Library iris.program_logic.ectx_language

An axiomatization of evaluation-context based languages, including a proof that this gives rise to a "language" in the Iris sense.
From iris.prelude Require Export prelude.
From iris.program_logic Require Import language.
From iris.prelude Require Import options.

TAKE CARE: When you define an ectxLanguage canonical structure for your language, you need to also define a corresponding language canonical structure. Use the coercion LanguageOfEctx as defined in the bottom of this file for doing that.

Section ectx_language_mixin.
  Context {expr val ectx state observation : Type}.
  Context (of_val : val expr).
  Context (to_val : expr option val).
  Context (empty_ectx : ectx).
  Context (comp_ectx : ectx ectx ectx).
  Context (fill : ectx expr expr).
  Context (base_step : expr state list observation expr state list expr Prop).

  Record EctxLanguageMixin := {
    mixin_to_of_val v : to_val (of_val v) = Some v;
    mixin_of_to_val e v : to_val e = Some v of_val v = e;
    mixin_val_base_stuck e1 σ1 κ e2 σ2 efs :
      base_step e1 σ1 κ e2 σ2 efs to_val e1 = None;

    mixin_fill_empty e : fill empty_ectx e = e;
    mixin_fill_comp K1 K2 e : fill K1 (fill K2 e) = fill (comp_ectx K1 K2) e;
    mixin_fill_inj K : Inj (=) (=) (fill K);
    mixin_fill_val K e : is_Some (to_val (fill K e)) is_Some (to_val e);

    
Given a base redex e1_redex somewhere in a term, and another decomposition of the same term into fill K' e1' such that e1' is not a value, then the base redex context is e1''s context K' filled with another context K''. In particular, this implies e1 = fill K'' e1_redex by fill_inj, i.e., e1' contains the base redex.)
This implies there can be only one base redex, see base_redex_unique.
If fill K e takes a base step, then either e is a value or K is the empty evaluation context. In other words, if e is not a value wrapping it in a context does not add new base redex positions.
    mixin_base_ctx_step_val K e σ1 κ e2 σ2 efs :
      base_step (fill K e) σ1 κ e2 σ2 efs is_Some (to_val e) K = empty_ectx;
  }.
End ectx_language_mixin.

Structure ectxLanguage := EctxLanguage {
  expr : Type;
  val : Type;
  ectx : Type;
  state : Type;
  observation : Type;

  of_val : val expr;
  to_val : expr option val;
  empty_ectx : ectx;
  comp_ectx : ectx ectx ectx;
  fill : ectx expr expr;
  base_step : expr state list observation expr state list expr Prop;

  ectx_language_mixin :
    EctxLanguageMixin of_val to_val empty_ectx comp_ectx fill base_step
}.

Bind Scope expr_scope with expr.
Bind Scope val_scope with val.

Global Arguments EctxLanguage {_ _ _ _ _ _ _ _ _ _ _} _.
Global Arguments of_val {_} _.
Global Arguments to_val {_} _.
Global Arguments empty_ectx {_}.
Global Arguments comp_ectx {_} _ _.
Global Arguments fill {_} _ _.
Global Arguments base_step {_} _ _ _ _ _ _.

Section ectx_language.
  Context {Λ : ectxLanguage}.
  Implicit Types v : val Λ.
  Implicit Types e : expr Λ.
  Implicit Types K : ectx Λ.

