Require Import List Vbase Varith Vlist extralib.
Require Import Classical ClassicalDescription IndefiniteDescription.
Require Import permission fslassn.
Require Import GpsSepAlg.
Set Implicit Arguments.
Labels for non-atomic locations
Labels for atomic locations
Inductive HeapLabelCombination :=
| HLCnormal
| HLCtriangle
| HLCnabla
| HLCdiamond
| HLCtriangledot
| HLCnabladot
| HLCdiamonddot.
Coercion label_to_combination (lbl: HeapLabel) :=
match lbl with
| HLnormal ⇒ HLCnormal
| HLtriangle ⇒ HLCtriangle
| HLnabla ⇒ HLCnabla
end.
Coercion label_to_combination_option (lbl: HeapLabel) := Some (label_to_combination lbl).
Definition is_basic lbl := lbl = HLCnormal ∨ lbl = HLCtriangle ∨ lbl = HLCnabla.
Definition is_normal lbl := lbl = HLCnormal ∨ lbl = HLCtriangledot ∨ lbl = HLCnabladot ∨ lbl = HLCdiamonddot.
Definition is_triangle lbl := lbl = HLCtriangle ∨ lbl = HLCtriangledot ∨ lbl = HLCdiamond ∨ lbl = HLCdiamonddot.
Definition is_nabla lbl := lbl = HLCnabla ∨ lbl = HLCnabladot ∨ lbl = HLCdiamond ∨ lbl = HLCdiamonddot.
Definition is_normalO olbl :=
match olbl with
| Some lbl ⇒ is_normal lbl
| None ⇒ False
end.
Definition HLleq lbl1 lbl2 :=
match lbl1, lbl2 with
| HLCnormal , _ ⇒ is_normal lbl2
| HLCtriangle , _ ⇒ is_triangle lbl2
| HLCnabla , _ ⇒ is_nabla lbl2
| HLCdiamond , _ ⇒ lbl2 = HLCdiamond ∨ lbl2 = HLCdiamonddot
| HLCtriangledot, _ ⇒ lbl2 = HLCtriangledot ∨ lbl2 = HLCdiamonddot
| HLCnabladot , _ ⇒ lbl2 = HLCnabladot ∨ lbl2 = HLCdiamonddot
| HLCdiamonddot , _ ⇒ lbl2 = HLCdiamonddot
end.
Definition oHLleq (olbl1 olbl2: option HeapLabelCombination) :=
match olbl1, olbl2 with
| None, _ ⇒ True
| Some lbl1, Some lbl2 ⇒ HLleq lbl1 lbl2
| _, _ ⇒ False
end.
The heap
Definition permissionsOK (PS : Permission) (x y z: PS) := << PSUMdef: x ## y ## z ≠ Pundef PS >> ∧
<< PSUMnonzero: x ## y ## z ≠ Pzero PS >>.
Inductive HeapVal PS PSg :=
| HVnone
| HVuval (lbl: HeapLabel)
| HVval (v: val) (Perm: Permission) (pNormal pTriangle pNabla : Perm)
(WFperm: permissionsOK pNormal pTriangle pNabla)
| HVra (RR QQ: val → assn_mod PS PSg) (isrmwflag: bool) (permlbl: option HeapLabelCombination)
(init: option HeapLabelCombination).
Program Definition lvalue PS PSg Perm v := @HVval PS PSg v Perm (Pfull Perm) (Pzero Perm) (Pzero Perm) _.
Inductive heap PS PSg :=
| Hundef
| Hdef (hf: val → HeapVal PS PSg) (g : ghost_resource).
Heap cell contains label lbl.
Definition HVlabeled PS PSg (hv : HeapVal PS PSg) (lbl : HeapLabel) :=
match hv with
| HVnone ⇒ True
| HVuval lbl' ⇒ lbl' = lbl
| HVval _ Perm pNormal pTriangle pNabla _ ⇒ match lbl with
| HLnormal ⇒ pNormal ≠ Pzero Perm
| HLtriangle ⇒ pTriangle ≠ Pzero Perm
| HLnabla ⇒ pNabla ≠ Pzero Perm
end
| HVra _ _ _ None None ⇒ False
| HVra _ _ _ (Some permlbl) None ⇒ HLleq lbl permlbl
| HVra _ _ _ None (Some initlbl) ⇒ HLleq lbl initlbl
| HVra _ _ _ (Some permlbl) (Some initlbl) ⇒ HLleq lbl permlbl ∨ HLleq lbl initlbl
end.
