Library iris.heap_lang.class_instances
From iris.program_logic Require Export language.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import tactics notation.
From iris.prelude Require Import options.
Global Instance into_val_val v : IntoVal (Val v) v.
Proof. done. Qed.
Global Instance as_val_val v : AsVal (Val v).
Proof. by eexists. Qed.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import tactics notation.
From iris.prelude Require Import options.
Global Instance into_val_val v : IntoVal (Val v) v.
Proof. done. Qed.
Global Instance as_val_val v : AsVal (Val v).
Proof. by eexists. Qed.
Instances of the Atomic class
Section atomic.
Local Ltac solve_atomic :=
apply strongly_atomic_atomic, ectx_language_atomic;
[inversion 1; naive_solver
|apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver].
Global Instance rec_atomic s f x e : Atomic s (Rec f x e).
Proof. solve_atomic. Qed.
Global Instance pair_atomic s v1 v2 : Atomic s (Pair (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance injl_atomic s v : Atomic s (InjL (Val v)).
Proof. solve_atomic. Qed.
Global Instance injr_atomic s v : Atomic s (InjR (Val v)).
Proof. solve_atomic. Qed.
Local Ltac solve_atomic :=
apply strongly_atomic_atomic, ectx_language_atomic;
[inversion 1; naive_solver
|apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver].
Global Instance rec_atomic s f x e : Atomic s (Rec f x e).
Proof. solve_atomic. Qed.
Global Instance pair_atomic s v1 v2 : Atomic s (Pair (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance injl_atomic s v : Atomic s (InjL (Val v)).
Proof. solve_atomic. Qed.
Global Instance injr_atomic s v : Atomic s (InjR (Val v)).
Proof. solve_atomic. Qed.
The instance below is a more general version of Skip
Global Instance beta_atomic s f x v1 v2 : Atomic s (App (RecV f x (Val v1)) (Val v2)).
Proof. destruct f, x; solve_atomic. Qed.
Global Instance unop_atomic s op v : Atomic s (UnOp op (Val v)).
Proof. solve_atomic. Qed.
Global Instance binop_atomic s op v1 v2 : Atomic s (BinOp op (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance if_true_atomic s v1 e2 :
Atomic s (If (Val $ LitV $ LitBool true) (Val v1) e2).
Proof. solve_atomic. Qed.
Global Instance if_false_atomic s e1 v2 :
Atomic s (If (Val $ LitV $ LitBool false) e1 (Val v2)).
Proof. solve_atomic. Qed.
Global Instance fst_atomic s v : Atomic s (Fst (Val v)).
Proof. solve_atomic. Qed.
Global Instance snd_atomic s v : Atomic s (Snd (Val v)).
Proof. solve_atomic. Qed.
Global Instance fork_atomic s e : Atomic s (Fork e).
Proof. solve_atomic. Qed.
Global Instance alloc_atomic s v w : Atomic s (AllocN (Val v) (Val w)).
Proof. solve_atomic. Qed.
Global Instance free_atomic s v : Atomic s (Free (Val v)).
Proof. solve_atomic. Qed.
Global Instance load_atomic s v : Atomic s (Load (Val v)).
Proof. solve_atomic. Qed.
Global Instance xchg_atomic s v1 v2 : Atomic s (Xchg (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance cmpxchg_atomic s v0 v1 v2 : Atomic s (CmpXchg (Val v0) (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance new_proph_atomic s : Atomic s NewProph.
Proof. solve_atomic. Qed.
Global Instance resolve_atomic s e v1 v2 :
Atomic s e → Atomic s (Resolve e (Val v1) (Val v2)).
Proof.
rename e into e1. intros H σ1 e2 κ σ2 efs [Ks e1' e2' Hfill → step].
simpl in ×. induction Ks as [|K Ks _] using rev_ind; simpl in Hfill.
- subst. inversion_clear step. by eapply (H σ1 (Val _) _ σ2 efs), base_prim_step.
- rewrite fill_app. rewrite fill_app in Hfill.
assert (∀ v, Val v = fill Ks e1' → False) as fill_absurd.
{ intros v Hv. assert (to_val (fill Ks e1') = Some v) as Htv by by rewrite -Hv.
apply to_val_fill_some in Htv. destruct Htv as [-> ->]. inversion step. }
destruct K; (inversion Hfill; clear Hfill; subst; try
match goal with | H : Val ?v = fill Ks e1' |- _ ⇒ by apply fill_absurd in H end).
refine (_ (H σ1 (fill (Ks ++ [_]) e2') _ σ2 efs _)).
