"Roach motel" reorderings


Require Import Peano_dec List Vbase Relations ExtraRelations.
Require Import actions c11 cmon.
Set Implicit Arguments.

We say that two actions a and b are adjacent according to a relation rel if
  • every action directly reachable from b is directly reachable from a;
  • every action directly reachable from a, except for b, is also directly reachable by b ;
  • every action that reaches a directly can also reach b directly; and
  • every action that reaches b directly, except for a, can also reach a directly.
Note that adjacent actions are not necessarily related by rel.

Definition adjacent (rel: relation actid) (a b: actid) :=
   LA_ac : c, rel b crel a c
   LA_ca : c, rel c bc arel c a
   LA_cb : c, rel c arel c b
   LA_bc : c, rel a cc brel b c .

A weaker notion of adjacency, that drops conditions (ii) and (iv) from the previous definition.

Definition adjacentW (rel: relation actid) (a b: actid) :=
   LA_ac : c, rel b crel a c
   LA_cb : c, rel c arel c b .

An even weaker notion that uses clos_trans _ rel instead of rel in the conclusion.

Definition adjacentWW (rel: relation actid) (a b: actid) :=
   LA_ac : c, rel b cclos_trans _ rel a c
   LA_cb : c, rel c aclos_trans _ rel c b .

Ltac unfolds :=
  repeat match goal with |- context [?x] ⇒ unfold x end.

Lemma adjacent_weaken rel a b :
  adjacent rel a badjacentW rel a b.

Lemma adjacentW_weaken rel a b :
  adjacentW rel a badjacentWW rel a b.



Definition has_loc a :=
  match a with
    | Aalloc _ _ _
    | Aload _ _ _ _
    | Astore _ _ _ _
    | Armw _ _ _ _ _true
    | _false
  end.

Notation same_loc a b :=
  ( SL_A : has_loc a
    SL_B : has_loc b
    SL_Eq: loc a = loc b ).

Two distinct actions a and b are reorderable if
  • they belong to the same thread,
  • they do not access the same location,
  • a is not an acquire access or fence,
  • b is not a release access or fence,
  • if the model type mt is MThbUrfnaAcyclic or MThbUrfAcyclic, and a is a read, then b is not a write,
  • if a is a release fence, then b is not an atomic write,
  • if b is an acquire fence, then a is not an atomic read, and
  • a and b are not both SC actions.

Definition admissible_reordering mt acts lab (a b: actid) :=
   AR_Neq: a b
   AR_In_a: In a acts
   AR_In_b: In b acts
   AR_ST: thread (lab a) = thread (lab b)
   AR_SL: ¬ same_loc (lab a) (lab b)
   AR_Not_Acq_Wr: ¬ is_acquire (lab a)
   AR_Not_Rel_Ra: ¬ is_release (lab b)
   AR_Arfna_RW: mt = MThbUrfnaAcyclic
                  is_read (lab a) →
                  is_write (lab b) →
                  False
   AR_Arf_RW: mt = MThbUrfAcyclic
                is_read (lab a) →
                is_write (lab b) →
                False
   AR_Not_Fence_Rel_Write: is_fence (lab a) →
                             is_release (lab a) →
                             is_write (lab b) →
                             ¬ is_na (lab b) →
                             False
   AR_Not_Read_Fence_Acq: is_read (lab a) →
                            ¬ is_na (lab a) →
                            is_fence (lab b) →
                            is_acquire (lab b) →
                            False
   AR_Not_Both_Sc: ¬ (is_sc (lab a) is_sc (lab b)) .


The tactic xplit deals with all existential quantifiers and conjunctions in the goal.

Ltac xplit :=
  repeat match goal with
  | |- x, _eexists
  | |- _ _split
  end.


Lemma Crf_Read:
   lab rf
         (Crf: ConsistentRF lab rf)
         a b (RF: rf a = Some b),
    is_read (lab a).

Lemma Crf_Write:
   lab rf
         (Crf: ConsistentRF lab rf)
         a b (RF: rf a = Some b),
    is_write (lab b).

Lemma Cmo_Write1:
   lab mo
         (Cmo: ConsistentMO lab mo)
         a b (MO: mo a b),
    is_write (lab a).

Lemma Cmo_Write2:
   lab mo
         (Cmo: ConsistentMO lab mo)
         a b (MO: mo a b),
    is_write (lab b).

Lemma RS_Write1:
   mt2 lab sb rf mo
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b
         (RS: release_seq mt2 lab sb rf mo a b)
         (Wc: is_write (lab b)),
    is_write (lab a).

Lemma sync_release:
   mt2 lab sb rf mo flag a b,
  synchronizes_with mt2 lab sb rf mo flag a b
  is_release (lab a).

Lemma sync_acquire:
  mt2 lab sb rf mo flag a b,
  synchronizes_with mt2 lab sb rf mo flag a b
  is_acquire (lab b).

Hint Immediate sync_release sync_acquire : sync.