Definition HFlabeled PS PSg (hf : val → HeapVal PS PSg) lbl := ∀ (l: val) , HVlabeled (hf l) lbl.
Definition Hlabeled PS PSg (h : heap PS PSg) lbl := ∃ hf g, h = Hdef hf g ∧ HFlabeled hf lbl.
Heap cell contains olny lbl as label.
Definition HVlabeledExact PS PSg (hv: HeapVal PS PSg) (lbl: HeapLabel) :=
match hv with
| HVnone ⇒ True
| HVuval lbl' ⇒ lbl' = lbl
| HVval _ Perm pNormal pTriangle pNabla _ ⇒
match lbl with
| HLnormal ⇒ pTriangle = Pzero Perm ∧ pNabla = Pzero Perm
| HLtriangle ⇒ pNormal = Pzero Perm ∧ pNabla = Pzero Perm
| HLnabla ⇒ pNormal = Pzero Perm ∧ pTriangle = Pzero Perm
end
| HVra _ _ _ None None ⇒ True
| HVra _ _ _ (Some permlbl) None ⇒ permlbl = lbl
| HVra _ _ _ None (Some initlbl) ⇒ initlbl = lbl
| HVra _ _ _ (Some permlbl) (Some initlbl) ⇒ permlbl = lbl ∧ initlbl = lbl
end.
Definition HFlabeledExact PS PSg (hf: val → HeapVal PS PSg) lbl := ∀ (l: val), HVlabeledExact (hf l) lbl.
Definition HlabeledExact PS PSg (h: heap PS PSg) lbl := ∃ hf g, h = Hdef hf g ∧ HFlabeledExact hf lbl.
Read permision carries lbl as label.
Definition HVlabeledR PS PSg (hv: HeapVal PS PSg) (lbl: HeapLabel) :=
match hv with
| HVnone ⇒ False
| HVuval _ ⇒ False
| HVval _ Perm pNormal pTriangle pNabla _ ⇒ match lbl with
| HLnormal ⇒ pNormal ≠ Pzero Perm
| HLtriangle ⇒ pTriangle ≠ Pzero Perm
| HLnabla ⇒ pNabla ≠ Pzero Perm
end
| HVra _ _ _ _ (Some initlbl) ⇒ HLleq lbl initlbl
| _ ⇒ False
end.
Heap similarity
Definition HLCsim (lbl1 lbl2: option HeapLabelCombination) :=
match lbl1, lbl2 with
| None, None ⇒ True
| (Some _), (Some _) ⇒ True
| _, _ ⇒ False
end.
Definition HVsim PS PSg (hv hv': HeapVal PS PSg) :=
match hv, hv' with
| HVnone, HVnone ⇒ True
| HVuval _, HVuval _ ⇒ True
| HVval v Perm pNormal pTriangle pNabla _, HVval v' Perm' pNormal' pTriangle' pNabla' _
⇒ match excluded_middle_informative (Perm = Perm') return Prop with
| right _ ⇒ False
| left EQ ⇒ v = v' ∧
(eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ)
## (eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ)
## (eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ)
= pNormal' ## pTriangle' ## pNabla'
end
| HVra RR QQ isrmwflag permlbl init, HVra RR' QQ' isrmwflag' permlbl' init'
⇒ RR = RR' ∧ QQ = QQ' ∧ isrmwflag = isrmwflag' ∧ HLCsim permlbl permlbl' ∧ HLCsim init init'
| _, _ ⇒ False
end.
Definition HFsim PS PSg (hf hf': val → HeapVal PS PSg) := ∀ (l: val), HVsim (hf l) (hf' l).
Definition Hsim PS PSg (h h': heap PS PSg) := ∃ hf hf' g, h = Hdef hf g ∧ h' = Hdef hf' g ∧ HFsim hf hf'.