  Lemma val_base_stuck e1 σ1 κ e2 σ2 efs : base_step e1 σ1 κ e2 σ2 efs to_val e1 = None.
  Proof. apply ectx_language_mixin. Qed.
  Lemma fill_empty e : fill empty_ectx e = e.
  Proof. apply ectx_language_mixin. Qed.
  Lemma fill_comp K1 K2 e : fill K1 (fill K2 e) = fill (comp_ectx K1 K2) e.
  Proof. apply ectx_language_mixin. Qed.
  Global Instance fill_inj K : Inj (=) (=) (fill K).
  Proof. apply ectx_language_mixin. Qed.
  Lemma fill_val K e : is_Some (to_val (fill K e)) is_Some (to_val e).
  Proof. apply ectx_language_mixin. Qed.
  Lemma step_by_val K' K_redex e1' e1_redex σ1 κ e2 σ2 efs :
    fill K' e1' = fill K_redex e1_redex
    to_val e1' = None
    base_step e1_redex σ1 κ e2 σ2 efs
     K'', K_redex = comp_ectx K' K''.
  Proof. apply ectx_language_mixin. Qed.
  Lemma base_ctx_step_val K e σ1 κ e2 σ2 efs :
    base_step (fill K e) σ1 κ e2 σ2 efs is_Some (to_val e) K = empty_ectx.
  Proof. apply ectx_language_mixin. Qed.

  Definition base_reducible (e : expr Λ) (σ : state Λ) :=
     κ e' σ' efs, base_step e σ κ e' σ' efs.
  Definition base_reducible_no_obs (e : expr Λ) (σ : state Λ) :=
     e' σ' efs, base_step e σ [] e' σ' efs.
  Definition base_irreducible (e : expr Λ) (σ : state Λ) :=
     κ e' σ' efs, ¬base_step e σ κ e' σ' efs.
  Definition base_stuck (e : expr Λ) (σ : state Λ) :=
    to_val e = None base_irreducible e σ.

  Definition sub_redexes_are_values (e : expr Λ) :=
     K e', e = fill K e' to_val e' = None K = empty_ectx.

  Inductive prim_step (e1 : expr Λ) (σ1 : state Λ) (κ : list (observation Λ))
      (e2 : expr Λ) (σ2 : state Λ) (efs : list (expr Λ)) : Prop :=
    Ectx_step K e1' e2' :
      e1 = fill K e1' e2 = fill K e2'
      base_step e1' σ1 κ e2' σ2 efs prim_step e1 σ1 κ e2 σ2 efs.

  Lemma Ectx_step' K e1 σ1 κ e2 σ2 efs :
    base_step e1 σ1 κ e2 σ2 efs prim_step (fill K e1) σ1 κ (fill K e2) σ2 efs.
  Proof. econstructor; eauto. Qed.

  Definition ectx_lang_mixin : LanguageMixin of_val to_val prim_step.
  Proof.
    split.
    - apply ectx_language_mixin.
    - apply ectx_language_mixin.
    - intros ?????? [??? → → ?%val_base_stuck].
      apply eq_None_not_Some. by intros ?%fill_val%eq_None_not_Some.
  Qed.

  Canonical Structure ectx_lang : language := Language ectx_lang_mixin.

  Definition base_atomic (a : atomicity) (e : expr Λ) : Prop :=
     σ κ e' σ' efs,
      base_step e σ κ e' σ' efs
      if a is WeaklyAtomic then irreducible e' σ' else is_Some (to_val e').

Some lemmas about this language

  Lemma fill_not_val K e : to_val e = None to_val (fill K e) = None.
  Proof. rewrite !eq_None_not_Some. eauto using fill_val. Qed.

  Lemma base_reducible_no_obs_reducible e σ :
    base_reducible_no_obs e σ base_reducible e σ.
  Proof. intros (?&?&?&?). eexists. eauto. Qed.
  Lemma not_base_reducible e σ : ¬base_reducible e σ base_irreducible e σ.
  Proof. unfold base_reducible, base_irreducible. naive_solver. Qed.

The decomposition into base redex and context is unique.
In all sensible instances, comp_ectx K' empty_ectx will be the same as K', so the conclusion is K = K' e = e', but we do not require a law to actually prove that so we cannot use that fact here.
  Lemma base_redex_unique K K' e e' σ :
    fill K e = fill K' e'
    base_reducible e σ
    base_reducible e' σ
    K = comp_ectx K' empty_ectx e = e'.
  Proof.
    intros Heq (κ & e2 & σ2 & efs & Hred) (κ' & e2' & σ2' & efs' & Hred').
    edestruct (step_by_val K' K e' e) as [K'' HK];
      [by eauto using val_base_stuck..|].
    subst K. move: Heq. rewrite -fill_comp. intros <-%(inj (fill _)).
    destruct (base_ctx_step_val _ _ _ _ _ _ _ Hred') as [[]%not_eq_None_Some|HK''].
    { by eapply val_base_stuck. }
    subst K''. rewrite fill_empty. done.
  Qed.

