Library stdpp.sorting

Merge sort. Adapted from the implementation of Hugo Herbelin in the Coq standard library, but without using the module system.
From Coq Require Export Sorted.
From stdpp Require Export orders list.
From stdpp Require Import options.

Section merge_sort.
  Context {A} (R : relation A) `{ x y, Decision (R x y)}.

  Fixpoint list_merge (l1 : list A) : list A list A :=
    fix list_merge_aux l2 :=
    match l1, l2 with
    | [], _l2
    | _, []l1
    | x1 :: l1, x2 :: l2
       if decide (R x1 x2) then x1 :: list_merge l1 (x2 :: l2)
       else x2 :: list_merge_aux l2
    end.
  Global Arguments list_merge !_ !_ / : assert.

  Local Notation stack := (list (option (list A))).
  Fixpoint merge_list_to_stack (st : stack) (l : list A) : stack :=
    match st with
    | [][Some l]
    | None :: stSome l :: st
    | Some l' :: stNone :: merge_list_to_stack st (list_merge l' l)
    end.
  Fixpoint merge_stack (st : stack) : list A :=
    match st with
    | [][]
    | None :: stmerge_stack st
    | Some l :: stlist_merge l (merge_stack st)
    end.
  Fixpoint merge_sort_aux (st : stack) (l : list A) : list A :=
    match l with
    | []merge_stack st
    | x :: lmerge_sort_aux (merge_list_to_stack st [x]) l
    end.
  Definition merge_sort : list A list A := merge_sort_aux [].
End merge_sort.

Helper definition for Sorted_reverse below
Inductive TlRel {A} (R : relation A) (a : A) : list A Prop :=
  | TlRel_nil : TlRel R a []
  | TlRel_cons b l : R b a TlRel R a (l ++ [b]).

Properties of the Sorted and StronglySorted predicate

Section sorted.
  Context {A} (R : relation A).

  Lemma elem_of_StronglySorted_app l1 l2 x1 x2 :
    StronglySorted R (l1 ++ l2) x1 l1 x2 l2 R x1 x2.
  Proof.
    induction l1 as [|x1' l1 IH]; simpl; [by rewrite elem_of_nil|].
    intros [? Hall]%StronglySorted_inv [->|?]%elem_of_cons ?; [|by auto].
    rewrite Forall_app, !Forall_forall in Hall. naive_solver.
  Qed.
  Lemma StronglySorted_app_inv_l l1 l2 :
    StronglySorted R (l1 ++ l2) StronglySorted R l1.
  Proof.
    induction l1 as [|x1' l1 IH]; simpl;
      [|inv 1]; decompose_Forall; constructor; auto.
  Qed.
  Lemma StronglySorted_app_inv_r l1 l2 :
    StronglySorted R (l1 ++ l2) StronglySorted R l2.
  Proof.
    induction l1 as [|x1' l1 IH]; simpl;
      [|inv 1]; decompose_Forall; auto.
  Qed.

  Lemma Sorted_StronglySorted `{!Transitive R} l :
    Sorted R l StronglySorted R l.
  Proof. by apply Sorted.Sorted_StronglySorted. Qed.

  Lemma StronglySorted_unique_strong l1 l2 :
    ( x1 x2, x1 l1 x2 l2 R x1 x2 R x2 x1 x1 = x2)
    StronglySorted R l1 StronglySorted R l2 l1 ≡ₚ l2 l1 = l2.
  Proof.
    intros Hasym Hl1. revert l2 Hasym.
    induction Hl1 as [|x1 l1 ? IH Hx1]; intros l2 Hasym Hl2 E.
    { symmetry. by apply Permutation_nil. }
    destruct Hl2 as [|x2 l2 ? Hx2].
    { by apply Permutation_nil_r in E. }
    assert (x1 = x2); subst.
    { rewrite Forall_forall in Hx1, Hx2.
      assert (x2 x1 :: l1) as Hx2' by (by rewrite E; left).
      assert (x1 x2 :: l2) as Hx1' by (by rewrite <-E; left).
      inv Hx1'; inv Hx2'; simplify_eq; [eauto..|].
      apply Hasym; [by constructor..| |]; by eauto. }
    f_equal. apply IH, (inj (x2 ::.)); [|done..].
    intros ????. apply Hasym; by constructor.
  Qed.
  Lemma StronglySorted_unique `{!AntiSymm (=) R} l1 l2 :
    StronglySorted R l1 StronglySorted R l2 l1 ≡ₚ l2 l1 = l2.
  Proof. apply StronglySorted_unique_strong; eauto. Qed.