Program Definition lupd PS PSg (h: heap PS PSg) lbl :=
match h return heap PS PSg with
| Hundef _ _⇒ Hundef PS PSg
| Hdef hf g ⇒ Hdef (fun l ⇒
match hf l return HeapVal PS PSg with
| HVnone ⇒ @HVnone PS PSg
| HVuval _ ⇒ @HVuval PS PSg lbl
| HVval v Perm pNormal pTriangle pNabla _
⇒ match lbl return HeapVal PS PSg with
| HLnormal
⇒ @HVval PS PSg v
Perm (pNormal ## pTriangle ## pNabla) (Pzero Perm) (Pzero Perm) _
| HLtriangle
⇒ @HVval PS PSg v
Perm (Pzero Perm) (pNormal ## pTriangle ## pNabla) (Pzero Perm) _
| HLnabla
⇒ @HVval PS PSg v
Perm (Pzero Perm) (Pzero Perm) (pNormal ## pTriangle ## pNabla) _
end
| HVra PP QQ isrmw None None ⇒ HVra PP QQ isrmw None None
| HVra PP QQ isrmw (Some _) None ⇒ HVra PP QQ isrmw lbl None
| HVra PP QQ isrmw None (Some _) ⇒ HVra PP QQ isrmw None lbl
| HVra PP QQ isrmw (Some _) (Some _) ⇒ HVra PP QQ isrmw lbl lbl
end) g
end.
Definition is_lvalue PS PSg (v: HeapVal PS PSg) :=
match v with
| HVuval lbl ⇒ lbl = HLnormal
| HVval _ Perm pNormal _ _ _ ⇒ pNormal = Pfull Perm
| _ ⇒ False
end.
Definition is_rvalue PS PSg (v: HeapVal PS PSg) :=
match v with
| HVval _ Perm pNormal _ _ _ ⇒ pNormal ≠ Pzero Perm
| _ ⇒ False
end.
Definition is_rvalueV PS PSg (hv: HeapVal PS PSg) v :=
match hv with
| HVval v' Perm pNormal _ _ _ ⇒ v = v' ∧ pNormal ≠ Pzero Perm
| _ ⇒ False
end.
Definition has_value PS PSg (hv: HeapVal PS PSg) v :=
match hv with
| HVval v' _ _ _ _ _ ⇒ v' = v
| _ ⇒ False
end.
Definition is_nonatomic PS PSg (hv: HeapVal PS PSg) :=
match hv with
| HVval _ _ _ _ _ _ ⇒ true
| HVuval _ ⇒ true
| _ ⇒ false
end.
Definition is_atomic PS PSg (hv: HeapVal PS PSg) :=
match hv with
| HVra _ _ _ _ _ ⇒ true
| _ ⇒ false
end.
Definition mk_assn_mod PS PSg (P: assn PS PSg) : assn_mod PS PSg := exist _ _ (assn_norm_idemp P).
Definition hemp {PS} {PSg} := Hdef (fun v ⇒ @HVnone PS PSg) gres_emp.
Heap compatibility
Definition Acombinable PS PSg (P Q : assn PS PSg) :=
P = Afalse ∨ Q = Afalse ∨ P = Q.
Definition hv_rval PS PSg isrmw (P: assn PS PSg) :=
match isrmw with
| true ⇒ P
| false ⇒ Aemp
end.
Definition hv_acq_def PS PSg isrmw1 Q1 isrmw2 Q2 :=
hv_rval isrmw2 Q1 = hv_rval isrmw1 Q2
∨ Q1 = (@Afalse PS PSg) ∧ Q2 = (@Afalse PS PSg).
Definition hvplusDEF PS PSg (hv hv' : HeapVal PS PSg) : Prop :=
match hv, hv' return Prop with
| HVnone, _ ⇒ True
| _, HVnone ⇒ True
| HVuval _, HVuval _ ⇒ False
| HVval v Perm pNormal pTriangle pNabla _, HVval v' Perm' pNormal' pTriangle' pNabla' _ ⇒
match excluded_middle_informative (Perm = Perm') return Prop with
| right _ ⇒ False
| left EQ ⇒ v = v' ∧
permissionsOK ((eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ) ## pNormal')
((eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ) ## pTriangle')
((eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ) ## pNabla')
end
| HVra RR1 QQ1 isrmw1 permlbl1 init1, HVra RR2 QQ2 isrmw2 permlbl2 init2 ⇒
(∀ v, hv_acq_def isrmw1 (sval (QQ1 v)) isrmw2 (sval (QQ2 v))) ∧
(∀ v, Acombinable (sval (RR1 v)) (sval (RR2 v)))
| _, _ ⇒ False
end.