+ destruct s; intro Hs; simpl in ×.
× destruct Hs as [v Hs]. apply to_val_fill_some in Hs. by destruct Hs, Ks.
× apply irreducible_resolve. by rewrite fill_app in Hs.
+ econstructor; try done. simpl. by rewrite fill_app.
Qed.
End atomic.
Proof. destruct f, x; solve_atomic. Qed.
Global Instance unop_atomic s op v : Atomic s (UnOp op (Val v)).
Proof. solve_atomic. Qed.
Global Instance binop_atomic s op v1 v2 : Atomic s (BinOp op (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance if_true_atomic s v1 e2 :
Atomic s (If (Val $ LitV $ LitBool true) (Val v1) e2).
Proof. solve_atomic. Qed.
Global Instance if_false_atomic s e1 v2 :
Atomic s (If (Val $ LitV $ LitBool false) e1 (Val v2)).
Proof. solve_atomic. Qed.
Global Instance fst_atomic s v : Atomic s (Fst (Val v)).
Proof. solve_atomic. Qed.
Global Instance snd_atomic s v : Atomic s (Snd (Val v)).
Proof. solve_atomic. Qed.
Global Instance fork_atomic s e : Atomic s (Fork e).
Proof. solve_atomic. Qed.
Global Instance alloc_atomic s v w : Atomic s (AllocN (Val v) (Val w)).
Proof. solve_atomic. Qed.
Global Instance free_atomic s v : Atomic s (Free (Val v)).
Proof. solve_atomic. Qed.
Global Instance load_atomic s v : Atomic s (Load (Val v)).
Proof. solve_atomic. Qed.
Global Instance xchg_atomic s v1 v2 : Atomic s (Xchg (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance cmpxchg_atomic s v0 v1 v2 : Atomic s (CmpXchg (Val v0) (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance new_proph_atomic s : Atomic s NewProph.
Proof. solve_atomic. Qed.
Global Instance resolve_atomic s e v1 v2 :
Atomic s e → Atomic s (Resolve e (Val v1) (Val v2)).
Proof.
rename e into e1. intros H σ1 e2 κ σ2 efs [Ks e1' e2' Hfill → step].
simpl in ×. induction Ks as [|K Ks _] using rev_ind; simpl in Hfill.
- subst. inversion_clear step. by eapply (H σ1 (Val _) _ σ2 efs), base_prim_step.
- rewrite fill_app. rewrite fill_app in Hfill.
assert (∀ v, Val v = fill Ks e1' → False) as fill_absurd.
{ intros v Hv. assert (to_val (fill Ks e1') = Some v) as Htv by by rewrite -Hv.
apply to_val_fill_some in Htv. destruct Htv as [-> ->]. inversion step. }
destruct K; (inversion Hfill; clear Hfill; subst; try
match goal with | H : Val ?v = fill Ks e1' |- _ ⇒ by apply fill_absurd in H end).
refine (_ (H σ1 (fill (Ks ++ [_]) e2') _ σ2 efs _)).
+ destruct s; intro Hs; simpl in ×.
× destruct Hs as [v Hs]. apply to_val_fill_some in Hs. by destruct Hs, Ks.
× apply irreducible_resolve. by rewrite fill_app in Hs.
+ econstructor; try done. simpl. by rewrite fill_app.
Qed.
End atomic.
Instances of the PureExec class
The behavior of the various wp_ tactics with regard to lambda differs in the following way:- wp_pures does *not* reduce lambdas/recs that are hidden behind a definition.
- wp_rec and wp_lam reduce lambdas/recs that are hidden behind a definition.
Class AsRecV (v : val) (f x : binder) (erec : expr) :=
as_recv : v = RecV f x erec.
Global Hint Mode AsRecV ! - - - : typeclass_instances.
Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl.
Global Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) ⇒
apply AsRecV_recv : typeclass_instances.
Section pure_exec.
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
Local Ltac solve_exec_puredet := simpl; intros; by inv_base_step.
Local Ltac solve_pure_exec :=
subst; intros ?; apply nsteps_once, pure_base_step_pure_step;
constructor; [solve_exec_safe | solve_exec_puredet].
Global Instance pure_recc f x (erec : expr) :
PureExec True 1 (Rec f x erec) (Val $ RecV f x erec).
Proof. solve_pure_exec. Qed.
