The Power memory model
Require Import List Relations Setoid Omega Permutation.
Require Import Classical ClassicalDescription.
Require Import Vbase extralib ExtraRelations.
Set Implicit Arguments.
Definition actid := nat.
Inductive act :=
| Askip
| Async
| Alwsync
| Aload (l : nat) (v : nat)
| Astore (l : nat) (v : nat).
Definition loc a :=
match a with
| Aload l _
| Astore l _ ⇒ 1
| _ ⇒ 0
end.
Definition is_access a :=
match a with
| Aload _ _ | Astore _ _ ⇒ true
| _ ⇒ false
end.
Definition is_read a :=
match a with
| Aload _ _ ⇒ true
| _ ⇒ false
end.
Definition is_write a :=
match a with
| Astore _ _ ⇒ true
| _ ⇒ false
end.
Definition is_fence a :=
match a with
| Alwsync | Async ⇒ true
| _ ⇒ false
end.
Lemma is_read_access a : is_read a → is_access a.
Lemma is_write_access a : is_write a → is_access a.
Hint Resolve is_read_access is_write_access : access.
Section PowerModel.
Variable acts : list actid.
Variable lab : actid → act.
Variable po : relation actid.
Variable deps : relation actid.
Variable rmw : relation actid.
Variable ppo : relation actid.
Variable rf : actid → option actid.
Variable co : relation actid.
Definitions of auxiliary relations for the model.
Definition rfe x y := rf y = Some x ∧ ¬ po x y.
Definition fr x y := ∃ z, rf x = Some z ∧ co z y.
Definition fre x y := ∃ z, rf x = Some z ∧ co z y ∧ ¬ po x y.
Definition coe x y := co x y ∧ ¬ po x y.
Definition po_loc x y :=
po x y ∧ is_access (lab x) ∧ is_access (lab y) ∧ loc (lab x) = loc (lab y).
Definition sync x y :=
∃ s, po x s ∧ po s y ∧ lab s = Async ∧
is_access (lab x) ∧ is_access (lab y).
Definition lwsync x y :=
(∃ s, po x s ∧ po s y ∧ lab s = Alwsync)
∧ (is_read (lab x) ∧ is_access (lab y) ∨
is_access (lab x) ∧ is_write (lab y)).
Definition fence := sync +++ lwsync.
Definition hb_power := ppo +++ fence +++ rfe.
Definition prop_base :=
clos_refl rfe ;; fence ;; clos_refl_trans hb_power.
Definition chapo :=
rfe +++ fre +++ coe +++ (fre ;; rfe) +++ (coe ;; rfe).
Definition prop :=
restr_rel (fun x ⇒ is_write (lab x)) prop_base
+++ (clos_refl chapo ;; clos_refl prop_base ;; sync ;; clos_refl_trans hb_power).
The implicit well-formedness axioms
Definition ExecutionFinite :=
<< CLOlab: ∀ a, lab a ≠ Askip → In a acts >> ∧
<< CLOsb : ∀ a b, po a b → In a acts ∧ In b acts >>.
Definition ConsistentRF_dom :=
∀ a b (RF: rf b = Some a),
∃ l v, <<WRI: lab a = Astore l v>> ∧ <<READ: lab b = Aload l v >>.
Definition CompleteRF :=
∀ a (RF: rf a = None)
(READ: is_read (lab a)), False.
Definition ConsistentMO_dom :=
∀ a b (MO: co a b),
is_write (lab a) ∧ is_write (lab b) ∧ loc (lab a) = loc (lab b).
Definition ConsistentRMW_dom :=
∀ a b (RF: rmw a b),
<< PO: po a b >> ∧
<< READ: is_read (lab a) >> ∧
<< WRITE: is_write (lab b) >> ∧
<< LOCEQ: loc (lab a) = loc (lab b) >>.
The constraints on the preserved program order (PPO)
Definition ppo_lower_bound :=
∀ a b,
clos_trans (deps +++ po_loc) a b →
is_read (lab a) →
is_write (lab b) →
ppo a b.
Definition ppo_upper_bound :=
∀ a b,
ppo a b →
immediate po a b →
clos_trans (deps +++ po_loc) a b.
The Power model
Definition ConsistentPower :=
<< CppoL: ppo_lower_bound >> ∧
<< CrfD: ConsistentRF_dom >> ∧
<< COrf: CompleteRF >> ∧
<< Crmw: ConsistentRMW_dom >> ∧
<< CcoD: ConsistentMO_dom >> ∧
<< CcoF: ∀ l, is_total (fun a ⇒ ∃ v, lab a = Astore l v) co >> ∧
<< CcoT: transitive co >> ∧
<< CcoI: irreflexive co >> ∧
<< LOC_SC : acyclic (po_loc +++ (fun x y ⇒ rf y = Some x) +++ co +++ fr) >> ∧
<< ATOM : irreflexive (rmw ;; fre ;; coe) >> ∧
<< NTA : acyclic hb_power >> ∧
<< OBS : irreflexive (fre ;; prop ;; clos_refl_trans hb_power) >> ∧
<< PROP: acyclic (co +++ prop) >>.