Definition hlplus lbl1 lbl2 :=
match lbl1, lbl2 with
| HLCdiamonddot , _ ⇒ HLCdiamonddot
| _ , HLCdiamonddot ⇒ HLCdiamonddot
| HLCnabladot , HLCtriangledot ⇒ HLCdiamonddot
| HLCnabladot , HLCdiamond ⇒ HLCdiamonddot
| HLCnabladot , HLCtriangle ⇒ HLCdiamonddot
| HLCnabladot , _ ⇒ HLCnabladot
| HLCtriangledot , HLCnabladot ⇒ HLCdiamonddot
| HLCtriangledot , HLCdiamond ⇒ HLCdiamonddot
| HLCtriangledot , HLCnabla ⇒ HLCdiamonddot
| HLCtriangledot , _ ⇒ HLCtriangledot
| HLCdiamond , HLCnabladot ⇒ HLCdiamonddot
| HLCdiamond , HLCtriangledot ⇒ HLCdiamonddot
| HLCdiamond , HLCnormal ⇒ HLCdiamonddot
| HLCdiamond , _ ⇒ HLCdiamond
| HLCnabla , HLCnabladot ⇒ HLCnabladot
| HLCnabla , HLCtriangledot ⇒ HLCdiamonddot
| HLCnabla , HLCdiamond ⇒ HLCdiamond
| HLCnabla , HLCnabla ⇒ HLCnabla
| HLCnabla , HLCtriangle ⇒ HLCdiamond
| HLCnabla , HLCnormal ⇒ HLCnabladot
| HLCtriangle , HLCnabladot ⇒ HLCdiamonddot
| HLCtriangle , HLCtriangledot ⇒ HLCtriangledot
| HLCtriangle , HLCdiamond ⇒ HLCdiamond
| HLCtriangle , HLCnabla ⇒ HLCdiamond
| HLCtriangle , HLCtriangle ⇒ HLCtriangle
| HLCtriangle , HLCnormal ⇒ HLCtriangledot
| HLCnormal , HLCnabladot ⇒ HLCnabladot
| HLCnormal , HLCtriangledot ⇒ HLCtriangledot
| HLCnormal , HLCdiamond ⇒ HLCdiamonddot
| HLCnormal , HLCnabla ⇒ HLCnabladot
| HLCnormal , HLCtriangle ⇒ HLCtriangledot
| HLCnormal , HLCnormal ⇒ HLCnormal
end.
Definition ohlplus lbl1 lbl2 :=
match lbl1, lbl2 with
| None, lbl ⇒ lbl
| lbl, None ⇒ lbl
| (Some lbl1'), (Some lbl2') ⇒ Some (hlplus lbl1' lbl2')
end.
Program Definition hvplus PS PSg (hv hv' : HeapVal PS PSg) : HeapVal PS PSg :=
match hv, hv' return HeapVal PS PSg with
| HVnone, _ ⇒ hv'
| _, HVnone ⇒ hv
| HVval v Perm pNormal pTriangle pNabla _, HVval v' Perm' pNormal' pTriangle' pNabla' _ ⇒
match excluded_middle_informative (Perm = Perm') return HeapVal PS PSg with
| right _ ⇒ @HVval PS PSg 0 Perm' (Pfull Perm') (Pzero Perm') (Pzero Perm') _
| left EQ ⇒ if excluded_middle_informative
(permissionsOK ((eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ) ## pNormal')
((eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ) ## pTriangle')
((eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ) ## pNabla'))
then @HVval PS PSg v Perm' ((eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ) ## pNormal')
((eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ) ## pTriangle')
((eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ) ## pNabla') _
else @HVval PS PSg 0 Perm' (Pfull Perm') (Pzero Perm') (Pzero Perm') _
end
| HVra RR1 QQ1 isrmw1 permlbl1 init1, HVra RR2 QQ2 isrmw2 permlbl2 init2 ⇒
HVra (fun v ⇒ if excluded_middle_informative (sval (RR1 v) = Afalse) then RR2 v else RR1 v)
(if isrmw1 then QQ1
else if isrmw2 then QQ2
else fun v ⇒ mk_assn_mod (Astar (sval (QQ1 v)) (sval (QQ2 v))))
(isrmw1 || isrmw2)
(ohlplus permlbl1 permlbl2)
(ohlplus init1 init2)
| _, _ ⇒ hv
end.
