Library iris.heap_lang.lib.par
From iris.heap_lang Require Import proofmode notation.
From iris.heap_lang Require Export spawn.
From iris.prelude Require Import options.
Definition parN : namespace := nroot .@ "par".
Definition par : val :=
λ: "e1" "e2",
let: "handle" := spawn "e1" in
let: "v2" := "e2" #() in
let: "v1" := join "handle" in
("v1", "v2").
Notation "e1 ||| e2" := (par (λ: ≠, e1)%E (λ: ≠, e2)%E) : expr_scope.
Notation "e1 ||| e2" := (par (λ: ≠, e1)%V (λ: ≠, e2)%V) : val_scope.
Section proof.
Local Set Default Proof Using "Type*".
Context `{!heapGS_gen hlc Σ, !spawnG Σ}.
Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) (f1 f2 : val) (Φ : val → iProp Σ) :
WP f1 #() {{ Ψ1 }} -∗ WP f2 #() {{ Ψ2 }} -∗
(▷ ∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) -∗
WP par f1 f2 {{ Φ }}.
Proof.
iIntros "Hf1 Hf2 HΦ". wp_lam. wp_let.
wp_apply (spawn_spec parN with "Hf1") as (l) "Hl".
wp_let. wp_bind (f2 _).
wp_apply (wp_wand with "Hf2") as (v) "H2". wp_let.
wp_apply (join_spec with "[$Hl]") as (w) "H1".
iSpecialize ("HΦ" with "[$H1 $H2]"). by wp_pures.
Qed.
Lemma wp_par (Ψ1 Ψ2 : val → iProp Σ) (e1 e2 : expr) (Φ : val → iProp Σ) :
WP e1 {{ Ψ1 }} -∗ WP e2 {{ Ψ2 }} -∗
(∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) -∗
WP (e1 ||| e2)%V {{ Φ }}.
Proof.
iIntros "H1 H2 H".
wp_apply (par_spec Ψ1 Ψ2 with "[H1] [H2] [H]"); [by wp_lam..|auto].
Qed.
End proof.
From iris.heap_lang Require Export spawn.
From iris.prelude Require Import options.
Definition parN : namespace := nroot .@ "par".
Definition par : val :=
λ: "e1" "e2",
let: "handle" := spawn "e1" in
let: "v2" := "e2" #() in
let: "v1" := join "handle" in
("v1", "v2").
Notation "e1 ||| e2" := (par (λ: ≠, e1)%E (λ: ≠, e2)%E) : expr_scope.
Notation "e1 ||| e2" := (par (λ: ≠, e1)%V (λ: ≠, e2)%V) : val_scope.
Section proof.
Local Set Default Proof Using "Type*".
Context `{!heapGS_gen hlc Σ, !spawnG Σ}.
Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) (f1 f2 : val) (Φ : val → iProp Σ) :
WP f1 #() {{ Ψ1 }} -∗ WP f2 #() {{ Ψ2 }} -∗
(▷ ∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) -∗
WP par f1 f2 {{ Φ }}.
Proof.
iIntros "Hf1 Hf2 HΦ". wp_lam. wp_let.
wp_apply (spawn_spec parN with "Hf1") as (l) "Hl".
wp_let. wp_bind (f2 _).
wp_apply (wp_wand with "Hf2") as (v) "H2". wp_let.
wp_apply (join_spec with "[$Hl]") as (w) "H1".
iSpecialize ("HΦ" with "[$H1 $H2]"). by wp_pures.
Qed.
Lemma wp_par (Ψ1 Ψ2 : val → iProp Σ) (e1 e2 : expr) (Φ : val → iProp Σ) :
WP e1 {{ Ψ1 }} -∗ WP e2 {{ Ψ2 }} -∗
(∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) -∗
WP (e1 ||| e2)%V {{ Φ }}.
Proof.
iIntros "H1 H2 H".
wp_apply (par_spec Ψ1 Ψ2 with "[H1] [H2] [H]"); [by wp_lam..|auto].
Qed.
End proof.