Lemma loceq_rf :
∀ (CrfD: ConsistentRF_dom) a b (H: rf b = Some a),
loc (lab a) = loc (lab b).
Lemma loceq_co :
∀ (CcoD: ConsistentMO_dom) a b (H: co a b),
loc (lab a) = loc (lab b).
Lemma loceq_fr :
∀ (CrfD: ConsistentRF_dom) (CcoD: ConsistentMO_dom)
a b (H: fr a b),
loc (lab a) = loc (lab b).
Lemma fr_dom :
∀ (CrfD: ConsistentRF_dom)
(CcoD: ConsistentMO_dom) x y
(FR: fr x y),
is_read (lab x) ∧ is_write (lab y) ∧ loc (lab x) = loc (lab y).
Lemma rfe_dom :
∀ (CrfD: ConsistentRF_dom) x y
(RFE: rfe x y),
is_write (lab x) ∧ is_read (lab y) ∧ loc (lab x) = loc (lab y).
Lemma fre_dom :
∀
(CrfD: ConsistentRF_dom)
(CcoD: ConsistentMO_dom) x y
(FRE: fre x y),
is_read (lab x) ∧ is_write (lab y) ∧ loc (lab x) = loc (lab y).
Definition nta_rel :=
deps +++ po_loc
+++ (fun x y ⇒ po x y ∧ (is_fence (lab x) ∨ is_fence (lab y)))
+++ rfe.
Lemma acyclic_nta
(CsbT: transitive po)
(CsbI: irreflexive po)
(Cdeps: inclusion deps po)
(CrfD: ConsistentRF_dom)
(NTA : acyclic hb_power)
(PPO_lower : ppo_lower_bound) :
acyclic nta_rel.
End PowerModel.
Definition ntb_rel i ll lab deps rf x y :=
In x i ∧ In y (concat ll) ∨
nta_rel lab (mk_po i ll) deps rf x y.
Lemma acyclic_ntb i ll lab deps ppo rf
(ND: NoDup (i ++ concat ll))
(INIT: ∀ x, is_read (lab x) → In x (concat ll))
(Cdeps: inclusion deps (mk_po i ll))
(CrfD: ConsistentRF_dom lab rf)
(NTA : acyclic (hb_power lab (mk_po i ll) ppo rf))
(PPO_lower : ppo_lower_bound lab (mk_po i ll) deps ppo) :
acyclic (ntb_rel i ll lab deps rf).
Add Parametric Morphism : rfe with signature
same_relation ==> eq ==> same_relation as rfe_mor.
Add Parametric Morphism : coe with signature
same_relation ==> eq ==> same_relation as coe_mor.
Add Parametric Morphism : fre with signature
same_relation ==> eq ==> eq ==> same_relation as fre_mor.
Add Parametric Morphism : po_loc with signature
eq ==> same_relation ==> same_relation as po_loc_mor.
Add Parametric Morphism : sync with signature
eq ==> same_relation ==> same_relation as sync_mor.
Add Parametric Morphism : lwsync with signature
eq ==> same_relation ==> same_relation as lwsync_mor.
Add Parametric Morphism : hb_power with signature
eq ==> same_relation ==> eq ==> eq ==> same_relation as hb_power_mor.
Add Parametric Morphism : prop_base with signature
eq ==> same_relation ==> eq ==> eq ==> same_relation as prop_base_mor.
Add Parametric Morphism : prop with signature
eq ==> same_relation ==> eq ==> eq ==> eq ==> same_relation as prop_mor.
Add Parametric Morphism : ppo_lower_bound with signature
eq ==> same_relation ==> eq ==> eq ==> iff as ppo_lower_mor.
Add Parametric Morphism : ConsistentRMW_dom with signature
eq ==> same_relation ==> eq ==> iff as ConsistentRMW_dom_mor.
Add Parametric Morphism : ConsistentPower with signature
eq ==> same_relation ==> eq ==> eq ==> eq ==> eq ==> eq ==> iff as ConsistentPower_mor.
Add Parametric Morphism : nta_rel with signature
eq ==> same_relation ==> eq ==> eq ==> same_relation as nta_rel_mor.
Lemma po_loc_reorder lab po a b
(LOC: loc (lab a) ≠ loc (lab b)) :
po_loc lab (reorder po a b) <--> po_loc lab po.
Lemma rfe_reorder lab po rf a b
(Crf: ConsistentRF_dom lab rf)
(LOC: loc (lab a) ≠ loc (lab b)) :
rfe (reorder po b a) rf <--> rfe po rf.
Lemma fre_reorder lab po rf co a b
(Crf: ConsistentRF_dom lab rf)
(Cco: ConsistentMO_dom lab co)
(LOC: loc (lab a) ≠ loc (lab b)) :
fre (reorder po b a) rf co <--> fre po rf co.
Lemma coe_reorder lab po co a b
(Cco: ConsistentMO_dom lab co)
(LOC: loc (lab a) ≠ loc (lab b)) :
coe (reorder po b a) co <--> coe po co.