  Lemma Sorted_unique_strong `{!Transitive R} l1 l2 :
    ( x1 x2, x1 l1 x2 l2 R x1 x2 R x2 x1 x1 = x2)
    Sorted R l1 Sorted R l2 l1 ≡ₚ l2 l1 = l2.
  Proof. auto using StronglySorted_unique_strong, Sorted_StronglySorted. Qed.
  Lemma Sorted_unique `{!Transitive R, !AntiSymm (=) R} l1 l2 :
    Sorted R l1 Sorted R l2 l1 ≡ₚ l2 l1 = l2.
  Proof. auto using StronglySorted_unique, Sorted_StronglySorted. Qed.

  Global Instance HdRel_dec x `{ y, Decision (R x y)} l :
    Decision (HdRel R x l).
  Proof.
   refine
    match l with
    | []left _
    | y :: lcast_if (decide (R x y))
    end; abstract first [by constructor | by inv 1].
  Defined.
  Global Instance Sorted_dec `{ x y, Decision (R x y)} : l,
    Decision (Sorted R l).
  Proof.
   refine
    (fix go l :=
    match l return Decision (Sorted R l) with
    | []left _
    | x :: lcast_if_and (decide (HdRel R x l)) (go l)
    end); clear go; abstract first [by constructor | by inv 1].
  Defined.
  Global Instance StronglySorted_dec `{ x y, Decision (R x y)} : l,
    Decision (StronglySorted R l).
  Proof.
   refine
    (fix go l :=
    match l return Decision (StronglySorted R l) with
    | []left _
    | x :: lcast_if_and (decide (Forall (R x) l)) (go l)
    end); clear go; abstract first [by constructor | by inv 1].
  Defined.

  Section fmap.
    Context {B} (f : A B).
    Lemma HdRel_fmap (R1 : relation A) (R2 : relation B) x l :
      ( y, R1 x y R2 (f x) (f y)) HdRel R1 x l HdRel R2 (f x) (f <$> l).
    Proof. destruct 2; constructor; auto. Qed.
    Lemma Sorted_fmap (R1 : relation A) (R2 : relation B) l :
      ( x y, R1 x y R2 (f x) (f y)) Sorted R1 l Sorted R2 (f <$> l).
    Proof. induction 2; simpl; constructor; eauto using HdRel_fmap. Qed.
    Lemma StronglySorted_fmap (R1 : relation A) (R2 : relation B) l :
      ( x y, R1 x y R2 (f x) (f y))
      StronglySorted R1 l StronglySorted R2 (f <$> l).
    Proof.
      induction 2; csimpl; constructor;
        rewrite ?Forall_fmap; eauto using Forall_impl.
    Qed.
  End fmap.

  Lemma HdRel_reverse l x : HdRel R x l TlRel (flip R) x (reverse l).
  Proof. destruct 1; rewrite ?reverse_cons; by constructor. Qed.

  Lemma Sorted_snoc l x : Sorted R l TlRel R x l Sorted R (l ++ [x]).
  Proof.
    induction 1 as [|y l Hsort IH Hhd]; intros Htl; simpl.
    { repeat constructor. }
    constructor.
    - apply IH. inv Htl as [|? [|??]]; simplify_list_eq; by constructor.
    - destruct Hhd; constructor; [|done].
      inv Htl as [|? [|??]]; by try discriminate_list.
  Qed.
End sorted.

Lemma Sorted_reverse {A} (R : relation A) l :
  Sorted R l Sorted (flip R) (reverse l).
Proof.
  induction 1; rewrite ?reverse_nil, ?reverse_cons;
    auto using Sorted_snoc, HdRel_reverse.
Qed.

Correctness of merge sort

Section merge_sort_correct.
  Context {A} (R : relation A) `{ x y, Decision (R x y)}.