Global Instance pure_pairc (v1 v2 : val) :
PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2).
Proof. solve_pure_exec. Qed.
Global Instance pure_injlc (v : val) :
PureExec True 1 (InjL $ Val v) (Val $ InjLV v).
Proof. solve_pure_exec. Qed.
Global Instance pure_injrc (v : val) :
PureExec True 1 (InjR $ Val v) (Val $ InjRV v).
Proof. solve_pure_exec. Qed.
Global Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} :
PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)).
Proof. unfold AsRecV in ×. solve_pure_exec. Qed.
Global Instance pure_unop op v v' :
PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v').
Proof. solve_pure_exec. Qed.
Global Instance pure_binop op v1 v2 v' :
PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v') | 10.
Proof. solve_pure_exec. Qed.
Global Instance pure_eqop v1 v2 :
PureExec (vals_compare_safe v1 v2) 1
(BinOp EqOp (Val v1) (Val v2))
(Val $ LitV $ LitBool $ bool_decide (v1 = v2)) | 1.
Proof.
intros Hcompare.
cut (bin_op_eval EqOp v1 v2 = Some $ LitV $ LitBool $ bool_decide (v1 = v2)).
{ intros. revert Hcompare. solve_pure_exec. }
rewrite /bin_op_eval /= decide_True //.
Qed.
Global Instance pure_if_true e1 e2 :
PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1.
Proof. solve_pure_exec. Qed.
Global Instance pure_if_false e1 e2 :
PureExec True 1 (If (Val $ LitV $ LitBool false) e1 e2) e2.
Proof. solve_pure_exec. Qed.
Global Instance pure_fst v1 v2 :
PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1).
Proof. solve_pure_exec. Qed.
Global Instance pure_snd v1 v2 :
PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2).
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inl v e1 e2 :
PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)).
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inr v e1 e2 :
PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)).
Proof. solve_pure_exec. Qed.
End pure_exec.
as_recv : v = RecV f x erec.
Global Hint Mode AsRecV ! - - - : typeclass_instances.
Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl.
Global Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) ⇒
apply AsRecV_recv : typeclass_instances.
Section pure_exec.
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
Local Ltac solve_exec_puredet := simpl; intros; by inv_base_step.
Local Ltac solve_pure_exec :=
subst; intros ?; apply nsteps_once, pure_base_step_pure_step;
constructor; [solve_exec_safe | solve_exec_puredet].
Global Instance pure_recc f x (erec : expr) :
PureExec True 1 (Rec f x erec) (Val $ RecV f x erec).
Proof. solve_pure_exec. Qed.
Global Instance pure_pairc (v1 v2 : val) :
PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2).
Proof. solve_pure_exec. Qed.
Global Instance pure_injlc (v : val) :
PureExec True 1 (InjL $ Val v) (Val $ InjLV v).
Proof. solve_pure_exec. Qed.
Global Instance pure_injrc (v : val) :
PureExec True 1 (InjR $ Val v) (Val $ InjRV v).
Proof. solve_pure_exec. Qed.
Global Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} :
PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)).
Proof. unfold AsRecV in ×. solve_pure_exec. Qed.
Global Instance pure_unop op v v' :
PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v').
Proof. solve_pure_exec. Qed.
Global Instance pure_binop op v1 v2 v' :
PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v') | 10.
Proof. solve_pure_exec. Qed.
Global Instance pure_eqop v1 v2 :
PureExec (vals_compare_safe v1 v2) 1
(BinOp EqOp (Val v1) (Val v2))
(Val $ LitV $ LitBool $ bool_decide (v1 = v2)) | 1.
Proof.
intros Hcompare.
cut (bin_op_eval EqOp v1 v2 = Some $ LitV $ LitBool $ bool_decide (v1 = v2)).
{ intros. revert Hcompare. solve_pure_exec. }
rewrite /bin_op_eval /= decide_True //.
Qed.
Global Instance pure_if_true e1 e2 :
PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1.
Proof. solve_pure_exec. Qed.
Global Instance pure_if_false e1 e2 :
PureExec True 1 (If (Val $ LitV $ LitBool false) e1 e2) e2.
Proof. solve_pure_exec. Qed.
Global Instance pure_fst v1 v2 :
PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1).
Proof. solve_pure_exec. Qed.
Global Instance pure_snd v1 v2 :
PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2).
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inl v e1 e2 :
PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)).
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inr v e1 e2 :
PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)).
Proof. solve_pure_exec. Qed.
End pure_exec.