Lemma sync_reorder lab (po : relation actid) a b
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b)) :
sync lab (reorder po a b) <--> sync lab po.
Lemma lwsync_reorder lab (po : relation actid) a b
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b)) :
lwsync lab (reorder po a b) <--> lwsync lab po.
Lemma hbp_reorder lab po ppo rf a b
(Crf: ConsistentRF_dom lab rf)
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b))
(LOC: loc (lab a) ≠ loc (lab b)) :
hb_power lab (reorder po a b) ppo rf <--> hb_power lab po ppo rf.
Lemma base_reorder lab po ppo rf a b
(Crf: ConsistentRF_dom lab rf)
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b))
(LOC: loc (lab a) ≠ loc (lab b)) :
prop_base lab (reorder po a b) ppo rf <--> prop_base lab po ppo rf.
Lemma prop_reorder lab po ppo rf co a b
(Crf: ConsistentRF_dom lab rf)
(Cmo: ConsistentMO_dom lab co)
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b))
(LOC: loc (lab a) ≠ loc (lab b)) :
prop lab (reorder po a b) ppo rf co <--> prop lab po ppo rf co.
Lemma nta_rel_reorder lab po ppo rf a b
(Crf: ConsistentRF_dom lab rf)
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b))
(LOC: loc (lab a) ≠ loc (lab b)) :
nta_rel lab (reorder po a b) ppo rf <--> nta_rel lab po ppo rf.
Lemma ntb_rel_reorder i ll1 l1 a b l2 ll2 lab ppo rf
(WF: NoDup (i ++ concat (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)))
(Crf: ConsistentRF_dom lab rf)
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b))
(LOC: loc (lab a) ≠ loc (lab b)) :
ntb_rel i (ll1 ++ (l1 ++ a :: b :: l2) :: ll2) lab ppo rf <-->
ntb_rel i (ll1 ++ (l1 ++ b :: a :: l2) :: ll2) lab ppo rf.
Lemma ConsistentRMW_dom_reorder lab po rmw x y
(LOC: loc (lab x) ≠ loc (lab y)) :
ConsistentRMW_dom lab (reorder po x y) rmw ↔
ConsistentRMW_dom lab po rmw.
Lemma ppo_lower_bound_reorder lab po deps ppo a b
(LOC: loc (lab a) ≠ loc (lab b)) :
ppo_lower_bound lab (reorder po a b) deps ppo ↔
ppo_lower_bound lab po deps ppo.
Lemma ConsistentPower_reorder :
∀ lab po deps rmw ppo rf co a b
(NFa: ¬ is_fence (lab a)) (NFb: ¬ is_fence (lab b))
(LOC: loc (lab a) ≠ loc (lab b)),
ConsistentPower lab po deps rmw ppo rf co ↔
ConsistentPower lab (reorder po a b) deps rmw ppo rf co.
Definition Power_reorder lab init deps (ll ll' : list (list actid)) :=
∃ ll1 l1 a b l2 ll2,
<< NFa: ¬ is_fence (lab a) >> ∧
<< NFb: ¬ is_fence (lab b) >> ∧
<< LOC: loc (lab a) ≠ loc (lab b) >> ∧
<< Nab: ¬ deps a b >> ∧
<< WF: NoDup (init ++ concat (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)) >> ∧
<< EQ : ll = ll1 ++ (l1 ++ a :: b :: l2) :: ll2 >> ∧
<< EQ': ll' = ll1 ++ (l1 ++ b :: a :: l2) :: ll2 >>.
Fixpoint metric (ord: relation actid) (ll : list actid) :=
match ll with
| nil ⇒ 0
| a :: ll ⇒
length (filter (fun x ⇒ if excluded_middle_informative (ord x a)
then true else false) ll) +
metric ord ll
end.
Add Parametric Morphism : metric with signature
same_relation ==> eq ==> eq as metric_mor.
Lemma reorder_metric (ord : relation actid)
(T: transitive ord) (IRR: irreflexive ord) ll1 l1 a b (ORD: ord b a) l2 ll2 :
metric ord (concat (ll1 ++ (l1 ++ b :: a :: l2) :: ll2)) <
metric ord (concat (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)).
Power-coherence is equivalent to performing reorderings over the stronger
Power model that additionally requires (po U rf) to be acyclic.
Theorem Power_alternative :
∀ lab init ll (ND: NoDup (init ++ concat ll)) deps
(WF: inclusion deps (mk_po init ll))
(INIT: ∀ x, is_read (lab x) → In x (concat ll))
(MAIN: ∀ x, In x (concat ll) → is_access (lab x))
rmw ppo rf co,
ConsistentPower lab (mk_po init ll) deps rmw ppo rf co
↔
∃ ll',
clos_refl_trans (Power_reorder lab init deps) ll ll' ∧
ConsistentPower lab (mk_po init ll') deps rmw ppo rf co ∧
acyclic (mk_po init ll' +++ (fun x y ⇒ rf y = Some x)).
This page has been generated by coqdoc