Require Import Omega.
Require Import Vbase Relations List Permutation Sorting.
Require Import ClassicalDescription Setoid.
Set Implicit Arguments.
Require Import Vbase Relations List Permutation Sorting.
Require Import ClassicalDescription Setoid.
Set Implicit Arguments.
This file contains a number of basic definitions and lemmas about lists
that are missing from the standard library, and a few properties of
classical logic.
Very basic lemmas
Definition appA := app_ass.
Lemma in_cons_iff A (a b : A) l : In b (a :: l) ↔ a = b ∨ In b l.
Proof. done. Qed.
Lemma In_split2 :
∀ A (x: A) l (IN: In x l),
∃ l1 l2, l = l1 ++ x :: l2 ∧ ¬ In x l1.
Proof.
induction l; ins; desf; [by eexists nil; ins; eauto|].
destruct (classic (a = x)); desf; [by eexists nil; ins; eauto|].
apply IHl in IN; desf; eexists (_ :: _); repeat eexists; ins; intro; desf.
Qed.
Lemma map_eq_app_inv A B (f : A → B) l l1 l2 :
map f l = l1 ++ l2 →
∃ l1' l2', l = l1' ++ l2' ∧ map f l1' = l1 ∧ map f l2' = l2.
Proof.
induction[l1] l; ins.
by destruct l1, l2; ins; eexists nil, nil.
destruct l1; ins; desf.
by eexists nil,_; ins.
eapply IHl in H; desf; eexists (_ :: _), _; split; ins.
Qed.
List filtering
Lemma in_filter_iff A l f (x : A) : In x (filter f l) ↔ In x l ∧ f x.
Proof.
induction l; ins; try tauto.
des_if; ins; rewrite IHl; split; ins; desf; eauto.
Qed.
Lemma filter_app A f (l l' : list A) :
filter f (l ++ l') = filter f l ++ filter f l'.
Proof.
induction l; ins; desf; ins; congruence.
Qed.
Lemma Permutation_filter A (l l' : list A) (P: Permutation l l') f :
Permutation (filter f l) (filter f l').
Proof.
induction P; ins; desf; vauto.
Qed.
Add Parametric Morphism A : (@filter A) with
signature eq ==> (@Permutation A) ==> (@Permutation A)
as filter_mor.
Proof.
by ins; apply Permutation_filter.
Qed.
List flattening
Fixpoint flatten A (l: list (list A)) :=
match l with
| nil ⇒ nil
| x :: l' ⇒ x ++ flatten l'
end.
Lemma in_flatten_iff A (x: A) ll :
In x (flatten ll) ↔ ∃ l, In l ll ∧ In x l.
Proof.
induction ll; ins.
by split; ins; desf.
rewrite in_app_iff, IHll; clear; split; ins; desf; eauto.
Qed.
List disjointness
Remove duplicate list elements (classical)
Fixpoint undup A (l: list A) :=
match l with nil ⇒ nil
| x :: l ⇒
if excluded_middle_informative (In x l) then undup l else x :: undup l
end.
Lemma nodup_one A (x: A) : NoDup (x :: nil).
Proof. vauto. Qed.
Hint Resolve NoDup_nil nodup_one.
Lemma nodup_map:
∀ (A B: Type) (f: A → B) (l: list A),
NoDup l →
(∀ x y, In x l → In y l → x ≠ y → f x ≠ f y) →
NoDup (map f l).
Proof.
induction 1; ins; vauto.
constructor; eauto.
intro; rewrite in_map_iff in *; desf.
edestruct H1; try eapply H2; eauto.
intro; desf.
Qed.
Lemma nodup_append_commut:
∀ (A: Type) (a b: list A),
NoDup (a ++ b) → NoDup (b ++ a).
Proof.
intro A.
assert (∀ (x: A) (b: list A) (a: list A),
NoDup (a ++ b) → ~(In x a) → ~(In x b) →
NoDup (a ++ x :: b)).
induction a; simpl; intros.
constructor; auto.
inversion H. constructor. red; intro.
elim (in_app_or _ _ _ H6); intro.
elim H4. apply in_or_app. tauto.
elim H7; intro. subst a. elim H0. left. auto.
elim H4. apply in_or_app. tauto.
auto.
induction a; simpl; intros.
rewrite <- app_nil_end. auto.
inversion H0. apply H. auto.
red; intro; elim H3. apply in_or_app. tauto.
red; intro; elim H3. apply in_or_app. tauto.