  Lemma base_prim_step e1 σ1 κ e2 σ2 efs :
    base_step e1 σ1 κ e2 σ2 efs prim_step e1 σ1 κ e2 σ2 efs.
  Proof. apply Ectx_step with empty_ectx; by rewrite ?fill_empty. Qed.

  Lemma base_step_not_stuck e σ κ e' σ' efs : base_step e σ κ e' σ' efs not_stuck e σ.
  Proof. rewrite /not_stuck /reducible /=. eauto 10 using base_prim_step. Qed.

  Lemma fill_prim_step K e1 σ1 κ e2 σ2 efs :
    prim_step e1 σ1 κ e2 σ2 efs prim_step (fill K e1) σ1 κ (fill K e2) σ2 efs.
  Proof.
    destruct 1 as [K' e1' e2' → ->].
    rewrite !fill_comp. by econstructor.
  Qed.
  Lemma fill_reducible K e σ : reducible e σ reducible (fill K e) σ.
  Proof.
    intros (κ&e'&σ'&efs&?). κ, (fill K e'), σ', efs.
    by apply fill_prim_step.
  Qed.
  Lemma fill_reducible_no_obs K e σ : reducible_no_obs e σ reducible_no_obs (fill K e) σ.
  Proof.
    intros (e'&σ'&efs&?). (fill K e'), σ', efs.
    by apply fill_prim_step.
  Qed.
  Lemma base_prim_reducible e σ : base_reducible e σ reducible e σ.
  Proof. intros (κ&e'&σ'&efs&?). eexists κ, e', σ', efs. by apply base_prim_step. Qed.
  Lemma base_prim_fill_reducible e K σ :
    base_reducible e σ reducible (fill K e) σ.
  Proof. intro. by apply fill_reducible, base_prim_reducible. Qed.
  Lemma base_prim_reducible_no_obs e σ : base_reducible_no_obs e σ reducible_no_obs e σ.
  Proof. intros (e'&σ'&efs&?). eexists e', σ', efs. by apply base_prim_step. Qed.
  Lemma base_prim_irreducible e σ : irreducible e σ base_irreducible e σ.
  Proof.
    rewrite -not_reducible -not_base_reducible. eauto using base_prim_reducible.
  Qed.
  Lemma base_prim_fill_reducible_no_obs e K σ :
    base_reducible_no_obs e σ reducible_no_obs (fill K e) σ.
  Proof. intro. by apply fill_reducible_no_obs, base_prim_reducible_no_obs. Qed.

  Lemma prim_base_reducible e σ :
    reducible e σ sub_redexes_are_values e base_reducible e σ.
  Proof.
    intros (κ&e'&σ'&efs&[K e1' e2' → → Hstep]) ?.
    assert (K = empty_ectx) asby eauto 10 using val_base_stuck.
    rewrite fill_empty /base_reducible; eauto.
  Qed.
  Lemma prim_base_irreducible e σ :
    base_irreducible e σ sub_redexes_are_values e irreducible e σ.
  Proof.
    rewrite -not_reducible -not_base_reducible. eauto using prim_base_reducible.
  Qed.

  Lemma base_stuck_stuck e σ :
    base_stuck e σ sub_redexes_are_values e stuck e σ.
  Proof.
    intros [] ?. split; first done.
    by apply prim_base_irreducible.
  Qed.

  Lemma ectx_language_atomic a e :
    base_atomic a e sub_redexes_are_values e Atomic a e.
  Proof.
    intros Hatomic_step Hatomic_fill σ κ e' σ' efs [K e1' e2' → → Hstep].
    assert (K = empty_ectx) asby eauto 10 using val_base_stuck.
    rewrite fill_empty. eapply Hatomic_step. by rewrite fill_empty.
  Qed.