Definition resources_compatible PS PSg (hf1 hf2: val → HeapVal PS PSg) (g1 g2 : ghost_resource) :=
excluded_middle_informative (
<< HEAPcompat: ∀ v, hvplusDEF (hf1 v) (hf2 v) >> ∧
<< GHOSTcompat: gres_plus g1 g2 ≠ None>> ).
Definition hplus PS PSg (h1 h2: heap PS PSg) : heap PS PSg :=
match h1, h2 with
| Hundef, _ ⇒ Hundef
| _, Hundef ⇒ Hundef
| Hdef hf1 g1, Hdef hf2 g2 ⇒
if resources_compatible hf1 hf2 g1 g2 then
Hdef (fun v ⇒ hvplus (hf1 v) (hf2 v)) (gres_plus_total g1 g2)
else Hundef
end.
P = Afalse ∨ Q = Afalse ∨ P = Q.
Definition hv_rval PS PSg isrmw (P: assn PS PSg) :=
match isrmw with
| true ⇒ P
| false ⇒ Aemp
end.
Definition hv_acq_def PS PSg isrmw1 Q1 isrmw2 Q2 :=
hv_rval isrmw2 Q1 = hv_rval isrmw1 Q2
∨ Q1 = (@Afalse PS PSg) ∧ Q2 = (@Afalse PS PSg).
Definition hvplusDEF PS PSg (hv hv' : HeapVal PS PSg) : Prop :=
match hv, hv' return Prop with
| HVnone, _ ⇒ True
| _, HVnone ⇒ True
| HVuval _, HVuval _ ⇒ False
| HVval v Perm pNormal pTriangle pNabla _, HVval v' Perm' pNormal' pTriangle' pNabla' _ ⇒
match excluded_middle_informative (Perm = Perm') return Prop with
| right _ ⇒ False
| left EQ ⇒ v = v' ∧
permissionsOK ((eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ) ## pNormal')
((eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ) ## pTriangle')
((eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ) ## pNabla')
end
| HVra RR1 QQ1 isrmw1 permlbl1 init1, HVra RR2 QQ2 isrmw2 permlbl2 init2 ⇒
(∀ v, hv_acq_def isrmw1 (sval (QQ1 v)) isrmw2 (sval (QQ2 v))) ∧
(∀ v, Acombinable (sval (RR1 v)) (sval (RR2 v)))
| _, _ ⇒ False
end.
Definition hlplus lbl1 lbl2 :=
match lbl1, lbl2 with
| HLCdiamonddot , _ ⇒ HLCdiamonddot
| _ , HLCdiamonddot ⇒ HLCdiamonddot
| HLCnabladot , HLCtriangledot ⇒ HLCdiamonddot
| HLCnabladot , HLCdiamond ⇒ HLCdiamonddot
| HLCnabladot , HLCtriangle ⇒ HLCdiamonddot
| HLCnabladot , _ ⇒ HLCnabladot
| HLCtriangledot , HLCnabladot ⇒ HLCdiamonddot
| HLCtriangledot , HLCdiamond ⇒ HLCdiamonddot
| HLCtriangledot , HLCnabla ⇒ HLCdiamonddot
| HLCtriangledot , _ ⇒ HLCtriangledot
| HLCdiamond , HLCnabladot ⇒ HLCdiamonddot
| HLCdiamond , HLCtriangledot ⇒ HLCdiamonddot
| HLCdiamond , HLCnormal ⇒ HLCdiamonddot
| HLCdiamond , _ ⇒ HLCdiamond
| HLCnabla , HLCnabladot ⇒ HLCnabladot
| HLCnabla , HLCtriangledot ⇒ HLCdiamonddot
| HLCnabla , HLCdiamond ⇒ HLCdiamond
| HLCnabla , HLCnabla ⇒ HLCnabla
| HLCnabla , HLCtriangle ⇒ HLCdiamond
| HLCnabla , HLCnormal ⇒ HLCnabladot
| HLCtriangle , HLCnabladot ⇒ HLCdiamonddot
| HLCtriangle , HLCtriangledot ⇒ HLCtriangledot
| HLCtriangle , HLCdiamond ⇒ HLCdiamond
| HLCtriangle , HLCnabla ⇒ HLCdiamond
| HLCtriangle , HLCtriangle ⇒ HLCtriangle
| HLCtriangle , HLCnormal ⇒ HLCtriangledot
| HLCnormal , HLCnabladot ⇒ HLCnabladot
| HLCnormal , HLCtriangledot ⇒ HLCtriangledot
| HLCnormal , HLCdiamond ⇒ HLCdiamonddot
| HLCnormal , HLCnabla ⇒ HLCnabladot
| HLCnormal , HLCtriangle ⇒ HLCtriangledot
| HLCnormal , HLCnormal ⇒ HLCnormal
end.