Qed.
Lemma nodup_cons A (x: A) l:
NoDup (x :: l) ↔ ¬ In x l ∧ NoDup l.
Proof. split; inversion 1; vauto. Qed.
Lemma nodup_app:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) ↔
NoDup l1 ∧ NoDup l2 ∧ disjoint l1 l2.
Proof.
induction l1; ins.
by split; ins; desf; vauto.
rewrite !nodup_cons, IHl1, in_app_iff; unfold disjoint.
ins; intuition (subst; eauto).
Qed.
Lemma nodup_append:
∀ (A: Type) (l1 l2: list A),
NoDup l1 → NoDup l2 → disjoint l1 l2 →
NoDup (l1 ++ l2).
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_right:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) → NoDup l2.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_left:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) → NoDup l1.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_filter A (l: list A) (ND: NoDup l) f : NoDup (filter f l).
Proof.
induction l; ins; inv ND; desf; eauto using NoDup.
econstructor; eauto; rewrite in_filter_iff; tauto.
Qed.
Hint Resolve nodup_filter.
Lemma Permutation_nodup A ( l l' : list A) :
Permutation l l' → NoDup l → NoDup l'.
Proof.
induction 1; eauto; rewrite !nodup_cons in *; ins; desf; intuition.
eby symmetry in H; eapply H0; eapply Permutation_in.
Qed.
Lemma nodup_eq_one A (x : A) l :
NoDup l → In x l → (∀ y (IN: In y l), y = x) → l = x :: nil.
Proof.
destruct l; ins; f_equal; eauto.
inv H; desf; clear H H5; induction l; ins; desf; case H4; eauto using eq_sym.
rewrite IHl in H0; ins; desf; eauto.
Qed.
Lemma nodup_consD A (x : A) l : NoDup (x :: l) → NoDup l.
Proof. inversion 1; desf. Qed.
Lemma nodup_mapD A B (f : A→ B) l : NoDup (map f l) → NoDup l.
Proof.
induction l; ins; rewrite !nodup_cons, in_map_iff in *; desf; eauto 8.
Qed.
Lemma In_NoDup_Permutation A (a : A) l (IN: In a l) (ND : NoDup l) :
∃ l', Permutation l (a :: l') ∧ ¬ In a l'.
Proof.
induction l; ins; desf; inv ND; eauto.
destruct IHl as (l' & ? & ?); eauto.
destruct (classic (a0 = a)); desf.
eexists (a0 :: l'); split; try red; ins; desf.
eapply Permutation_trans, perm_swap; eauto.
Qed.
Lemma in_undup_iff A (x : A) (l : list A) : In x (undup l) ↔ In x l.
Proof. induction l; split; ins; desf; ins; desf; eauto. Qed.
Lemma nodup_undup A (l : list A) : NoDup (undup l).
Proof. induction l; ins; desf; constructor; rewrite ?in_undup_iff in *; eauto. Qed.
Hint Resolve nodup_undup.
Lemma undup_nodup A (l : list A) : NoDup l → undup l = l.
Proof. induction 1; ins; desf; congruence. Qed.
Lemma Sorted_undup A p (l : list A) :
StronglySorted p l → StronglySorted p (undup l).
Proof.
induction 1; ins; desf; constructor; eauto.
rewrite Forall_forall in *; ins; rewrite in_undup_iff in *; eauto.
Qed.
Lemma undup_nonnil A (l : list A) : l ≠ nil → undup l ≠ nil.
Proof.
induction l; ins; desf.
by eapply in_undup_iff in i; intro X; rewrite X in ×.
Qed.
Lemma Permutation_undup A (l l' : list A) :
Permutation l l' → Permutation (undup l) (undup l').
Proof.
ins; eapply NoDup_Permutation; ins; rewrite !in_undup_iff.
split; eauto using Permutation_in, Permutation_sym.
