Require Import List Permutation Vbase Classical.
Set Implicit Arguments.
Fixpoint flatten A (l: list (list A)) :=
match l with
| nil => nil
| x :: l' => x ++ flatten l'
end.
Definition disjoint A (l1 l2 : list A) :=
forall a (IN1: In a l1) (IN2: In a l2), False.
Definition appA := app_assoc_reverse.
Properties of In
Lemma In_eq : forall A (a:A) (l:list A), In a (a :: l).
Proof. vauto. Qed.
Lemma In_cons : forall A (a b:A) (l:list A), In b l -> In b (a :: l).
Proof. vauto. Qed.
Lemma In_nil : forall A (a:A), ~ In a nil.
Proof. by red. Qed.
Lemma In_split : forall A x (l:list A), In x l -> exists l1 l2, l = l1++x::l2.
Proof.
induction l; simpl; intros; des; vauto.
- exists nil; vauto.
- destruct IHl; des; try done; eexists (_ :: _); vauto.
Qed.
Lemma In_dec :
forall A (D: forall x y:A, {x = y} + {x <> y}) (a: A) l, {In a l} + {~ In a l}.
Proof.
induction l; vauto; simpl; destruct (D a a0); intuition.
Qed.
Lemma In_appI1 : forall A (x:A) l (IN: In x l) l', In x (l++l').
Proof. induction l; ins; desf; eauto. Qed.
Lemma In_appI2 : forall A (x:A) l' (IN: In x l') l, In x (l++l').
Proof. induction l; ins; desf; eauto. Qed.
Lemma In_appD : forall A (x:A) l l' (IN: In x (l++l')), In x l \/ In x l'.
Proof. induction l; intuition. Qed.
Lemma In_app : forall A (x:A) l l', In x (l++l') <-> In x l \/ In x l'.
Proof. intuition; auto using In_appI1, In_appI2. Qed.
Lemma In_rev : forall A (x: A) l, In x (rev l) <-> In x l.
Proof.
induction l; ins; rewrite In_app, IHl; ins; tauto.
Qed.
Lemma In_revI : forall A (x: A) l (IN: In x l), In x (rev l).
Proof. by intros; apply In_rev. Qed.
Lemma In_revD : forall A (x: A) l (IN: In x (rev l)), In x l.
Proof. by intros; apply In_rev. Qed.
Lemma In_mapI : forall A B (f: A -> B) x l (IN: In x l), In (f x) (map f l).
Proof. induction l; ins; intuition vauto. Qed.
Lemma In_mapD :
forall A B (f: A->B) y l, In y (map f l) -> exists x, f x = y /\ In x l.
Proof.
induction l; ins; intuition; des; eauto.
Qed.
Lemma In_map :
forall A B (f: A->B) y l, In y (map f l) <-> exists x, f x = y /\ In x l.
Proof.
split; intros; des; clarify; auto using In_mapI, In_mapD.
Qed.
Lemma In_filter :
forall A (x:A) f l, In x (filter f l) <-> In x l /\ f x.
Proof. induction l; ins; desf; simpls; intuition; clarify. Qed.
Lemma In_filterI :
forall A x l (IN: In x l) (f: A->bool) (F: f x), In x (filter f l).
Proof. by intros; apply In_filter. Qed.
Lemma In_filterD :
forall A (x:A) f l (D: In x (filter f l)), In x l /\ f x.
Proof. by intros; apply In_filter. Qed.
Lemma In_flatten A (x:A) l :
In x (flatten l) <-> exists y, In x y /\ In y l.
Proof.
induction l; ins; rewrite ?In_app, ?IHl; clear; split; ins; desf; eauto.
Qed.
Hint Resolve In_eq In_cons In_appI1 In_appI2 In_mapI In_revI In_filterI : vlib.
Lemma nodup_one A (x: A) : NoDup (x :: nil).
Proof. vauto. Qed.
Hint Resolve NoDup_nil nodup_one.
Lemma nodup_map:
forall (A B: Type) (f: A -> B) (l: list A),
NoDup l ->
(forall x y, In x l -> In y l -> x <> y -> f x <> f y) ->
NoDup (map f l).
