Require Import Omega.
Require Import Vbase Relations List Permutation Sorting.
Require Import ClassicalDescription Setoid.
Set Implicit Arguments.
Require Import Vbase Relations List Permutation Sorting.
Require Import ClassicalDescription Setoid.
Set Implicit Arguments.
This file contains a number of basic definitions and lemmas about lists
that are missing from the standard library, and a few properties of
classical logic.
Very basic lemmas
Definition appA := app_ass.
Lemma in_cons_iff A (a b : A) l : In b (a :: l) ↔ a = b ∨ In b l.
Lemma In_split2 :
∀ A (x: A) l (IN: In x l),
∃ l1 l2, l = l1 ++ x :: l2 ∧ ¬ In x l1.
Lemma map_eq_app_inv A B (f : A → B) l l1 l2 :
map f l = l1 ++ l2 →
∃ l1' l2', l = l1' ++ l2' ∧ map f l1' = l1 ∧ map f l2' = l2.
List filtering
Lemma in_filter_iff A l f (x : A) : In x (filter f l) ↔ In x l ∧ f x.
Lemma filter_app A f (l l' : list A) :
filter f (l ++ l') = filter f l ++ filter f l'.
Lemma Permutation_filter A (l l' : list A) (P: Permutation l l') f :
Permutation (filter f l) (filter f l').
Add Parametric Morphism A : (@filter A) with
signature eq ==> (@Permutation A) ==> (@Permutation A)
as filter_mor.
List flattening
Fixpoint flatten A (l: list (list A)) :=
match l with
| nil ⇒ nil
| x :: l' ⇒ x ++ flatten l'
end.
Lemma in_flatten_iff A (x: A) ll :
In x (flatten ll) ↔ ∃ l, In l ll ∧ In x l.
List disjointness
Remove duplicate list elements (classical)
Fixpoint undup A (l: list A) :=
match l with nil ⇒ nil
| x :: l ⇒
if excluded_middle_informative (In x l) then undup l else x :: undup l
end.
Lemma nodup_one A (x: A) : NoDup (x :: nil).
Hint Resolve NoDup_nil nodup_one.
Lemma nodup_map:
∀ (A B: Type) (f: A → B) (l: list A),
NoDup l →
(∀ x y, In x l → In y l → x ≠ y → f x ≠ f y) →
NoDup (map f l).
Lemma nodup_append_commut:
∀ (A: Type) (a b: list A),
NoDup (a ++ b) → NoDup (b ++ a).
Lemma nodup_cons A (x: A) l:
NoDup (x :: l) ↔ ¬ In x l ∧ NoDup l.
Lemma nodup_app:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) ↔
NoDup l1 ∧ NoDup l2 ∧ disjoint l1 l2.
Lemma nodup_append:
∀ (A: Type) (l1 l2: list A),
NoDup l1 → NoDup l2 → disjoint l1 l2 →
NoDup (l1 ++ l2).
Lemma nodup_append_right:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) → NoDup l2.
Lemma nodup_append_left:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) → NoDup l1.
Lemma nodup_filter A (l: list A) (ND: NoDup l) f : NoDup (filter f l).
Hint Resolve nodup_filter.
Lemma Permutation_nodup A ( l l' : list A) :
Permutation l l' → NoDup l → NoDup l'.
Lemma nodup_eq_one A (x : A) l :
NoDup l → In x l → (∀ y (IN: In y l), y = x) → l = x :: nil.
Lemma nodup_consD A (x : A) l : NoDup (x :: l) → NoDup l.
Lemma nodup_mapD A B (f : A→ B) l : NoDup (map f l) → NoDup l.
Lemma In_NoDup_Permutation A (a : A) l (IN: In a l) (ND : NoDup l) :
∃ l', Permutation l (a :: l') ∧ ¬ In a l'.
Lemma in_undup_iff A (x : A) (l : list A) : In x (undup l) ↔ In x l.
Lemma nodup_undup A (l : list A) : NoDup (undup l).
Hint Resolve nodup_undup.
Lemma undup_nodup A (l : list A) : NoDup l → undup l = l.