Qed.
Function update
Definition upd A B (f : A → B) a b x :=
if excluded_middle_informative (x = a) then b else f x.
Lemma upds A B (f: A → B) a b : upd f a b a = b.
Proof. unfold upd; desf. Qed.
Lemma updo A B (f: A → B) a b c (NEQ: c ≠ a) : upd f a b c = f c.
Proof. unfold upd; desf. Qed.
Ltac rupd := repeat first [rewrite upds | rewrite updo ; try done].
Lemma updss A B (f : A → B) l x y : upd (upd f l x) l y = upd f l y.
Proof.
extensionality z; unfold upd; desf.
Qed.
Lemma updC A l l' (NEQ: l ≠ l') B (f : A → B) x y :
upd (upd f l x) l' y = upd (upd f l' y) l x.
Proof.
extensionality z; unfold upd; desf.
Qed.
Lemma updI A B (f : A → B) a : upd f a (f a) = f.
Proof.
extensionality a'; unfold upd; desf.
Qed.
Lemma map_upd_irr A (a: A) l (NIN: ¬ In a l) B f (b : B) :
map (upd f a b) l = map f l.
Proof.
unfold upd; induction l; ins.
apply not_or_and in NIN; desf; f_equal; eauto.
Qed.
Decidable function update
Definition mupd (A: eqType) B (h : A → B) y z :=
fun x ⇒ if x == y then z else h x.
Arguments mupd [A B] h y z x.
Lemma mupds (A: eqType) B (f: A → B) x y : mupd f x y x = y.
Proof. by unfold mupd; desf; desf. Qed.
Lemma mupdo (A: eqType) B (f: A → B) x y z : x ≠ z → mupd f x y z = f z.
Proof. by unfold mupd; desf; desf. Qed.
Lemmas about sorting
Lemma sorted_perm_eq : ∀ A (cmp: A → A → Prop)
(TRANS: transitive _ cmp)
(ANTIS: antisymmetric _ cmp)
l l' (P: Permutation l l')
(S : StronglySorted cmp l) (S' : StronglySorted cmp l'), l = l'.
Proof.
induction l; ins.
by apply Permutation_nil in P; desf.
assert (X: In a l') by eauto using Permutation_in, Permutation_sym, in_eq.
apply In_split2 in X; desf; apply Permutation_cons_app_inv in P.
destruct l1; ins; [by inv S; inv S'; eauto using f_equal|].
assert (X: In a0 l) by eauto using Permutation_in, Permutation_sym, in_eq.
inv S; inv S'; rewrite Forall_forall in *; ins.
destruct X0; left; apply ANTIS; eauto using in_eq, in_or_app.
Qed.
Fixpoint dprod A B al (f : A → list B) :=
match al with
| nil ⇒ nil
| a :: al ⇒ map (fun b ⇒ (a, b)) (f a) ++ dprod al f
end.
Lemma in_dprod_iff A B x al (f : A → list B) :
In x (dprod al f) ↔ In (fst x) al ∧ In (snd x) (f (fst x)).
Proof.
induction al; ins; rewrite ?in_app_iff, ?in_map_iff, ?IHal; try clear IHal;
split; ins; desf; ins; eauto; destruct x; ins; eauto.
Qed.
Miscellaneous
Lemma perm_from_subset :
∀ A (l : list A) l',
NoDup l' →
(∀ x, In x l' → In x l) →
∃ l'', Permutation l (l' ++ l'').
Proof.
induction l; ins; vauto.
by destruct l'; ins; vauto; exfalso; eauto.
destruct (classic (In a l')).
eapply In_split in H1; desf; rewrite ?nodup_app, ?nodup_cons in *; desf.
destruct (IHl (l1 ++ l2)); ins.
by rewrite ?nodup_app, ?nodup_cons in *; desf; repeat split; ins; red;
eauto using in_cons.
by specialize (H0 x); rewrite in_app_iff in *; ins; desf;
destruct (classic (a = x)); subst; try tauto; exfalso; eauto using in_eq.
eexists; rewrite app_ass in *; ins.
by eapply Permutation_trans, Permutation_middle; eauto.
destruct (IHl l'); eauto; ins.
by destruct (H0 x); auto; ins; subst.
by eexists (a :: _); eapply Permutation_trans, Permutation_middle; eauto.