Definition ohlplus lbl1 lbl2 :=
match lbl1, lbl2 with
| None, lbl ⇒ lbl
| lbl, None ⇒ lbl
| (Some lbl1'), (Some lbl2') ⇒ Some (hlplus lbl1' lbl2')
end.
Program Definition hvplus PS PSg (hv hv' : HeapVal PS PSg) : HeapVal PS PSg :=
match hv, hv' return HeapVal PS PSg with
| HVnone, _ ⇒ hv'
| _, HVnone ⇒ hv
| HVval v Perm pNormal pTriangle pNabla _, HVval v' Perm' pNormal' pTriangle' pNabla' _ ⇒
match excluded_middle_informative (Perm = Perm') return HeapVal PS PSg with
| right _ ⇒ @HVval PS PSg 0 Perm' (Pfull Perm') (Pzero Perm') (Pzero Perm') _
| left EQ ⇒ if excluded_middle_informative
(permissionsOK ((eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ) ## pNormal')
((eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ) ## pTriangle')
((eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ) ## pNabla'))
then @HVval PS PSg v Perm' ((eq_rect Perm (fun x ⇒ x) pNormal Perm' EQ) ## pNormal')
((eq_rect Perm (fun x ⇒ x) pTriangle Perm' EQ) ## pTriangle')
((eq_rect Perm (fun x ⇒ x) pNabla Perm' EQ) ## pNabla') _
else @HVval PS PSg 0 Perm' (Pfull Perm') (Pzero Perm') (Pzero Perm') _
end
| HVra RR1 QQ1 isrmw1 permlbl1 init1, HVra RR2 QQ2 isrmw2 permlbl2 init2 ⇒
HVra (fun v ⇒ if excluded_middle_informative (sval (RR1 v) = Afalse) then RR2 v else RR1 v)
(if isrmw1 then QQ1
else if isrmw2 then QQ2
else fun v ⇒ mk_assn_mod (Astar (sval (QQ1 v)) (sval (QQ2 v))))
(isrmw1 || isrmw2)
(ohlplus permlbl1 permlbl2)
(ohlplus init1 init2)
| _, _ ⇒ hv
end.
Definition resources_compatible PS PSg (hf1 hf2: val → HeapVal PS PSg) (g1 g2 : ghost_resource) :=
excluded_middle_informative (
<< HEAPcompat: ∀ v, hvplusDEF (hf1 v) (hf2 v) >> ∧
<< GHOSTcompat: gres_plus g1 g2 ≠ None>> ).
Definition hplus PS PSg (h1 h2: heap PS PSg) : heap PS PSg :=
match h1, h2 with
| Hundef, _ ⇒ Hundef
| _, Hundef ⇒ Hundef
| Hdef hf1 g1, Hdef hf2 g2 ⇒
if resources_compatible hf1 hf2 g1 g2 then
Hdef (fun v ⇒ hvplus (hf1 v) (hf2 v)) (gres_plus_total g1 g2)
else Hundef
end.
Definition hsum PS PSg (l: list (heap PS PSg)) := foldr (@hplus PS PSg) l hemp.
Definition hupd B (h : nat → B) y z := fun x ⇒ if x == y then z else h x.
Singleton heap cell
Notation hsingl PS PSg l v := (Hdef (hupd (fun _ ⇒ @HVnone PS PSg) l v) gres_emp).