Lemma rf_eq_loc:
   lab rf (Crf: ConsistentRF lab rf)
         a b (RF: rf b = Some a),
    loc (lab a) = loc (lab b).

Lemma rf_has_loc1:
   lab rf (Crf: ConsistentRF lab rf)
         a b (RF: rf b = Some a),
    has_loc (lab a).

Lemma rf_has_loc2:
   lab rf (Crf: ConsistentRF lab rf)
         a b (RF: rf b = Some a),
    has_loc (lab b).

Lemma rf_same_loc:
   lab rf (Crf: ConsistentRF lab rf)
         a b (RF: rf b = Some a),
    same_loc (lab a) (lab b).

Lemma mo_eq_loc:
   lab mo (Cmo: ConsistentMO lab mo)
         a b (MO: mo a b),
    loc (lab a) = loc (lab b).

Lemma mo_has_loc1:
   lab mo (Cmo: ConsistentMO lab mo)
         a b (MO: mo a b),
    has_loc (lab a).

Lemma mo_has_loc2:
   lab mo (Cmo: ConsistentMO lab mo)
         a b (MO: mo a b),
    has_loc (lab b).

Lemma mo_same_loc:
   lab mo (Cmo: ConsistentMO lab mo)
         a b (MO: mo a b),
    same_loc (lab a) (lab b).

Hint Immediate
     rf_has_loc1 rf_has_loc2 rf_same_loc
     mo_has_loc1 mo_has_loc2 mo_same_loc : loc.



Lemma reordering_ct:
   rel a b (LA: adjacentWW rel a b)
             x y (Ct: clos_trans _ (rel UNION1 (a,b)) x y),
    clos_trans _ rel x y a=x b=y.

Lemma reordering_rse:
   lab sb
         a b (LA: adjacentWW sb a b) mt2
         x y (RSE: release_seq_elem mt2 lab (sb UNION1 (a,b)) x y),
    release_seq_elem mt2 lab sb x y a=x b=y.

Lemma reordering_st :
   lab sb
         a b (LA: adjacentWW sb a b) mt2
         x y (RS: same_thread mt2 lab (sb UNION1 (a,b)) x y)
             (NEQ : x = ay = bFalse),
    same_thread mt2 lab sb x y.

Lemma reordering_rs:
   mt acts lab sb rf mo
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LA: adjacentWW sb a b) mt2
         x y (RS: release_seq mt2 lab (sb UNION1 (a,b)) rf mo x y),
    release_seq mt2 lab sb rf mo x y.

Lemma reordering_sw:
   mt acts lab sb rf mo
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LA: adjacentWW sb a b) mt2
         x y (SW: synchronizes_with mt2 lab (sb UNION1 (a,b)) rf mo true x y),
    synchronizes_with mt2 lab sb rf mo true x y.


Lemma reordering_hb_intermediate:
   mt acts lab sb rf mo
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LA: adjacentWW sb a b) mt2 asw
         x y (HB: happens_before mt2 lab (sb UNION1 (a,b)) asw rf mo x y),
    happens_before mt2 lab sb asw rf mo x y
     (x = a happens_before mt2 lab sb asw rf mo x a)
       
       (y = b happens_before mt2 lab sb asw rf mo b y).

Lemma reordering_hb_cycle:
   mt acts lab sb rf mo
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LA: adjacentWW sb a b) mt2 asw
         x (HB: happens_before mt2 lab (sb UNION1 (a,b)) asw rf mo x x),
    happens_before mt2 lab sb asw rf mo x x
    happens_before mt2 lab sb asw rf mo b a.


Lemma reordering_hb_right:
   mt mt2 acts lab sb asw rf mo
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b)
         x (HB: happens_before mt2 lab sb asw rf mo x a),
    happens_before mt2 lab sb asw rf mo x b.

Lemma reordering_hb_left:
   mt mt2 acts lab sb asw rf mo
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b)
         y (HB: happens_before mt2 lab sb asw rf mo b y),
    happens_before mt2 lab sb asw rf mo a y.

Final reordering_hb lemma

Lemma reordering_hb:
   mt mt2 acts lab sb asw rf mo
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b)
         x y (HB: happens_before mt2 lab (sb UNION1 (a,b)) asw rf mo x y),
    happens_before mt2 lab sb asw rf mo x y (x=a y=b).

Lemma hb_adjacentW:
   mt mt2 acts lab sb asw rf mo
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
    adjacentW (happens_before mt2 lab sb asw rf mo) a b.

Lemma path_decomp_three_steps:
   X (eq_X_dec: (x y: X), {x=y} + {xy})
         rel x y
         (XY: clos_trans X rel x y),
    rel x y
    ( z, rel x z rel z y)
    ( z t, z y t x rel x z clos_trans X rel z t rel t y).

Lemma reordering_acyclic_hb:
   mt mt2 acts lab sb asw rf mo
         (IRR: irreflexive (happens_before mt2 lab sb asw rf mo))
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
    irreflexive (happens_before mt2 lab (sb UNION1 (a,b)) asw rf mo).

