P Q R :
↑N ⊆ E → inv N R ∗ (▷ R ∗ P ={E∖↑N}=> ▷ R ∗ Q) ⊢ P ={E}=> Q.
Proof.
iIntros (?) "#[? Hvs] !> HP". iInv N as "HR" "Hclose".
iMod ("Hvs" with "[HR HP]") as "[? $]"; first by iFrame.
by iApply "Hclose".
Qed.
Lemma vs_inv_acc N E P :
↑N ⊆ E →
⊢ inv N P ={E,E∖↑N}=> ▷ P ∗ ∃ R, R ∗ (R ∗ ▷ P ={E∖↑N,E}=> True).
Proof.
iIntros (?) "!> #Hinv".
iMod (inv_acc with "Hinv") as "[$ Hclose]"; first done.
iModIntro. iExists (▷ P ={E ∖ ↑N,E}=∗ True)%I. iFrame.
iIntros "!> [Hclose HP]". iMod ("Hclose" with "HP"). done.
Qed.
Lemma vs_alloc N P : ⊢ ▷ P ={↑N}=> inv N P.
Proof. iIntros "!> HP". by iApply inv_alloc. Qed.
Lemma wand_fupd_alt E1 E2 P Q : (P ={E1,E2}=∗ Q) ⊣⊢ ∃ R, R ∗ (P ∗ R ={E1,E2}=> Q).
Proof.
rewrite bi.wand_alt. do 2 f_equiv. setoid_rewrite bi.affine_affinely; last apply _.
by rewrite bi.persistently_impl_wand.
Qed.
End vs.