Notation gsingl PS PSg l g := (Hdef (fun _ : val ⇒ @HVnone PS PSg) (gres_one l g)).
Notation gheap PS PSg g := (Hdef (fun _ ⇒ @HVnone PS PSg) g).
initialize : add HLnormal to the set of initialization labels of an atomic location
Definition initialize PS PSg (h: val → HeapVal PS PSg) l :=
hupd h l (match h l with
| HVra PP QQ permlbl isrmw init ⇒ HVra PP QQ permlbl isrmw (ohlplus init (Some HLCnormal))
| _ ⇒ h l end).
Global Opaque hplus.
Definition Wemp {PS} {PSg} : val → assn_mod PS PSg := fun _ ⇒ mk_assn_mod Afalse.
Definition Remp {PS} {PSg} : val → assn_mod PS PSg := fun _ ⇒ mk_assn_mod Aemp.
Lemma equal_exist:
∀ (U : Type) (P : U → Prop) (x y : U) (p : P x) (q : P y),
x = y → exist P x p = exist P y q.
Program Fixpoint assn_sem PS PSg (P : assn PS PSg) (h : heap PS PSg) :=
match P with
| Afalse ⇒ False
| Aemp ⇒ h = hemp
| Aimplies P Q ⇒ h ≠ Hundef ∧ (assn_sem P h → assn_sem Q h)
| Aforall PP ⇒ ∀ x, assn_sem (PP x) h
| Apt Perm _ p _ E E' ⇒ h = hsingl PS PSg E (@HVval PS PSg E' Perm p (Pzero Perm) (Pzero Perm) _)
| Aptu E ⇒ h = hsingl PS PSg E (@HVuval PS PSg HLnormal)
| Astar P Q ⇒ ∃ h1 h2, h ≠ Hundef ∧ hplus h1 h2 = h ∧ assn_sem P h1 ∧ assn_sem Q h2
| Arainit E ⇒ h = hsingl PS PSg E (HVra Wemp Remp false None (Some HLCnormal))
| Arel E P ⇒ h = hsingl PS PSg E (HVra (fun x ⇒ mk_assn_mod (P x)) Remp false (Some HLCnormal) None)
| Aacq E Q ⇒ h = hsingl PS PSg E (HVra Wemp (fun x ⇒ mk_assn_mod (Q x)) false None None)
| Armwacq E Q ⇒ h = hsingl PS PSg E (HVra Wemp (fun x ⇒ mk_assn_mod (Q x)) true (Some HLCnormal) None)
| Atriangle Q ⇒ HlabeledExact h HLtriangle ∧
∃ h', assn_sem Q h' ∧ Hsim h h' ∧ HlabeledExact h' HLnormal
| Anabla Q ⇒ HlabeledExact h HLnabla ∧
∃ h', assn_sem Q h' ∧ Hsim h h' ∧ HlabeledExact h' HLnormal
| Aghost PCM _ E g ⇒ h = gsingl PS PSg E (Some (existT (fun m : salg_mod ⇒ m) PCM g))
end.
Definition implies PS PSg (P Q: assn PS PSg) := ∀ h, assn_sem P h → assn_sem Q h.
Definition precise PS PSg (P: assn PS PSg) :=
∀ hP (SEM: assn_sem P hP) hP' (SEM': assn_sem P hP')
hF (DEF: hplus hP hF ≠ Hundef) hF' (EQ: hplus hP hF = hplus hP' hF'),
hP = hP' ∧ hF = hF'.
Definition normalizable PS PSg (P: assn PS PSg) :=
∀ h, assn_sem P h → ∃ hN h', assn_sem P hN ∧ HlabeledExact hN HLnormal ∧ h = hplus hN h'.
Definition Anot PS PSg (P: assn PS PSg) := Aimplies P Afalse.
Definition Adisj PS PSg (P Q: assn PS PSg) := Aimplies (Anot P) Q.
Definition Aconj PS PSg (P Q: assn PS PSg) := Anot (Adisj (Anot P) (Anot Q)).
Definition Aexists PS PSg (PP: val → assn PS PSg) := Anot (Aforall (fun x ⇒ Anot (PP x))).
This page has been generated by coqdoc