Lemma hb_admissible_union:
   mt mt2 acts lab sb asw rf mo
         (IRR: irreflexive (happens_before mt2 lab sb asw rf mo))
         (Crf: ConsistentRF lab rf)
         (Cmo: ConsistentMO lab mo)
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
    happens_before mt2 lab (sb UNION1 (a,b)) asw rf mo
    <-→ happens_before mt2 lab sb asw rf mo UNION1 (a,b).

We develop separate lemmas for the acyclity axioms.
  • MTorig

Lemma acyclicity_orig:
   mt2 mtsc acts lab sb dsb asw rf mo sc
         (CONS: Semiconsistent MTorig mt2 mtsc acts lab sb dsb asw rf mo sc)
         a b,
    ConsistentRF_na mt2 lab (sb UNION1 (a,b)) asw rf mo.

  • MThbUrfnaAcyclic and MThbUrfAcyclic


Lemma decomp_path_sbUrf_UNION:
   sb rf P a b x y
         (PATH: clos_trans actid (fun x y ⇒ (sb UNION1 (a,b)) x y rf y = Some x P x y) x y),
    clos_trans _ (fun x ysb x y rf y = Some x P x y) x y
     clos_refl_trans _ (fun x ysb x y rf y = Some x P x y) x a
        clos_refl_trans _ (fun x ysb x y rf y = Some x P x y) b y.

We prove the acyclicity result parametrically with respect to any restriction of the reads from relation.

Lemma acyclicity_relUrf:
   mt acts lab rel rf P
         (ACYC: acyclic (fun x yrel x y rf y = Some x P x y))
         (Crf: ConsistentRF lab rf)
         a b (AR: admissible_reordering mt acts lab a b)
             (LA: adjacentW rel a b)
         (ABNRW: ¬ (is_read (lab a) is_write (lab b))),
    acyclic (fun x y ⇒ (rel UNION1 (a,b)) x y rf y = Some x P x y).

The two acyclity lemmas are deduced by instantiation of the parametric lemma.

Lemma acyclicity_hbUrf:
   mt2 mtsc acts lab sb dsb asw rf mo sc
         (CONS: Semiconsistent MThbUrfAcyclic mt2 mtsc acts lab sb dsb asw rf mo sc)
         a b (AR: admissible_reordering MThbUrfAcyclic acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
    acyclic (fun x yhappens_before mt2 lab (sb UNION1 (a,b)) asw rf mo x y rf y = Some x)
     is_read (lab a) is_write (lab b).

Lemma acyclicity_hbUrfna:
   mt2 mtsc acts lab sb dsb asw rf mo sc
         (CONS: Semiconsistent MThbUrfnaAcyclic mt2 mtsc acts lab sb dsb asw rf mo sc)
         a b (AR: admissible_reordering MThbUrfnaAcyclic acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
    acyclic (fun x yhappens_before mt2 lab (sb UNION1 (a,b)) asw rf mo x y rfna lab rf x y)
     is_read (lab a) is_write (lab b).

We prove the main theorem of this section, that the admissible reorderings preserve semiconsistent executions and data races.

Theorem Semiconsistent_reordering :
   mt mt2 mtsc acts lab sb dsb asw rf mo sc
         (CONS: Semiconsistent mt mt2 mtsc acts lab sb dsb asw rf mo sc)
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
     CONS': Semiconsistent mt mt2 mtsc acts lab (sb UNION1 (a,b)) dsb asw rf mo sc
     RACE: racy mt2 lab sb asw rf moracy mt2 lab (sb UNION1 (a,b)) asw rf mo .

Using restrict_rf, we can lift this theorem to preserve consistent executions.

Theorem Consistent_reordering :
   mt (MT: mt MTorig) mt2 mtsc acts lab sb dsb asw rf mo sc
         (CONS: Consistent mt mt2 mtsc acts lab sb dsb asw rf mo sc)
         a b (AR: admissible_reordering mt acts lab a b)
             (LASB: adjacentWW sb a b)
             (LAASW: adjacentWW asw a b),
     rf',
       CONS': Consistent mt mt2 mtsc acts lab (sb UNION1 (a,b)) dsb asw rf' mo sc
       RACE: racy mt2 lab sb asw rf moracy mt2 lab (sb UNION1 (a,b)) asw rf mo .

Note that the theorem above requires a weaker adjacency condition. The theorem shown in the paper is a simple corollary.

Corollary Consistent_reordering_paper :
   mt mt2 mtsc acts lab sb dsb asw rf mo sc a b,
    Consistent mt mt2 mtsc acts lab sb dsb asw rf mo sc
    admissible_reordering mt acts lab a b
    adjacent sb a b
    adjacent asw a b
    mt MTorig
   rf',
     CONS': Consistent mt mt2 mtsc acts lab (sb UNION1 (a,b)) dsb asw rf' mo sc
     RACE: racy mt2 lab sb asw rf moracy mt2 lab (sb UNION1 (a,b)) asw rf mo .


This page has been generated by coqdoc