Qed.
Lemma seq_split_gen :
∀ l n a,
n ≤ a < n + l →
seq n l = seq n (a - n) ++ a :: seq (S a) (l + n - a - 1).
Proof.
induction l; ins; desf; ins; try omega.
repeat f_equal; omega.
destruct (eqP n (S n0)); subst.
replace (n0 - n0) with 0 by omega; ins; repeat f_equal; omega.
rewrite IHl with (a := S n0); try omega.
desf; ins; try replace (n0 - n2) with (S (n0 - S n2)) by omega;
ins; repeat (f_equal; try omega).
Qed.
Lemma seq_split0 :
∀ l a,
a < l →
seq 0 l = seq 0 a ++ a :: seq (S a) (l - a - 1).
Proof.
ins; rewrite seq_split_gen with (a := a); repeat f_equal; omega.
Qed.
Lemma list_prod_app A (l l' : list A) B (m : list B) :
list_prod (l ++ l') m = list_prod l m ++ list_prod l' m.
Proof.
by induction l; ins; rewrite IHl, app_assoc.
Qed.
Lemma list_prod_nil_r A (l : list A) B :
list_prod l (@nil B) = nil.
Proof.
induction l; ins.
Qed.
Lemma list_prod_cons_r A (l : list A) B a (m : list B) :
Permutation (list_prod l (a :: m)) (map (fun x ⇒ (x,a)) l ++ list_prod l m).
Proof.
induction l; ins.
eapply Permutation_cons; ins.
eapply Permutation_trans; [by apply Permutation_app; eauto|].
rewrite !app_assoc; eauto using Permutation_app, Permutation_app_comm.
Qed.
Lemma list_prod_app_r A (l : list A) B (m m' : list B) :
Permutation (list_prod l (m ++ m')) (list_prod l m ++ list_prod l m').
Proof.
induction m; ins; ins.
by rewrite list_prod_nil_r.
rewrite list_prod_cons_r.
eapply Permutation_trans; [by eapply Permutation_app, IHm|].
rewrite app_assoc; apply Permutation_app; ins.
symmetry; apply list_prod_cons_r.
Qed.
Lemma in_seq_iff a n l : In a (seq n l) ↔ n ≤ a < n + l.
Proof.
induction[n] l; ins; rewrite ?IHl; omega.
Qed.
Lemma in_seq0_iff x a : In x (seq 0 a) ↔ x < a.
Proof.
rewrite in_seq_iff; omega.
Qed.
Lemma nodup_seq n l : NoDup (seq n l).
Proof.
induction[n] l; ins; constructor; ins; eauto.
rewrite in_seq_iff; omega.
Qed.
Lemma seq_split :
∀ l a,
a < l →
∃ l', Permutation (seq 0 l) (a :: l') ∧ ¬ In a l'.
Proof.
ins; eapply In_NoDup_Permutation; eauto using nodup_seq; apply in_seq_iff; omega.
Qed.
Lemma Permutation_listprod_r A (l : list A) B (m m' : list B) :
Permutation m m' →
Permutation (list_prod l m) (list_prod l m').
Proof.
ins; revert l; induction H; ins; eauto using Permutation.
by rewrite ?list_prod_cons_r; eauto using Permutation_app.
rewrite list_prod_cons_r.
eapply Permutation_trans; [by apply Permutation_app, list_prod_cons_r|].
symmetry.
rewrite list_prod_cons_r.
eapply Permutation_trans; [by apply Permutation_app, list_prod_cons_r|].
rewrite !app_assoc; eauto using Permutation_app, Permutation_app_comm.
Qed.
Ltac in_simp :=
try match goal with |- ¬ _ ⇒ intro end;
repeat first [
rewrite in_flatten_iff in *; desc; clarify |
rewrite in_map_iff in *; desc; clarify |
rewrite in_seq0_iff in *; desc; clarify ].
Global Opaque seq.
This page has been generated by coqdoc