Library iris.algebra.lib.mono_Z

From iris.algebra Require Export auth.
From iris.algebra Require Import numbers updates.
From iris.prelude Require Import options.

Authoritative CMRA over max_Z. The authoritative element is a monotonically increasing Z, while a fragment is a lower bound.

Definition mono_Z := auth (option max_ZR).
Definition mono_ZR := authR (optionUR max_ZR).
Definition mono_ZUR := authUR (optionUR max_ZR).

mono_Z_auth is the authoritative element. The definition includes the fragment at the same value so that lemma mono_Z_included, which states that mono_Z_lb n mono_Z_auth dq n, holds. Without this trick, a frame-preserving update lemma would be required instead.
Definition mono_Z_auth (dq : dfrac) (n : Z) : mono_Z :=
  {dq} (Some (MaxZ n)) (Some (MaxZ n)).
Definition mono_Z_lb (n : Z) : mono_Z := (Some (MaxZ n)).

Notation "●MZ dq a" := (mono_Z_auth dq a)
  (at level 20, dq custom dfrac at level 1, format "●MZ dq a").
Notation "◯MZ a" := (mono_Z_lb a) (at level 20).

Section mono_Z.
  Implicit Types (n : Z).

  Local Open Scope Z_scope.

  Global Instance mono_Z_lb_core_id n : CoreId (MZ n).
  Proof. apply _. Qed.
  Global Instance mono_Z_auth_core_id l : CoreId (MZ l).
  Proof. apply _. Qed.

  Lemma mono_Z_auth_dfrac_op dq1 dq2 n :
    MZ{dq1 dq2} n MZ{dq1} n MZ{dq2} n.
  Proof.
    rewrite /mono_Z_auth auth_auth_dfrac_op.
    rewrite (comm _ ({dq2} _)) -!assoc (assoc _ ( _)).
    by rewrite -core_id_dup (comm _ ( _)).
  Qed.

  Lemma mono_Z_lb_op n1 n2 :
    MZ (n1 `max` n2) = MZ n1 MZ n2.
  Proof. rewrite -auth_frag_op -Some_op max_Z_op //. Qed.

  Lemma mono_Z_auth_lb_op dq n :
    MZ{dq} n MZ{dq} n MZ n.
  Proof.
    rewrite /mono_Z_auth /mono_Z_lb.
    rewrite -!assoc -auth_frag_op -Some_op max_Z_op.
    rewrite Z.max_id //.
  Qed.

  Global Instance mono_Z_auth_dfrac_is_op dq dq1 dq2 n :
    IsOp dq dq1 dq2 IsOp' (MZ{dq} n) (MZ{dq1} n) (MZ{dq2} n).
  Proof. rewrite /IsOp' /IsOp⇒ →. rewrite mono_Z_auth_dfrac_op //. Qed.
  Global Instance mono_Z_lb_max_is_op n n1 n2 :
    IsOp (MaxZ n) (MaxZ n1) (MaxZ n2) IsOp' (MZ n) (MZ n1) (MZ n2).
  Proof. rewrite /IsOp' /IsOp /mono_Z_lb⇒ →. done. Qed.

rephrasing of mono_Z_lb_op useful for weakening a fragment to a smaller lower-bound
  Lemma mono_Z_lb_op_le_l n n' :
    n' n
    MZ n = MZ n' MZ n.
  Proof. intros. rewrite -mono_Z_lb_op Z.max_r //. Qed.

  Lemma mono_Z_auth_dfrac_valid dq n : ( MZ{dq} n) dq.
  Proof.
    rewrite /mono_Z_auth auth_both_dfrac_valid_discrete /=. naive_solver.
  Qed.
  Lemma mono_Z_auth_valid n : MZ n.
  Proof. by apply auth_both_valid. Qed.

  Lemma mono_Z_auth_dfrac_op_valid dq1 dq2 n1 n2 :
     (MZ{dq1} n1 MZ{dq2} n2) (dq1 dq2) n1 = n2.
  Proof.
    rewrite /mono_Z_auth (comm _ ({dq2} _)) -!assoc (assoc _ ( _)).
    rewrite -auth_frag_op (comm _ ( _)) assoc. split.
    - move⇒ /cmra_valid_op_l /auth_auth_dfrac_op_valid. naive_solver.
    - intros [? ->]. rewrite -core_id_dup -auth_auth_dfrac_op.
      by apply auth_both_dfrac_valid_discrete.
  Qed.
  Lemma mono_Z_auth_op_valid n1 n2 :
     (MZ n1 MZ n2) False.
  Proof. rewrite mono_Z_auth_dfrac_op_valid. naive_solver. Qed.

  Lemma mono_Z_both_dfrac_valid dq n m :
     (MZ{dq} n MZ m) dq m n.
  Proof.
    rewrite /mono_Z_auth /mono_Z_lb -assoc -auth_frag_op.
    rewrite auth_both_dfrac_valid_discrete Some_included_total max_Z_included /=.
    naive_solver lia.
  Qed.
  Lemma mono_Z_both_valid n m :
     (MZ n MZ m) m n.
  Proof. rewrite mono_Z_both_dfrac_valid dfrac_valid_own. naive_solver. Qed.

  Lemma mono_Z_lb_mono n1 n2 : n1 n2 MZ n1 MZ n2.
  Proof.
    intros. by apply auth_frag_mono, Some_included_total, max_Z_included.
  Qed.

  Lemma mono_Z_included dq n : MZ n MZ{dq} n.
  Proof. apply: cmra_included_r. Qed.

  Lemma mono_Z_update {n} n' :
    n n' MZ n ~~> MZ n'.
  Proof.
    intros. rewrite /mono_Z_auth /mono_Z_lb.
    by apply auth_update, option_local_update, max_Z_local_update.
  Qed.

  Lemma mono_Z_auth_persist n dq :
    MZ{dq} n ~~> MZ n.
  Proof.
    intros. rewrite /mono_Z_auth /mono_Z_lb.
    eapply cmra_update_op_proper; last done.
    eapply auth_update_auth_persist.
  Qed.
  Lemma mono_Z_auth_unpersist n :
    MZ n ~~>: λ k, q, k = MZ{# q} n.
  Proof. eapply auth_updateP_both_unpersist. Qed.
End mono_Z.

Global Typeclasses Opaque mono_Z_auth mono_Z_lb.