  Lemma list_merge_nil_l l2 : list_merge R [] l2 = l2.
  Proof. by destruct l2. Qed.
  Lemma list_merge_nil_r l1 : list_merge R l1 [] = l1.
  Proof. by destruct l1. Qed.
  Lemma list_merge_cons x1 x2 l1 l2 :
    list_merge R (x1 :: l1) (x2 :: l2) =
      if decide (R x1 x2) then x1 :: list_merge R l1 (x2 :: l2)
      else x2 :: list_merge R (x1 :: l1) l2.
  Proof. done. Qed.
  Lemma HdRel_list_merge x l1 l2 :
    HdRel R x l1 HdRel R x l2 HdRel R x (list_merge R l1 l2).
  Proof.
    destruct 1 as [|x1 l1 IH1], 1 as [|x2 l2 IH2];
      rewrite ?list_merge_cons; simpl; repeat case_decide; auto.
  Qed.
  Lemma Sorted_list_merge `{!Total R} l1 l2 :
    Sorted R l1 Sorted R l2 Sorted R (list_merge R l1 l2).
  Proof.
    intros Hl1. revert l2. induction Hl1 as [|x1 l1 IH1];
      induction 1 as [|x2 l2 IH2]; rewrite ?list_merge_cons; simpl;
      repeat case_decide;
      repeat match goal with H : ¬R _ _ |- _apply total_not in H end;
      constructor; eauto using HdRel_list_merge, HdRel_cons.
  Qed.
  Lemma merge_Permutation l1 l2 : list_merge R l1 l2 ≡ₚ l1 ++ l2.
  Proof.
    revert l2. induction l1 as [|x1 l1 IH1]; intros l2;
      induction l2 as [|x2 l2 IH2]; rewrite ?list_merge_cons; simpl;
      repeat case_decide; auto.
    - by rewrite (right_id_L [] (++)).
    - by rewrite IH2, Permutation_middle.
  Qed.

  Local Notation stack := (list (option (list A))).
  Inductive merge_stack_Sorted : stack Prop :=
    | merge_stack_Sorted_nil : merge_stack_Sorted []
    | merge_stack_Sorted_cons_None st :
       merge_stack_Sorted st merge_stack_Sorted (None :: st)
    | merge_stack_Sorted_cons_Some l st :
       Sorted R l merge_stack_Sorted st merge_stack_Sorted (Some l :: st).
  Fixpoint merge_stack_flatten (st : stack) : list A :=
    match st with
    | [][]
    | None :: stmerge_stack_flatten st
    | Some l :: stl ++ merge_stack_flatten st
    end.

  Lemma Sorted_merge_list_to_stack `{!Total R} st l :
    merge_stack_Sorted st Sorted R l
    merge_stack_Sorted (merge_list_to_stack R st l).
  Proof.
    intros Hst. revert l.
    induction Hst; repeat constructor; naive_solver auto using Sorted_list_merge.
  Qed.
  Lemma merge_list_to_stack_Permutation st l :
    merge_stack_flatten (merge_list_to_stack R st l) ≡ₚ
      l ++ merge_stack_flatten st.
  Proof.
    revert l. induction st as [|[l'|] st IH]; intros l; simpl; auto.
    by rewrite IH, merge_Permutation, (assoc_L _), (comm (++) l).
  Qed.
  Lemma Sorted_merge_stack `{!Total R} st :
    merge_stack_Sorted st Sorted R (merge_stack R st).
  Proof. induction 1; simpl; auto using Sorted_list_merge. Qed.
  Lemma merge_stack_Permutation st : merge_stack R st ≡ₚ merge_stack_flatten st.
  Proof.
    induction st as [|[] ? IH]; intros; simpl; auto.
    by rewrite merge_Permutation, IH.
  Qed.
  Lemma Sorted_merge_sort_aux `{!Total R} st l :
    merge_stack_Sorted st Sorted R (merge_sort_aux R st l).
  Proof.
    revert st. induction l; simpl;
      auto using Sorted_merge_stack, Sorted_merge_list_to_stack.
  Qed.
  Lemma merge_sort_aux_Permutation st l :
    merge_sort_aux R st l ≡ₚ merge_stack_flatten st ++ l.
  Proof.
    revert st. induction l as [|?? IH]; simpl; intros.
    - by rewrite (right_id_L [] (++)), merge_stack_Permutation.
    - rewrite IH, merge_list_to_stack_Permutation; simpl.
      by rewrite Permutation_middle.
  Qed.
  Lemma Sorted_merge_sort `{!Total R} l : Sorted R (merge_sort R l).
  Proof. apply Sorted_merge_sort_aux. by constructor. Qed.
  Lemma merge_sort_Permutation l : merge_sort R l ≡ₚ l.
  Proof. unfold merge_sort. by rewrite merge_sort_aux_Permutation. Qed.
  Lemma StronglySorted_merge_sort `{!Transitive R, !Total R} l :
    StronglySorted R (merge_sort R l).
  Proof. auto using Sorted_StronglySorted, Sorted_merge_sort. Qed.
End merge_sort_correct.