Library stdpp.functions
From stdpp Require Export base tactics.
From stdpp Require Import options.
Section definitions.
Context {A T : Type} `{EqDecision A}.
Global Instance fn_insert : Insert A T (A → T) :=
λ a t f b, if decide (a = b) then t else f b.
Global Instance fn_alter : Alter A T (A → T) :=
λ (g : T → T) a f b, if decide (a = b) then g (f a) else f b.
End definitions.
Section functions.
Context {A T : Type} `{!EqDecision A}.
Lemma fn_lookup_insert (f : A → T) a t : <[a:=t]>f a = t.
Proof. unfold insert, fn_insert. by destruct (decide (a = a)). Qed.
Lemma fn_lookup_insert_rev (f : A → T) a t1 t2 :
<[a:=t1]>f a = t2 → t1 = t2.
Proof. rewrite fn_lookup_insert. congruence. Qed.
Lemma fn_lookup_insert_ne (f : A → T) a b t : a ≠ b → <[a:=t]>f b = f b.
Proof. unfold insert, fn_insert. by destruct (decide (a = b)). Qed.
Lemma fn_lookup_alter (g : T → T) (f : A → T) a : alter g a f a = g (f a).
Proof. unfold alter, fn_alter. by destruct (decide (a = a)). Qed.
Lemma fn_lookup_alter_ne (g : T → T) (f : A → T) a b :
a ≠ b → alter g a f b = f b.
Proof. unfold alter, fn_alter. by destruct (decide (a = b)). Qed.
End functions.
From stdpp Require Import options.
Section definitions.
Context {A T : Type} `{EqDecision A}.
Global Instance fn_insert : Insert A T (A → T) :=
λ a t f b, if decide (a = b) then t else f b.
Global Instance fn_alter : Alter A T (A → T) :=
λ (g : T → T) a f b, if decide (a = b) then g (f a) else f b.
End definitions.
Section functions.
Context {A T : Type} `{!EqDecision A}.
Lemma fn_lookup_insert (f : A → T) a t : <[a:=t]>f a = t.
Proof. unfold insert, fn_insert. by destruct (decide (a = a)). Qed.
Lemma fn_lookup_insert_rev (f : A → T) a t1 t2 :
<[a:=t1]>f a = t2 → t1 = t2.
Proof. rewrite fn_lookup_insert. congruence. Qed.
Lemma fn_lookup_insert_ne (f : A → T) a b t : a ≠ b → <[a:=t]>f b = f b.
Proof. unfold insert, fn_insert. by destruct (decide (a = b)). Qed.
Lemma fn_lookup_alter (g : T → T) (f : A → T) a : alter g a f a = g (f a).
Proof. unfold alter, fn_alter. by destruct (decide (a = a)). Qed.
Lemma fn_lookup_alter_ne (g : T → T) (f : A → T) a b :
a ≠ b → alter g a f b = f b.
Proof. unfold alter, fn_alter. by destruct (decide (a = b)). Qed.
End functions.