Library iris.algebra.ufrac

This file provides a "bounded" version of the fractional camera whose elements are in the interval (0,..) instead of (0,1].
From Coq.QArith Require Import Qcanon.
From iris.algebra Require Export cmra.
From iris.algebra Require Import proofmode_classes.
Set Default Proof Using "Type".

Since the standard (0,1] fractional camera frac is used more often, we define ufrac through a Definition instead of a Notation. That way, Coq infers the frac camera by default when using the Qp type.
Definition ufrac := Qp.

Section ufrac.
Canonical Structure ufracO := leibnizO ufrac.

Instance ufrac_valid : Valid ufrac := λ x, True.
Instance ufrac_pcore : PCore ufrac := λ _, None.
Instance ufrac_op : Op ufrac := λ x y, (x + y)%Qp.

Lemma ufrac_included (x y : ufrac) : x y (x < y)%Qc.
Proof. by rewrite Qp_lt_sum. Qed.

Corollary ufrac_included_weak (x y : ufrac) : x y (x y)%Qc.
Proof. intros ?%ufrac_included. auto using Qclt_le_weak. Qed.

Definition ufrac_ra_mixin : RAMixin ufrac.
Proof. split; try apply _; try done. Qed.
Canonical Structure ufracR := discreteR ufrac ufrac_ra_mixin.

Global Instance ufrac_cmra_discrete : CmraDiscrete ufracR.
Proof. apply discrete_cmra_discrete. Qed.
End ufrac.

Global Instance ufrac_cancelable (q : ufrac) : Cancelable q.
Proof. intros ?????. by apply Qp_eq, (inj (Qcplus q)), (Qp_eq (q+y) (q+z))%Qp. Qed.

Global Instance ufrac_id_free (q : ufrac) : IdFree q.
Proof.
  intros [q0 Hq0] ? EQ%Qp_eq. rewrite -{1}(Qcplus_0_r q) in EQ.
  eapply Qclt_not_eq; first done. by apply (inj (Qcplus q)).
Qed.

Lemma ufrac_op' (q p : ufrac) : (p q) = (p + q)%Qp.
Proof. done. Qed.

Global Instance is_op_ufrac (q : ufrac) : IsOp' q (q/2)%Qp (q/2)%Qp.
Proof. by rewrite /IsOp' /IsOp ufrac_op' Qp_div_2. Qed.