Library iris.proofmode.notation
From stdpp Require Export strings.
From iris.proofmode Require Import coq_tactics environments.
From iris.prelude Require Import options.
Declare Scope proof_scope.
Delimit Scope proof_scope with env.
Global Arguments Envs _ _%_proof_scope _%_proof_scope _.
Global Arguments Enil {_}.
Global Arguments Esnoc {_} _%_proof_scope _%_string _%_I.
Notation "" := Enil (only printing) : proof_scope.
Notation "Γ H : P" := (Esnoc Γ (INamed H) P%I)
(at level 1, P at level 200,
left associativity, format "Γ H : '[' P ']' '//'", only printing) : proof_scope.
Notation "Γ '_' : P" := (Esnoc Γ (IAnon _) P%I)
(at level 1, P at level 200,
left associativity, format "Γ '_' : '[' P ']' '//'", only printing) : proof_scope.
Notation "Γ '--------------------------------------' □ Δ '--------------------------------------' ∗ Q" :=
(envs_entails (Envs Γ Δ _) Q%I)
(at level 1, Δ at level 200, Q at level 200, left associativity,
format "'[' Γ '--------------------------------------' □ '//' Δ '--------------------------------------' ∗ '//' Q ']'", only printing) :
stdpp_scope.
Notation "Δ '--------------------------------------' ∗ Q" :=
(envs_entails (Envs Enil Δ _) Q%I)
(at level 1, Q at level 200, left associativity,
format "'[' Δ '--------------------------------------' ∗ '//' Q ']'", only printing) : stdpp_scope.
Notation "Γ '--------------------------------------' □ Q" :=
(envs_entails (Envs Γ Enil _) Q%I)
(at level 1, Q at level 200, left associativity,
format "'[' Γ '--------------------------------------' □ '//' Q ']'", only printing) : stdpp_scope.
Notation "'--------------------------------------' ∗ Q" := (envs_entails (Envs Enil Enil _) Q%I)
(at level 1, Q at level 200, format "'[' '--------------------------------------' ∗ '//' Q ']'", only printing) : stdpp_scope.
From iris.proofmode Require Import coq_tactics environments.
From iris.prelude Require Import options.
Declare Scope proof_scope.
Delimit Scope proof_scope with env.
Global Arguments Envs _ _%_proof_scope _%_proof_scope _.
Global Arguments Enil {_}.
Global Arguments Esnoc {_} _%_proof_scope _%_string _%_I.
Notation "" := Enil (only printing) : proof_scope.
Notation "Γ H : P" := (Esnoc Γ (INamed H) P%I)
(at level 1, P at level 200,
left associativity, format "Γ H : '[' P ']' '//'", only printing) : proof_scope.
Notation "Γ '_' : P" := (Esnoc Γ (IAnon _) P%I)
(at level 1, P at level 200,
left associativity, format "Γ '_' : '[' P ']' '//'", only printing) : proof_scope.
Notation "Γ '--------------------------------------' □ Δ '--------------------------------------' ∗ Q" :=
(envs_entails (Envs Γ Δ _) Q%I)
(at level 1, Δ at level 200, Q at level 200, left associativity,
format "'[' Γ '--------------------------------------' □ '//' Δ '--------------------------------------' ∗ '//' Q ']'", only printing) :
stdpp_scope.
Notation "Δ '--------------------------------------' ∗ Q" :=
(envs_entails (Envs Enil Δ _) Q%I)
(at level 1, Q at level 200, left associativity,
format "'[' Δ '--------------------------------------' ∗ '//' Q ']'", only printing) : stdpp_scope.
Notation "Γ '--------------------------------------' □ Q" :=
(envs_entails (Envs Γ Enil _) Q%I)
(at level 1, Q at level 200, left associativity,
format "'[' Γ '--------------------------------------' □ '//' Q ']'", only printing) : stdpp_scope.
Notation "'--------------------------------------' ∗ Q" := (envs_entails (Envs Enil Enil _) Q%I)
(at level 1, Q at level 200, format "'[' '--------------------------------------' ∗ '//' Q ']'", only printing) : stdpp_scope.