Library stdpp.functions

From stdpp Require Export base tactics.
From stdpp Require Import options.

Section definitions.
  Context {A T : Type} `{EqDecision A}.
  Global Instance fn_insert : Insert A T (A T) :=
    λ a t f b, if decide (a = b) then t else f b.
  Global Instance fn_alter : Alter A T (A T) :=
    λ (g : T T) a f b, if decide (a = b) then g (f a) else f b.
End definitions.


Section functions.
  Context {A T : Type} `{!EqDecision A}.

  Lemma fn_lookup_insert (f : A T) a t : <[a:=t]>f a = t.
  Proof. unfold insert, fn_insert. by destruct (decide (a = a)). Qed.
  Lemma fn_lookup_insert_rev (f : A T) a t1 t2 :
    <[a:=t1]>f a = t2 t1 = t2.
  Proof. rewrite fn_lookup_insert. congruence. Qed.
  Lemma fn_lookup_insert_ne (f : A T) a b t : a b <[a:=t]>f b = f b.
  Proof. unfold insert, fn_insert. by destruct (decide (a = b)). Qed.

  Lemma fn_lookup_alter (g : T T) (f : A T) a : alter g a f a = g (f a).
  Proof. unfold alter, fn_alter. by destruct (decide (a = a)). Qed.
  Lemma fn_lookup_alter_ne (g : T T) (f : A T) a b :
    a b alter g a f b = f b.
  Proof. unfold alter, fn_alter. by destruct (decide (a = b)). Qed.
End functions.