Proof.
induction 1; ins; vauto.
constructor; eauto.
intro; rewrite In_map in *; desf.
edestruct H1; try eapply H2; eauto.
intro; desf.
Qed.
Lemma nodup_append_commut:
forall (A: Type) (a b: list A),
NoDup (a ++ b) -> NoDup (b ++ a).
Proof.
intro A.
assert (forall (x: A) (b: list A) (a: list A),
NoDup (a ++ b) -> ~(In x a) -> ~(In x b) ->
NoDup (a ++ x :: b)).
induction a; simpl; intros.
constructor; auto.
inversion H. constructor. red; intro.
elim (in_app_or _ _ _ H6); intro.
elim H4. apply in_or_app. tauto.
elim H7; intro. subst a. elim H0. left. auto.
elim H4. apply in_or_app. tauto.
auto.
induction a; simpl; intros.
rewrite <- app_nil_end. auto.
inversion H0. apply H. auto.
red; intro; elim H3. apply in_or_app. tauto.
red; intro; elim H3. apply in_or_app. tauto.
Qed.
Lemma nodup_cons A (x: A) l:
NoDup (x :: l) <-> ~ In x l /\ NoDup l.
Proof. split; inversion 1; vauto. Qed.
Lemma nodup_app:
forall (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) <->
NoDup l1 /\ NoDup l2 /\ disjoint l1 l2.
Proof.
induction l1; ins.
by split; ins; desf; vauto.
rewrite !nodup_cons, IHl1, In_app; unfold disjoint.
ins; intuition (subst; eauto).
Qed.
Lemma nodup_append:
forall (A: Type) (l1 l2: list A),
NoDup l1 -> NoDup l2 -> disjoint l1 l2 ->
NoDup (l1 ++ l2).
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_right:
forall (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) -> NoDup l2.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_left:
forall (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) -> NoDup l1.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma NoDup_filter A (l: list A) (ND: NoDup l) f : NoDup (filter f l).
Proof.
induction l; ins; inv ND; desf; eauto using NoDup.
econstructor; eauto; rewrite In_filter; tauto.
Qed.
Hint Resolve NoDup_filter.
Lemma NoDup_eq_one A (x : A) l :
NoDup l -> In x l -> (forall y (IN: In y l), y = x) -> l = x :: nil.
Proof.
destruct l; ins; f_equal; eauto.
inv H; desf; clear H H5; induction l; ins; desf; case H4; eauto using eq_sym.
rewrite IHl in H0; ins; desf; eauto.
Qed.
Lemma Permutation_NoDup A ( l l' : list A) :
Permutation l l' -> NoDup l -> NoDup l'.
Proof.
induction 1; eauto; rewrite !nodup_cons in *; ins; desf; intuition.
eby symmetry in H; eapply H0; eapply Permutation_in.
Qed.
Lemma NoDup_mapD A B (f : A-> B) l :
NoDup (map f l) -> NoDup l.
Proof.
induction l; ins; rewrite !nodup_cons, In_map in *; desf; eauto 8.
Qed.
Lemma perm_from_subset :
forall A (l : list A) l',
NoDup l' ->
(forall x, In x l' -> In x l) ->
exists l'', Permutation l (l' ++ l'').
Proof.
induction l; ins; vauto.
by destruct l'; ins; vauto; exfalso; eauto.
destruct (classic (In a l')).
eapply In_split in H1; desf; rewrite ?nodup_app, ?nodup_cons in *; desf.
destruct (IHl (l1 ++ l2)); ins.
by rewrite ?nodup_app, ?nodup_cons in *; desf; repeat split; ins; red; eauto using In_cons.
by specialize (H0 x); rewrite In_app in *; ins; desf;
destruct (classic (a = x)); subst; try tauto; exfalso; eauto using In_eq.
eexists; rewrite appA in *; ins.
by eapply Permutation_trans, Permutation_middle; eauto.
destruct (IHl l'); eauto; ins.
by destruct (H0 x); auto; ins; subst.
by eexists (a :: _); eapply Permutation_trans, Permutation_middle; eauto.
Qed.
This page has been generated by coqdoc