  Lemma base_reducible_prim_step_ctx K e1 σ1 κ e2 σ2 efs :
    base_reducible e1 σ1
    prim_step (fill K e1) σ1 κ e2 σ2 efs
     e2', e2 = fill K e2' base_step e1 σ1 κ e2' σ2 efs.
  Proof.
    intros (κ'&e2''&σ2''&efs''&HhstepK) [K' e1' e2' HKe1Hstep].
    edestruct (step_by_val K) as [K'' ?];
      eauto using val_base_stuck; simplify_eq/=.
    rewrite -fill_comp in HKe1; simplify_eq.
     (fill K'' e2'). rewrite fill_comp; split; first done.
    apply base_ctx_step_val in HhstepK as [[v ?]|?]; simplify_eq.
    { apply val_base_stuck in Hstep; simplify_eq. }
    by rewrite !fill_empty.
  Qed.

  Lemma base_reducible_prim_step e1 σ1 κ e2 σ2 efs :
    base_reducible e1 σ1
    prim_step e1 σ1 κ e2 σ2 efs
    base_step e1 σ1 κ e2 σ2 efs.
  Proof.
    intros.
    edestruct (base_reducible_prim_step_ctx empty_ectx) as (?&?&?);
      rewrite ?fill_empty; eauto.
    by simplify_eq; rewrite fill_empty.
  Qed.

  Global Instance ectx_lang_ctx K : LanguageCtx (fill K).
  Proof.
    split; simpl.
    - eauto using fill_not_val.
    - intros ?????? [K' e1' e2' Heq1 Heq2 Hstep].
      by (comp_ectx K K') e1' e2'; rewrite ?Heq1 ?Heq2 ?fill_comp.
    - intros e1 σ1 κ e2 σ2 efs Hnval [K'' e1'' e2'' Heq1Hstep].
      destruct (step_by_val K K'' e1 e1'' σ1 κ e2'' σ2 efs) as [K' ->]; eauto.
      rewrite -fill_comp in Heq1; apply (inj (fill _)) in Heq1.
       (fill K' e2''); rewrite -fill_comp; split; auto.
      econstructor; eauto.
  Qed.

  Record pure_base_step (e1 e2 : expr Λ) := {
    pure_base_step_safe σ1 : base_reducible_no_obs e1 σ1;
    pure_base_step_det σ1 κ e2' σ2 efs :
      base_step e1 σ1 κ e2' σ2 efs κ = [] σ2 = σ1 e2' = e2 efs = []
  }.

  Lemma pure_base_step_pure_step e1 e2 : pure_base_step e1 e2 pure_step e1 e2.
  Proof.
    intros [Hp1 Hp2]. split.
    - intros σ. destruct (Hp1 σ) as (e2' & σ2 & efs & ?).
      eexists e2', σ2, efs. by apply base_prim_step.
    - intros σ1 κ e2' σ2 efs ?%base_reducible_prim_step; eauto using base_reducible_no_obs_reducible.
  Qed.

This is not an instance because HeapLang's wp_pure tactic already takes care of handling the evaluation context. So the instance is redundant. If you are defining your own language and your wp_pure works differently, you might want to specialize this lemma to your language and register that as an instance.
  Lemma pure_exec_fill K φ n e1 e2 :
    PureExec φ n e1 e2
    PureExec φ n (fill K e1) (fill K e2).
  Proof. apply: pure_exec_ctx. Qed.
End ectx_language.

Global Arguments ectx_lang : clear implicits.
Global Arguments Ectx_step {Λ e1 σ1 κ e2 σ2 efs}.
Coercion ectx_lang : ectxLanguage >-> language.

Definition LanguageOfEctx (Λ : ectxLanguage) : language :=
  let '@EctxLanguage E V C St K of_val to_val empty comp fill base mix := Λ in
  @Language E V St K of_val to_val _
    (@ectx_lang_mixin (@EctxLanguage E V C St K of_val to_val empty comp fill base mix)).

Global Arguments LanguageOfEctx : simpl never.