Lemma Sorted_undup A p (l : list A) :
StronglySorted p l → StronglySorted p (undup l).
Lemma undup_nonnil A (l : list A) : l ≠ nil → undup l ≠ nil.
Lemma Permutation_undup A (l l' : list A) :
Permutation l l' → Permutation (undup l) (undup l').
Function update
Definition upd A B (f : A → B) a b x :=
if excluded_middle_informative (x = a) then b else f x.
Lemma upds A B (f: A → B) a b : upd f a b a = b.
Lemma updo A B (f: A → B) a b c (NEQ: c ≠ a) : upd f a b c = f c.
Ltac rupd := repeat first [rewrite upds | rewrite updo ; try done].
Lemma updss A B (f : A → B) l x y : upd (upd f l x) l y = upd f l y.
Lemma updC A l l' (NEQ: l ≠ l') B (f : A → B) x y :
upd (upd f l x) l' y = upd (upd f l' y) l x.
Lemma updI A B (f : A → B) a : upd f a (f a) = f.
Lemma map_upd_irr A (a: A) l (NIN: ¬ In a l) B f (b : B) :
map (upd f a b) l = map f l.
Decidable function update
Definition mupd (A: eqType) B (h : A → B) y z :=
fun x ⇒ if x == y then z else h x.
Lemma mupds (A: eqType) B (f: A → B) x y : mupd f x y x = y.
Lemma mupdo (A: eqType) B (f: A → B) x y z : x ≠ z → mupd f x y z = f z.
Lemmas about sorting
Lemma sorted_perm_eq : ∀ A (cmp: A → A → Prop)
(TRANS: transitive _ cmp)
(ANTIS: antisymmetric _ cmp)
l l' (P: Permutation l l')
(S : StronglySorted cmp l) (S' : StronglySorted cmp l'), l = l'.
Fixpoint dprod A B al (f : A → list B) :=
match al with
| nil ⇒ nil
| a :: al ⇒ map (fun b ⇒ (a, b)) (f a) ++ dprod al f
end.
Lemma in_dprod_iff A B x al (f : A → list B) :
In x (dprod al f) ↔ In (fst x) al ∧ In (snd x) (f (fst x)).
Miscellaneous
Lemma perm_from_subset :
∀ A (l : list A) l',
NoDup l' →
(∀ x, In x l' → In x l) →
∃ l'', Permutation l (l' ++ l'').
Lemma seq_split_gen :
∀ l n a,
n ≤ a < n + l →
seq n l = seq n (a - n) ++ a :: seq (S a) (l + n - a - 1).
Lemma seq_split0 :
∀ l a,
a < l →
seq 0 l = seq 0 a ++ a :: seq (S a) (l - a - 1).
Lemma list_prod_app A (l l' : list A) B (m : list B) :
list_prod (l ++ l') m = list_prod l m ++ list_prod l' m.
Lemma list_prod_nil_r A (l : list A) B :
list_prod l (@nil B) = nil.
Lemma list_prod_cons_r A (l : list A) B a (m : list B) :
Permutation (list_prod l (a :: m)) (map (fun x ⇒ (x,a)) l ++ list_prod l m).
Lemma list_prod_app_r A (l : list A) B (m m' : list B) :
Permutation (list_prod l (m ++ m')) (list_prod l m ++ list_prod l m').
Lemma in_seq_iff a n l : In a (seq n l) ↔ n ≤ a < n + l.
Lemma in_seq0_iff x a : In x (seq 0 a) ↔ x < a.
Lemma nodup_seq n l : NoDup (seq n l).
Lemma seq_split :
∀ l a,
a < l →
∃ l', Permutation (seq 0 l) (a :: l') ∧ ¬ In a l'.
Lemma Permutation_listprod_r A (l : list A) B (m m' : list B) :
Permutation m m' →
Permutation (list_prod l m) (list_prod l m').
Ltac in_simp :=
try match goal with |- ¬ _ ⇒ intro end;
repeat first [
rewrite in_flatten_iff in *; desc; clarify |
rewrite in_map_iff in *; desc; clarify |
rewrite in_seq0_iff in *; desc; clarify ].
Global Opaque seq.
This page has been generated by coqdoc